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LINEAR ALGEBRAIC GROUPS AND COUNTABLE
BOREL EQUIVALENCE RELATIONS

SCOT ADAMS AND ALEXANDER S. KECHRIS

This paper is a contribution to the study of Borel equivalence relations on stan-
dard Borel spaces (i.e., Polish spaces equipped with their Borel structure). In
mathematics one often deals with problems of classification of objects up to some
notion of equivalence by invariants. Frequently these objects can be viewed as el-
ements of a standard Borel space X and the equivalence turns out to be a Borel
equivalence relation E on X . A complete classification of X up to E consists of
finding a set of invariants I and a map c : X → I such that xEy ⇔ c(x) = c(y).
For this to be of any interest both I and c must be explicit or definable and as sim-
ple and concrete as possible. The theory of Borel equivalence relations studies the
set-theoretic nature of possible invariants and develops a mathematical framework
for measuring the complexity of such classification problems.

In organizing this study, the following concept of reducibility is fundamental.
Let E,F be equivalence relations on standard Borel spaces X,Y , resp. We say that
E is Borel reducible to F , in symbols,

E ≤B F,

if there is a Borel map f : X → Y such that

xEy ⇔ f(x)Ff(y).

This simply means that any complete invariants for F work as well for E (after
composing with f) and therefore, in some sense, E has a classification problem at
most as complicated as that of F . We also let

E ∼B F ⇔ E ≤B F & F ≤B E,

and this means that E,F have classification problems of equal complexity. Finally,
we use

E <B F ⇔ E ≤B F & F 6≤B E

to signify that E has a (strictly) simpler classification problem than that of F .
Another way to look at this notion is to notice that E ≤B F simply means that

there is an injection from the quotient space X/E into Y/F which is “Borel”, in
the sense that it has a Borel lifting. Thus E ≤B F can be interpreted as saying
that X/E has “Borel cardinality” less than or equal to that of Y/F and similarly
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910 SCOT ADAMS AND ALEXANDER S. KECHRIS

E ∼B F means that X/E, Y/F have the same “Borel cardinality”, while E <B F
means that X/E has strictly smaller “Borel cardinality” than that of Y/F . Thus
the study of the (pre-)order ≤B on Borel equivalence relations can also be viewed
as the study of the “Borel cardinalities” of their quotient spaces.

In the beginning the structure of ≤B is quite simple. Denoting by X also the
equality relation on a standard Borel space X , and letting n be any such space of
finite cardinality n, we have that the following is an initial segment of ≤B:

1 <B 2 <B 3 <B · · · <B N,
and N <B E for any Borel equivalence E not in this sequence. The first non-
trivial theorem concerning the structure of Borel equivalence relations under ≤B
is the Silver Dichotomy (see Silver [32]) which asserts that any Borel (in fact even
coanalytic) equivalence relation on a Polish space has either countably many or else
perfectly many equivalence classes, in the sense that there is a perfect set any two
distinct elements of which belong to different equivalence classes. This shows that
a strong form of the Continuum Hypothesis is valid for quotient spaces of Borel
equivalence relations. It implies that

1 <B 2 <B 3 <B · · · <B N <B R
is an initial segment of ≤B and R <B E for any Borel equivalence relation E not
in this list.

For the next step, notice that the equivalence relations E ≤B R are exactly those
for which there is a Borel map f : X → Y , where X is the space of E and Y some
standard Borel space, such that xEy ⇔ f(x) = f(y). Such equivalence relations are
called tame (or smooth or concretely classifiable as they can be completely classified
by invariants which are members of some standard Borel space). The canonical
example of a non-tame equivalence relation is the Vitali equivalence relation E0 on
R:

xE0y ⇔ x− y ∈ Q.
Thus R <B E0. The second dichotomy theorem for Borel equivalence relations,
called the General Glimm-Effros Dichotomy (see Harrington-Kechris-Louveau [14]),
asserts that for any Borel equivalence relation E, either E is tame or else contains
a (Borel) copy of E0, and so E0 ≤B E. (This generalizes earlier results of Glimm
[12] and Effros [6].) Thus we have that

1 <B 2 <B 3 <B · · · <B N <B R <B E0

is an initial segment of ≤B and E0 <B E for any Borel equivalence relation E not
in this list.

The linearity of the order ≤B breaks down beyond E0. This has been known for
some time but it has been amplified more recently by results of Woodin (unpub-
lished), who showed that there are uncountably many pairwise ≤B-incomparable
Borel equivalence relations, and then by Louveau-Velickovic [25], who showed that
the partial order of subsets of the integers under inclusion modulo finite sets em-
beds into ≤B on Borel equivalence relations. This non-linearity is in fact a crucial
point in which Borel cardinality theory differs from the classical Cantor cardinality
theory.

We now turn our attention to a particular class of Borel equivalence relations, the
so-called countable ones. A Borel equivalence relation E on X is called countable
if every equivalence class [x]E is countable. A typical example is the equivalence
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COUNTABLE BOREL EQUIVALENCE RELATIONS 911

relation induced by a Borel action of a countable group on a standard Borel space,
e.g., the one induced by the orbits of a single Borel automorphism. Conversely, a
theorem of Feldman-Moore [8] asserts that every countable Borel equivalence rela-
tion is induced by a Borel action of a countable group. Such equivalence relations
have long been studied in ergodic theory and the theory of operator algebras (see,
e.g., the surveys [27] and [30]). It also turns out that many equivalence relations,
although not necessarily countable, nevertheless are up to ∼B countable, so they
fall, for our purposes, in the domain of countable Borel equivalence relations. These
include, for example, all the equivalence relations induced by Borel actions of sec-
ond countable locally compact groups (e.g., Lie groups); see Feldman-Hahn-Moore
[7] and Kechris [20]. Also the isomorphism relation on various classes of countable
models, which in some sense have “finite type”, e.g., finitely generated groups, lo-
cally finite connected graphs, finite rank torsion-free abelian groups, turn out to be
∼B to countable Borel equivalence relations (see Hjorth-Kechris [16]). There is thus
a great variety of interesting examples of (up to ∼B) countable Borel equivalence
relations occurring in many areas of mathematics. See, for example, the papers
[19], [22], [23], [24], [5], [18] and the references contained therein, for further infor-
mation concerning the descriptive study of countable Borel equivalence relations.
The facts we are about to state in the next paragraph come from the last paper.

To get some feeling about the general structure of ≤B on countable Borel equiva-
lence relations, we first note that there is a largest one, naturally dubbed universal,
and denoted by E∞. Thus E∞ is countable Borel and E ≤B E∞ for every countable
Borel E. Such an E∞ is uniquely determined up to ∼B. Thus, excluding the tame
ones (which are those in the list 1, 2, 3, · · · ,N,R), all countable Borel equivalence
relations fall in the interval

E0 ≤B E ≤B E∞.

(This should be contrasted to the situation concerning general Borel equivalence
relations, where, by a result of Friedman-Stanley [9], for every Borel equivalence
relation E there is a Borel equivalence relation F with E <B F .) It also turns out
that there are intermediate ones:

E0 <B E <B E∞.

The first examples were found by applying results of Adams [1], [2], and thus made
heavy use of methods and results of ergodic theory. However, rather remarkably,
and despite the great plethora of examples of countable Borel equivalence relations,
until recently, only two examples of distinct up to ∼B intermediate relations had
been found, say E,F , and they satisfied E0 <B E <B F <B E∞. In particular,
it has been a long-standing problem in this theory whether there are incomparable
under ≤B countable Borel equivalence relations (see, e.g., Kechris [19]).

The first main result of this paper provides an affirmative answer to this problem
and in fact shows that the partial order≤B on countable Borel equivalence relations
is quite complex.

Theorem 1. The partial ordering of Borel sets under inclusion can be embedded
in the partial (pre-)order of countable Borel equivalence relations under Borel re-
ducibility. More precisely, there is a map A 7→ EA assigning to each Borel subset
of 2N, A, a countable Borel equivalence relation, EA, so that

A1 ⊆ A2 ⇔ EA1 ≤B EA2 .
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912 SCOT ADAMS AND ALEXANDER S. KECHRIS

In particular, this shows that every Borel partial ordering can be embedded into
≤B on countable Borel equivalence relations.

Our second main result computes the exact descriptive complexity of the rela-
tions ≤B,∼B on countable Borel equivalence relations. We first fix a parametriza-
tion of binary Borel relations on a standard Borel space, which for definiteness we
take to be the Baire space NN. This consists of a Π1

1 (i.e., co-analytic) set D ⊆ 2N

and a map d ∈ D 7→ Dd, assigning to each d ∈ D a binary Borel relation on NN
so that every such relation is of the form Dd for some d. Moreover, (D, d 7→ Dd)
satisfies some natural definability properties spelled out in Section 5 below. Using
this, we let

E≤ = {(d, e) ∈ D2 : Dd, De are countable Borel equivalence
relations and Dd ≤B De}

and we similarly define E∼. A straightforward calculation shows that E≤, E∼ are
Σ1

2 (= projections of co-analytic sets). The following computes their precise com-
plexities.

Theorem 2. The sets E≤, E∼ are Σ1
2-complete. In other words, the notions of

Borel reducibility and bi-reducibility of countable Borel equivalence relations are
Σ1

2-complete.

(Recall here that a set A in a standard Borel space X is Σ1
2-complete if it is Σ1

2

and for any Σ1
2 set B ⊆ Y , Y a standard Borel space, there is a Borel function

f : Y → X with B = f−1(A).)
The proofs of these results depend heavily on the Superrigidity Theorems of

Zimmer [35], 5.2.5 and 10.1.6, which deal with reduction of cocycles of measure-
preserving actions of linear algebraic groups. In [35] (and other papers referred to in
this book) Zimmer also shows, loosely speaking, that, under certain circumstances,
the equivalence relation induced by a group action together with (the measure class
of) an associated invariant measure “encodes” or “remembers” quite a lot of infor-
mation concerning the group and the action from which it came. In some sense,
the main point in the proofs of the results here is that, as an application of the
Zimmer Superrigidity Theory, there is also a “rigidity” phenomenon occurring in
the purely descriptive context: Under certain circumstances, quite a bit of infor-
mation concerning a group G acting on a space X is “encoded” or “remembered”
simply by the “Borel cardinality” of the quotient space X/G of the orbits. This
“set theoretic rigidity” is undoubtedly an interesting phenomenon that needs to be
further explored.

A similar set of ideas is used by Zimmer in studying orbit equivalence. (See
Theorem 5.2.1, p. 95 of Zimmer [35].) However, in that application of superrigidity,
the cocycles that arise are readily seen, via the Borel Density Theorem, to be
Zariski dense. In the situation presented in this paper, we construct cocycles whose
algebraic hulls must be analyzed. However, we compensate for this complication
by being very careful to arrange things so that the domain groups of our cocycles
are, in some sense, incompatible with the target groups.

The organization of this paper is as follows. After an introductory Section 1,
we discuss in Section 2 the fundamental notion of cocycle of a group action, and
collect together various known facts and techniques concerning this concept that
we will need later on. These are scattered in [35] and other publications or they
are folklore. It seemed though that it would be helpful to collect them together
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COUNTABLE BOREL EQUIVALENCE RELATIONS 913

in one place and present them in as detailed and self-contained way as possible,
for the convenience of the reader who is not familiar with these kinds of methods.
In Section 3, we use the Superrigidity Theorems of Zimmer [35] to derive some
cocycle reduction results that we will need in the proofs of our main theorems.
Although the presentation here is much more detailed than is customary in a paper
written for experts in the ergodic theory of linear algebraic groups, it is still far
from self-contained and depends heavily on results from this theory (as well as from
the theory of linear algebraic groups that are needed here). At least every attempt
has been made to state explicitly the results that are being quoted, and give precise
references to standard books, whenever possible. In Section 4, the results in the
preceding section are put together to give the proof of Theorem 1 and in Section 5
of Theorem 2.

Section 6 contains an application of these ideas to another problem that has
received attention recently, namely the issue of the complexity of the isomorphism
problem for torsion-free abelian groups of finite rank. See Hjorth-Kechris [16] and
Hjorth [15] for some background on this problem. We denote by ∼=n the isomor-
phism relation on torsion-free abelian groups of rank ≤ n. These are, up to isomor-
phism, simply the subgroups of (Qn,+). We also denote by ∼=∗n the restriction of
∼=n to the rigid groups, i.e., those whose only automorphisms are x 7→ ±x. There
is a classical result of Baer which classifies torsion-free abelian groups of rank 1.
However, it has been a long-standing problem in abelian group theory whether a
satisfactory classification can be found for rank 2 or higher groups (see Fuchs [10]).
As it is not hard to see that ∼=n is ∼B to a countable Borel equivalence relation,
one can place all this in the context of the theory of countable Borel equivalence re-
lations and try to compute the complexity of the classification problem for ∼=n and
∼=∗n. Baer’s result implies that (∼=1) ∼B (∼=∗1) ∼B E0 and clearly (∼=∗n) ≤B (∼=∗n+1),
so E0 ≤B (∼=∗n) ≤B (∼=∗n+1) ≤B (∼=n+1) ≤B E∞ for any n ≥ 1. It has been con-
jectured in Hjorth-Kechris [16] that for n ≥ 2, ∼=n is universal, i.e., (∼=n) ∼B E∞.
This is still open but if correct it would quantify the exact complexity of the clas-
sification problem of rank 2 or higher torsion-free abelian groups, and would show
that in some sense no simple classification is possible. Recently Hjorth [15] has
taken a first step in that direction by showing that E0 <B (∼=n) for n ≥ 2, and
Thomas [33] extended this by showing that E0 <B (∼=∗n) for n ≥ 2. Thus the clas-
sification problem for rigid rank 2 torsion-free abelian groups is, in some precise
sense, definitely more complex than that of the rank 1 case. We prove in Section
6 the following result which shows that for rigid groups the complexity increases
with the rank.

Theorem 3. For any n ≥ 1, (∼=∗n) <B (∼=∗n+1).

In particular, this shows that ∼=∗n is not universal for any n.
Finally, in Section 7 we discuss some additional facts that can be proved by the

methods used in this paper and discuss some open problems.

1. Preliminaries

We will use more or less standard notation and terminology concerning group
actions and descriptive set theory (see Zimmer [35] and Kechris [21], resp.).

Let G be a locally compact second countable (lcsc) group. By a standard Borel
G-space we mean a standard Borel spaceX together with a Borel action (g, x) 7→ g·x
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914 SCOT ADAMS AND ALEXANDER S. KECHRIS

of G on X . We denote by EXG the corresponding equivalence relation

xEXG y ⇔ ∃g(g · x = y),

by G · x the orbit of x, and by Gx = {g : g · x = x} the stabilizer of x.
For a standard Borel space X (i.e., a Polish space equipped with its Borel struc-

ture) by a measure on X we will always mean a probability Borel measure on X .
Such a measure is non-atomic if µ({x}) = 0, ∀x ∈ X . The measures on X also form
a standard Borel space denoted by P (X). If f : X → Y is Borel and µ ∈ P (X), then
f∗(µ) ∈ P (Y ) is defined by f∗(µ)(A) = µ(f−1(A)). If X is a G-space, µ ∈ P (X) is
invariant if g·µ = µ, ∀g ∈ G, and ergodic if everyG-invariant Borel setA ⊆ X has µ-
measure 0 or 1. This is equivalent to saying that every Borel function f : X → Y, Y
a standard Borel space, which is G-invariant, is constant µ-a.e.

An equivalence relation E on a standard Borel space is called tame (or smooth
in the terminology of Zimmer [35]) if there is a Borel function S : X → Y, Y a
standard Borel space, such that xEy ⇔ S(x) = S(y). It is of course enough to
take Y = [0, 1] here. If E = EXG , for a standard Borel G-space X , then this is
equivalent to saying that E admits a Borel transversal, i.e., a Borel set meeting
every orbit in exactly one point. (This result is even true for G a Polish group
(Burgess); see Kechris [21], 18.20 (iii).) Recall that if G is a Polish group and H is
a closed subgroup, then the equivalence relation xEGHy ⇔ y ∈ xH , whose quotient
space is the set G/H of left-cosets hH of H , is tame (see Kechris [21], 12.17). We
call a standard Borel G-space X tame if the equivalence relation EXG is tame. In
particular, every standard Borel G-space X is tame, when G is compact (second
countable); see Zimmer [35], 2.1.21.

A Borel equivalence relation on a standard Borel space X is an equivalence
relation E ⊆ X2 which is a Borel set in X2. It is countable if every equivalence
class [x]E , x ∈ X , is countable. Every countable Borel equivalence relation E on X
is of the form E = EXG , for a Borel action of a countable group G on X (Feldman-
Moore [8]; see also Kechris [21], 18.16). A measure µ on X is called E-invariant
if it is G-invariant for any countable G with E = EXG (this is easily seen to be
independent of G and the action). It is E-ergodic if every E-invariant Borel set
A ⊆ X has µ-measure 0 or 1.

Finally, given equivalence relations E,F on standard Borel spaces X,Y , resp.,
we say that E is Borel reducible to F , in symbols,

E ≤B F,

if there is a Borel function f : X → Y such that

xEy ⇔ f(x)Ff(y).

We call such an f a reduction of E into F . We also let

E ∼B F ⇔ E ≤B F and F ≤B E

and

E <B F ⇔ E ≤B F and F 6≤B E.
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COUNTABLE BOREL EQUIVALENCE RELATIONS 915

2. Basic facts about cocycles

Let G be a lcsc group, and X a standard BorelG-space with invariant probability
Borel measure µ. Let H be a lcsc group. A cocycle of this G-space into H is a
Borel map α : G×X → H such that for all g, h ∈ G

α(hg, x) = α(h, g · x)α(g, x) µ-a.e.(x).

If this equation holds for all x we say that α is a strict cocycle. If β : G×X → H is
also a cocycle, we say that α is equivalent or cohomologous to β, in symbols α ∼ β,
if there is a Borel map A : X → H such that for all g ∈ G,

α(g, x) = A(g · x)β(g, x)A(x)−1 µ-a.e.(x).

This is clearly an equivalence relation.
For example, suppose that E = EXG and F = EZH , where H acts freely on Z.

Let f : X → Z be a function such that xEy implies f(x)Ff(y). Then the function
α : G × X → H defined by f(g · x) = α(g, x) · f(x) is a cocycle. Moreover, if
A : X → H is any Borel function, if we define f0 : X → Z by f0(x) = A(x) · f(x)
and if we define α0 : G ×X → H by f0(g · x) = α0(g, x) · f0(x), then the cocycle
α0 is equivalent to α; in fact, we have α0(g, x) = A(g · x)α(g, x)(A(x))−1 .

The main results in this paper are based on various theorems that show that
cocycles α as above, under certain circumstances, reduce, i.e., are equivalent to,
cocycles β, whose range β(G ×X) is contained in a “small” subgroup of H . The
following elementary reformulation is useful for this purpose. We need the following
terminology, using the above notation: If H acts on some set Y , then a function
f : X → Y will be called α-invariant if for all g ∈ G,

α(g, x) · f(x) = f(g · x) µ-a.e.(x).

Also for any closed subgroup H0 ⊆ H we denote by H/H0 the space of left-cosets
hH0 of H0 and we view H as acting on H/H0 by h1 · hH = h1hH .

We now have:

Proposition 2.1 (see Zimmer [35], 4.2.18(b)). Let H0 ⊆ H be a closed subgroup
of H. Then a cocycle α : G × X → H is equivalent to a cocycle β : G ×X → H
with β(G×X) ⊆ H0 iff there exists a Borel α-invariant function f : X → H/H0.

Proof. Say α(g, x) = A(g · x)β(g, x)A(x)−1 µ-a.e.(x), where A : X → H is Borel
and β(G × X) ⊆ H0. Then if f(x) = A(x)H0, f : X → H/H0 is Borel and for
each g, α(g, x) · f(x) = f(g · x) µ-a.e.(x), as β(g, x) ∈ H0. Conversely, given a
Borel α-invariant f , and letting i : H/H0 → H be a Borel injection such that
i(hH) ∈ hH , we let A(x) = i(f(x)). Then as α(g, x) · f(x) = f(g · x) µ-a.e.(x), we
have that α(g, x)A(x) ∈ A(g · x)H0 µ-a.e.(x), so if β(g, x) = A(g · x)−1α(g, x)A(x),
then β(g, x) ∈ H0 µ-a.e.(x) and α ∼ β. Now we change β(g, x) on a Borel set in
G×X , whose G-sections are µ-null to make sure that β(g, x) ∈ H0 for all g, x, i.e.,
β(G×X) ⊆ H0. a

The next proposition, called the Cocycle Reduction Lemma, gives a convenient
tool for showing that cocycles reduce to other ones with small range. Recall that the
measure µ on the standard G-space X is called ergodic if every G-invariant Borel
set has µ-measure 0 or 1. Also a Borel action of a lcsc group H on a standard Borel
space Y is called tame if the corresponding equivalence relation EHY is tame, i.e.,
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916 SCOT ADAMS AND ALEXANDER S. KECHRIS

there is Borel S : Y → Z, Z some Polish space, such that y1E
H
Y y2 ⇔ S(y1) = S(y2).

We can of course always take Z to be [0,1] here.

Proposition 2.2 (see Zimmer [35], 5.2.11). Suppose X is a standard Borel G-
space with ergodic, invariant measure µ and α : G×X → H is a cocycle. Assume
also that Y is a tame standard Borel H-space. If there is an α-invariant Borel func-
tion f : X → Y , then there is y0 ∈ Y such that α ∼ β, for a cocycle β : G×X → H
with β(G×X) ⊆ Hy0 = the stabilizer of y0. Moreover f(x) ∈ H · y0, µ-a.e.(x).

Proof. Let S : Y → [0, 1] be Borel with y1E
H
Y y2 ⇔ S(y1) = S(y2). Let f̂(x) =

S(f(x)). Then, as α(g, x)·f(x) = f(g ·x) µ-a.e.(x), clearly f̂(g ·x) = f̂(x) µ-a.e.(x).
So ∀g∀∗µx(f̂(g · x) = f̂(x)) (where ∀∗µxP (x) ⇔ {x : P (x)} is µ-conull), thus, by
Fubini, ∀∗µx∀∗λg(f̂(g · x) = f̂(x)), where λ is the Haar measure on G. Now the set

X0 = {x : g 7→ f̂(g · x) is λ-a.e. constant} = {x : ∀∗λg∀∗λh(f̂(g · x) = f̂(h · x))}

is Borel (see, e.g., Kechris [21], 17.25) and, by the translation invariance of λ, G-
invariant. So if we define f̂0(x) = the value of f̂(g·x), λ-a.e.(g), if x ∈ X0, f̂0(x) = 0,
if x 6∈ X0, then clearly f̂0 is G-invariant and f̂0 = f̂ , µ-a.e. By ergodicity, it follows
that f̂0, and thus f̂ , is constant µ-a.e., and this means that f takes values in a
single H-orbit, say H · y0, µ-a.e., and we can assume that f actually takes values
in H · y0 everywhere, by changing f on a set of measure 0. Now the H-action on
H · y0 can be clearly identified with the H-action on H/Hy0 and thus, since f is an
α-invariant function, by 2.1, we have that α ∼ β with β(G ×X) ⊆ Hy0 . a

We will next discuss the concepts of induced actions and cocycles.
Suppose Γ ⊆ G is a closed subgroup of G and fix a Borel transversal T for the

left-cosets of Γ with 1 ∈ T (so T meets every such coset in exactly one point). We
can clearly identify T with G/Γ, identifying t with tΓ. So the action of G on G/Γ
induces a Borel action of G on T given by

g · t = the unique element of T in the coset gtΓ.

Also let

ρ(g, t) = the unique element γ ∈ Γ
such that (g · t)γ = gt

= (g · t)−1gt.

Then it is easy to check that ρ is a strict cocycle, ρ : G× T → Γ. We call this the
cocycle associated to Γ (and the choice of T ).

Now assume Γ acts in a Borel way on a standard Borel space X with invariant
measure µ. Assume also that Γ is a lattice in G, i.e., Γ is discrete and the action
of G on G/Γ, and thus equivalently on T , admits an invariant probability Borel
measure, say ν. We define the induced action of G as follows: Let Y = X × T and
define the action of G on Y by

g · (x, t) = (ρ(g, t) · x, g · t).
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It is easy to check, using Fubini, that µ× ν is an invariant measure for this action:
If p : X × T → R is bounded Borel, then∫ ∫

(g · p)d(µ × ν) =
∫ (∫

p(g · (x, t))dµ(x)
)
dν(t)

=
∫ (∫

p(ρ(g, t) · x, g · t))dµ(x)
)
dν(t)

=
∫ (∫

p(x, g · t)dµ(x)
)
dν(t)

=
∫ (∫

p(x, g · t)dν(t)
)
dµ(x),

so ∫ ∫
(g · p)d(µ× ν) =

∫ (∫
p(g · (x, t))dµ(x)

)
dν(t)

=
∫ (∫

p(x, t)dν(t)
)
dµ(x)

=
∫ ∫

pd(µ× ν).

Next we check that if µ is ergodic, so is µ× ν. Indeed, let A ⊆ X × T be Borel
G-invariant, and put At = {x : (x, t) ∈ A)}. Then ρ(g, t) · At = Ag·t and A1 is
Γ-invariant, so µ(A1) = 0 or 1, thus, since ρ(g, 1) ·A1 = Ag·1, all At have the same
µ-measure as A1, so (µ× ν)(A) = 0 or 1.

Now given any strict cocycle α : Γ × X → H we define the strict cocycle β :
G× Y → H by

β(g, (x, t)) = α(ρ(g, t), x),

and call this the induced cocycle.
For example, suppose that E = EXΓ and F = EZH , where H acts freely on Z. Let

f : X → Z be a function such that xEx′ implies f(x)Ff(x′). Let α : Γ ×X → H
be the cocycle defined by f(γ · x) = α(γ, x) · f(x). Let G act on Y = X × T
by g · (x, t) = (ρ(g, t) · x, g · x). Define f0 : Y → Z by f0(x, t) = f(x). Let
E0 = EYG . Then yE0y

′ implies f0(y)Ff0(y′). Let α0 : G × Y → H be the cocycle
defined by f0(g · y) = α0(g, y) · f0(y). Then α0 is induced from α; that is, we have
α0(g, (x, t)) = α(ρ(g, t), x).

We have the following fact.

Proposition 2.3. Suppose that Γ is a lattice in G, that X is a standard Borel
Γ-space with invariant measure µ, that α : Γ×X → H is a strict cocycle and that
β : G× Y → H is the induced cocycle for the induced G-space Y . Assume that H0

is a closed subgroup of H and that there is β1 : G× Y → H with β1 ∼ β and with
β1(G×Y ) ⊆ H0. Then there is α1 : Γ×X → H with α1 ∼ α and α1(Γ×X) ⊆ H0.

Proof. By 2.1, there is a β-invariant Borel function f : Y = (X ×T )→ H/H0, i.e.,
for all g ∈ G,

β(g, (x, t)) · f(x, t) = f(g · (x, t)) (µ× ν)-a.e.(x, t).

Let U be the space of all Borel functions from X into H/H0, two functions being
identified if they agree µ-a.e. Consider then the map Φ : T → U given by Φ(t)(x) =
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f(x, t). Let Γ act on U by

γ · p(x) = α(γ, γ−1 · x) · p(γ−1 · x).

We then claim that Φ is ρ-invariant, i.e., for any g ∈ G,

ρ(g, t) · Φ(t) = Φ(g · t) ν-a.e.(t).

Indeed,

(ρ(g, t) · Φ(t))(x) = α(ρ(g, t), ρ(g, t)−1 · x) · Φ(t)(ρ(g, t)−1 · x)
= α(ρ(g, t), ρ(g, t)−1 · x) · f(ρ(g, t)−1 · x, t).

Now

β(g, (x, t)) · f(x, t) = f(g · (x, t))
= f(ρ(g, t) · x, g · t) (µ× ν)-a.e.(x, t),

so

α(ρ(g, t), x) · f(x, t) = f(ρ(g, t) · x, g · t) (µ× ν)-a.e.(x, t).

Thus for ν-a.e.(t) and using the Γ-invariance of µ to substitute ρ(g, t)−1 · x for x,
we have

f(x, g · t) = α(ρ(g, t), ρ(g, t)−1 · x) · f(ρ(g, t)−1 · x, t)
= (ρ(g, t) ·Φ(t))(x) µ-a.e.(x),

and, since

f(x, g · t) = Φ(g · t)(x),

this shows that

ρ(g, t) · Φ(t) = Φ(g · t) ν-a.e.(t).

We now claim that this implies that there is a fixed point p ∈ U for the Γ-action,
i.e., γ · p = p for all γ ∈ Γ. Granting this we have for any γ ∈ Γ,

γ · p(x) = α(γ, γ−1 · x) · p(γ−1 · x)
= p(x) µ-a.e.(x),

so putting γ · x for x and using again the Γ-invariance of µ, we have

p(γ · x) = α(γ, x) · p(x) µ-a.e.(x),

i.e., p is an α-invariant function from X into H/H0, so by 2.1, α ∼ α1, for some
cocycle α1 : Γ×X → H with α1(Γ×X) ⊆ H0.

To prove the existence of such a fixed point p we argue as follows (see Zimmer
[35], 4.2.19): Let σ : G → Γ be defined by σ(g) = ρ(g, 1). Then notice that for
any g ∈ G, t ∈ T, σ(gt) = ρ(gt, 1) = ρ(g, t · 1)ρ(t, 1) = ρ(g, t)σ(t), so ρ(g, t) =
σ(gt)σ(t)−1. It follows that for each g ∈ G,

σ(gt)−1 · Φ(g · t) = σ(t)−1 ·Φ(t) ν-a.e.(t).

So, by Fubini, there is t0 ∈ T such that for almost all g ∈ G (with respect to
the Haar measure), σ(gt0)−1 · Φ(g · t0) = σ(t0)−1 · Φ(t0). Put p = σ(t0)−1 · Φ(t0).
Then viewing now Φ as defined on G/Γ by identifying t ∈ T with tΓ ∈ G/Γ, and
using the translation invariance of the Haar measure, we conclude that for almost
all g ∈ G, σ(g)−1 · Φ(gΓ) = p. Now notice that for γ ∈ Γ, σ(gγ) = σ(g)γ, so
γ−1 · p = γ−1σ(g)−1 · Φ(gΓ) = σ(gγ)−1 · Φ(gΓ) = σ(gγ)−1 · Φ(gγΓ), for almost all
g ∈ G, so, again by translation invariance, γ−1 · p = p and we are done. a
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Proposition 2.4. Suppose H is lcsc and H1 ⊆ H is a closed subgroup. Suppose
G acts on X with invariant, ergodic measure µ and α : G × X → H1 is a Borel
cocycle. Assume that viewing α as a cocycle into H, α : G × X → H, we have a
cocycle β : G × X → H with β ∼ α and β(G × X) ⊆ H0, where H0 is a closed
subgroup of H. If the action of H0 on H/H1 is tame, then there is h ∈ H and a
cocycle α1 : G×X → H1 such that α ∼ α1 and α1(G×X) ⊆ H1 ∩ hH0h

−1.
In particular, this conclusion holds if H0 is compact or if H0 is arbitrary (closed)

and H1 has finite index in H.

Proof. By assumption and 2.1 there is an α-invariant Borel function f : X → H/H0.
Now we claim that the action of H1 on H/H0 is tame. Granting this, we have, by
2.2, that there is hH0 ∈ H/H0 such that α is equivalent (as a cocycle into H1) to
a cocycle taking values in the stabilizer of hH0 in the action by H1. This stabilizer
is the set {h1 ∈ H1 : h1 · hH0 = hH0} = H1 ∩ hH0h

−1.
To prove the claim, notice that there is a canonical bijection between the double

cosets H1hH0, h ∈ H , of (H1, H0) and the orbits of the H1 action on H/H0, namely
H1hH0 7→ H1 · (hH0). Thus the action of H1 on H/H0 is tame iff the equivalence
relation induced by the double cosets is tame. Clearly the equivalence relation
induced by the double cosets H1hH0 is tame iff the equivalence relation induced by
the double cosets H0hH1 is tame (using x 7→ x−1) iff the action of H0 into H/H1

is tame, and this last statement is assumed in our hypothesis.
Finally, notice that if H0 is compact or H1 has finite index in H , clearly H0 acts

tamely on H/H1. a

Suppose again that G acts on X preserving a measure µ. By a finite extension
of this action we mean a standard Borel G-space X̂ with an invariant measure µ̂,
together with a Borel map π : X̂ → X such that

(i) for all g ∈ G and for all x ∈ X̂, we have π(g · x) = g · π(x),
(ii) π is finite-to-1,
(iii) π∗(µ̂) = µ.
If α : G×X → H is a cocycle, then its lift to X̂, α̂ : G× X̂ → H , is defined by

α̂(g, x̂) = α(g, π(x̂)).
The argument in the next proposition is similar to that of the proof of [35], 9.2.6.

Proposition 2.5. Suppose that X is a standard Borel G-space with ergodic, in-
variant measure µ. Let α : G ×X → H be a Borel cocycle. Suppose H0 ⊆ H is a
closed subgroup of H with finite index. Then there exists a finite extension X̂ of X
which is also ergodic such that the lift α̂ of α to X̂, α̂ : G × X̂ → H, is equivalent
to a cocycle taking values in H0.

Proof. Let H1 be a minimal closed subgroup of H satisfying H0 ⊆ H1 ⊆ H such
that α is equivalent to a cocycle β taking values into H1. Then β has the property
that no cocycle equivalent to it takes values into a proper closed subgroup of H1

containing H0. So by replacing α by β if necessary, we can assume that α is not
equivalent to a cocycle taking values into a proper closed subgroup of H containing
H0, and show how to find an ergodic finite extension X̂ of X so that the lift α̂ of
α is equivalent to a cocycle taking values in H0.

Let X̂ = X × (H/H0) and define the action of G on X̂ by

g · (x, hH0) = (g · x, α(g, x)hH0)
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and let π(x, hH0) = x. We give X̂ the product measure µ × ν, where ν is the
counting measure on H/H0. Clearly this is a finite extension of X . Consider the
second projection map ρ(x, hH0) = hH0, ρ : X̂ → H/H0. It is clearly α̂-invariant,
so by 2.1, α̂ is equivalent to a cocycle taking values into H0.

So it only remains to show that µ × ν is ergodic. Assume A ⊆ X̂ is a G-
invariant Borel set and (µ × ν)(A) > 0, in order to show that (µ × ν)(A) = 1.
Then µ(π(A)) > 0, so since π(A) is a G-invariant Borel subset of X , we have, by
ergodicity in X , that µ(π(A)) = 1. Put B = π(A), and letting F = power set of
H/H0, define f : X → F by

f(x) =

{
ρ(π−1(x) ∩A), if x ∈ B,
∅, otherwise.

Then considering the obvious action of H on F (induced by its action on H/H0) we
see that f is α-invariant; so by 2.2 there is s0 ∈ F such that f(x) ∈ H ·s0 µ-a.e.(x),
and there is β with α ∼ β and β taking values in the stabilizer (in H) of s0,
say H1. If s0 6= H/H0, then clearly H1 is a closed proper subgroup of H with
H0 ⊆ H1, a contradiction. So s0 = H/H0 and f(x) = H/H0 µ-a.e.(x), thus
ν(Ax) = 1 µ-a.e.(x), so (µ× ν)(A) = 1. a

Proposition 2.6. Suppose that X is a standard Borel G-space with ergodic, in-
variant measure µ. Let α : G ×X → H be a cocycle. Let X̂ be a finite extension
of X and α̂ : G× X̂ → H the lift of α. If α̂ is equivalent to a cocycle taking values
in a compact subgroup of H, then α is equivalent to a cocycle taking values in a
compact subgroup of H.

Proof. Say α̂ ∼ β̂ with β̂(G× X̂) ⊆ K, K a compact subgroup of H . Then, by 2.1
there is a Borel map f̂ : X̂ → H/K which is α̂-invariant. Let F be the standard
Borel space of non-empty finite subsets of H/K and let f : X → F be defined by
f(x) = f̂(π−1(x)). Then it is easy to check that f is α-invariant. By considering
the obvious action of H on F (induced by the action of H on H/K), we conclude,
using 2.2, that, if this action is tame, then α is equivalent to a cocycle taking values
into the stabilizer of some point for the action of H on F , which is clearly compact.

To see that this action is tame, it is enough to check, for each n, that the action of
H on the subsets of H/K of cardinality n is tame, and this is the same as checking
that the action of H × Sn (Sn = the symmetric group in n elements) on the space
of distinct n-tuples 〈a1, · · · , an〉 from H/K is tame, where for (h, ρ) ∈ H × Sn,
(h, ρ) · 〈a1, · · · , an〉 = 〈h · aρ(1), · · · , h · aρ(n)〉. Since H has finite index in H × Sn,
it is enough to check that the action of H on the space of distinct n-tuples is tame.
Call E the corresponding equivalence relation. Now the action of K on the space
of distinct n-tuples is tame, as K is compact. Denote by E′ its corresponding
equivalence relation. Let ϑ : H/K → H be Borel such that ϑ(hK) ·hK = K. Then
notice that 〈a1, · · · , an〉E〈b1, · · · , bn〉 iff ϑ(a1) · 〈a1, · · · , an〉Eϑ(b1) · 〈b1, · · · , bn〉 iff
ϑ(a1) · 〈a1, · · · , an〉E′ϑ(b1) · 〈b1, · · · , bn〉, so E is tame as well. a

Here is the final fact that we will need.

Proposition 2.7. Suppose X is a standard Borel G-space with ergodic, invariant
measure and α : G × X → H is a cocycle. Let π : G′ → G be a continuous
homomorphism such that π(G′) has finite index in G. Let G′ act on X by g′ · x =
π(g′) · x and let α′ : G′ ×X → H be given by α′(g′, x) = α(π(g′), x). Assume that
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α′ is equivalent to a cocycle taking values in a compact subgroup of H. Then α is
equivalent to a cocycle taking values in a compact subgroup of H.

Proof. Suppose α′ ∼ β′ with β′(G′×X) ⊆ K, K a compact subgroup of H . Then,
by 2.1, there is an α′-invariant map f : X → H/K. As in the proof of 2.3, let U
be the space of all Borel maps from X into H/K, two functions being identified if
they agree a.e. Let G act on U by

g · p(x) = α(g, g−1 · x) · p(g−1 · x).

Then f is π(G′)-invariant, so the orbit of f under G is finite, say equal to the
set {f0, f1, · · · , fn−1}. Then let f∗ be the Borel map from X into the space F of
non-empty finite subsets of H/K, defined by f∗(x) = {f0(x), · · · , fn−1(x)}. Then
if we let for g ∈ G, g · f∗(x) = {g · f0(x), · · · , g · fn−1(x)}, g · f∗ = f∗ a.e., that
is, g · f∗(x) = α(g, g−1 · x) · f∗(g−1 · x) = f∗(x), a.e.(x), thus α(g, x) · f∗(x) =
f∗(g · x), a.e.(x), which means that f∗ is α-invariant, where we view H as acting
on F by the action induced from the action of H on H/K. Now the action of H
on F is tame, by the proof in 2.6, and has compact stabilizers, so, by 2.2, α is
equivalent to a cocycle taking values in a compact subgroup of H . a

3. Cocycle reduction results

Recall that a lcsc group G is amenable if there is a (left)-invariant mean on
L∞(G) (= L∞(G, λ), where λ is the Haar measure on G), i.e., a normalized (Λ(1) =
1) positive linear functional Λ ∈ (L∞(G))∗, such that Λ(f) = Λ(fg), where fg(h) =
f(gh).

Also a lcsc group G is called a Kazhdan group (or a group with property (T)) if
for any unitary representation π : G→ U(H), where U(H) is the unitary group of
a separable Hilbert space H , if π almost has invariant vectors (i.e., for every ε > 0
and every compact K ⊆ G there is a unit vector v ∈ H such that ‖π(g)(v) − v‖ <
ε, ∀g ∈ K), then π has a non-0 invariant vector.

Theorem 3.1 (Zimmer [35], 9.1.1). Let G be a Kazhdan group and X a standard
Borel G-space with an invariant, ergodic measure. Let H be an amenable group.
Then for every cocycle α : G×X → H there is an equivalent cocycle β : G×X → H
and a compact subgroup K ⊆ H such that β(G×X) ⊆ K.

Theorem 3.2 (Zimmer [36], 2.2). Let G be a Kazhdan group and X a standard
Borel G-space with an ergodic, invariant measure. Let Γ be a countable group.
Then for every cocycle α : G×X → Γ there is an equivalent cocycle β : G×X → Γ
and a finitely generated subgroup Γ0 ⊆ Γ with β(G ×X) ⊆ Γ0.

Next we will review some cocycle reduction results for actions of algebraic groups.
We will adapt the terminology and (with some minor exceptions) the notation of
[35], Chapter 3. In particular, we take Ω to be an algebraically closed field of
characteristic 0 containing R and all p-adic fields Qp, p a prime. Then an algebraic
group G is a subgroup of some GLn(Ω) (= the group of invertible n× n matrices
over Ω), which is Zariski closed in GLn(Ω), i.e., consists of all matrices M in
GLn(Ω) which satisfy a set of equations f1(M) = 0, · · · , fk(M) = 0, where each
fi is a polynomial in Ω[x1, · · · , xn2 ] (we thus view M as a member of Ωn

2
). If

the equations defining G have coefficients in a subfield k ⊆ Ω, then we call G a
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k-group. For any subring A ⊆ Ω, we let GLn(A) = {(aij) ∈ GLn(Ω) : aij ∈ A and
(det(aij))−1 ∈ A}, and define for any algebraic group G ⊆ GLn(Ω),

G(A) = G ∩GLn(A).

In particular, if G is a k-group and A = k, G(k) is the group of all matrices in G
with coefficients in k.

The topology of an algebraic group G is always the Zariski topology on G. When
G is a k-group and k is one of the fields R,C,Qp, then G(k), as a group of matrices
over these fields, is a lcsc group with the topology it inherits from kn

2
. So any

topological notions about the group G(k) refer to this topology (sometimes called
the Hausdorff topology to distinguish it from the Zariski topology).

The proofs of our main results are based on the superrigidity theorems of Zimmer
[35]. We only state the particular instances of these results that we need.

The first result is a special case of [35], 10.1.6, and we use the context of Chapter
10 in that book.

Theorem 3.3 (Zimmer [35], 10.1.6). Suppose p, q are distinct rational primes and
let G be a connected semisimple Qp-group which is moreover algebraically simply
connected, almost Qp-simple and satisfies Qp-rank(G) ≥ 2. Let H be a connected
Qq-simple, Qq-group. Assume that X is a standard Borel G(Qp)-space, with in-
variant, ergodic measure, and that α : G(Qp)×X → H(Qq) is a cocycle. For every
proper Qq-subgroup L of H, assume that α is not equivalent to any cocycle with
range contained in L(Qq). Then α is equivalent to a cocycle with range contained
in a compact subgroup of H(Qq).

We will briefly comment on why this is a special case of Zimmer [35], 10.1.6. We
take S = {p} in that theorem, so that our G is Gp in his notation, and rank(G) =
Qp-rank(G) (see top of page 189 in [35]–note however that what he calls G is
our G(Qp)). Then by the first paragraph of Chapter 10, page 187 of this book,
the hypothesis that Qp-rank(G) ≥ 2 implies that G(Qp) is not compact and thus
has no compact factors, i.e., there is no proper normal Qp-subgroup H ⊆ G with
G(Qp)/H(Qp) compact, since the hypothesis of almost Qp-simplicity means exactly
that every suchH is finite. Finally, we have to check that X is an irreducibleG(Qp)-
space, which according to the definition used in this context in page 188, line 5 in
[35] (with the word “proper” omitted in this line, being a typo), this reduces in our
case to the fact that the action is ergodic, since almost Qp-simplicity means exactly
that there are no infinite normal Qp-subgroups of G. Thus all the hypotheses of
10.1.6 are satisfied. Then since, in the notation of 10.1.6, k = Qq in our case with
q 6= p, (b), (c) of this theorem do not apply, thus by (a), α is equivalent to a cocycle
with values in a compact subgroup of H(Qq).

The second and final superrigidity result that we will need is the following, which
is a special case of [35], 5.2.5.

Theorem 3.4 (Zimmer [35], 5.2.5). Let G be a connected, semisimple R-group and
assume that G(R) is connected (in the Hausdorff topology), that every normal sub-
group of G(R) is contained in its center which is finite, and that R-rank(G) ≥ 2.
Let X be a standard Borel G-space with invariant, ergodic measure. Let H be a
connected k-simple, k-group, where k = Qp or R. If α : G(R) × X → H(k) is a
cocycle such that α is not equivalent to a cocycle with range contained in a subgroup
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of H(k) of the form L(k), for a proper k-subgroup L of H, then either α is equiva-
lent to a cocycle taking values into a compact subgroup of H(k) or else k = R and
there is a non-trivial R-morphism from G into H.

We will again briefly comment on why this is a special case of [35], 5.2.5. Since
G(R) is connected, we have that G0

R in Zimmer’s notation, which is the connected
component of the identity in G(R) with respect to the Hausdorff topology (see
page 35, paragraph 4), is the same as G(R). The irreducibility condition (see [35],
2.2.11) becomes just ergodicity, since every normal subgroup of G(R) is assumed
to be contained in the center. So we must have (i) or (ii) in 5.2.5. If k = R and
H(k) is compact, there is nothing to prove. Otherwise, since H is assumed to be
k-simple we have a k-morphism π : G→ H , such that α is equivalent to the cocycle
α0(g, x) = π(g). If π is non-trivial we are done; otherwise α0 obviously takes values
in {1}, which is compact. If k = Qp, then (iii) applies and we are also done.

We are now ready to derive a cocycle reduction result that we will need in Section
4.

Below let F be the quadratic form defined by

F (x1, x2, · · · , x7) = x2
1 + · · ·+ x2

7

and let SOF be the Q-group (thus Qp-group) of all 7×7 matrices preserving F and
having determinant 1, that is, all 7× 7 matrices A with det(A) = 1, AAt = I.

Note that SOF (R) is compact. Consequently, for any set S of primes, the group
ΓS = SOF (Z[S−1]) may be thought of as a lattice in

∏
p∈S SOF (Qp). In the sequel,

we will be using induction of cocycles together with 10.1.6 of [35] to show that, if
S and T are sets of primes and if S 6= T , then a finite measure preserving action of
ΓS cannot be reducible to a free finite measure preserving action of ΓT .

Fix an integer n ≥ 3. Note, for all primes p, that Γ′p = SLn(Z[1/p]) is a lattice
in SLn(R)×SLn(Qp); moreover, if we project Γ′p into SLn(Qp), it becomes a dense
subgroup, and is not a lattice. So, if p and q are distinct primes, then it will be
difficult to use induction of cocycles and 10.1.6 of [35] to show that a finite measure
preserving action of Γ′p cannot be reducible to a free finite measure preserving
action of Γ′q. The problem is that the ambient groups are SLn(R)×SLn(Qp) and
SLn(R)×SLn(Qq); these two groups have a common factor, making 10.1.6 of [35]
difficult to apply. It may be possible to surmount this difficulty, but we avoid it
entirely by using SOF in place of SLn.

We have the following cocycle reduction result.

Theorem 3.5. Let p and q be distinct rational primes. Let X be a standard Borel
SOF (Qp)-space with an invariant, ergodic probability measure. Let α : SOF (Qp)×
X → SOF (Qq) be a cocycle. Then α is equivalent to a cocycle taking values in a
compact subgroup of SOF (Qq).

Proof. We will appropriately apply 3.3. We will first need a few lemmas.
The following result is standard. The proof given is intended for non-experts in

the theory of algebraic groups and its first part is addressed to those with some
knowledge of model theory.

Lemma 3.6. SOF is connected and simple (as an abstract group), thus also Qp-
simple.

Proof. For the first assertion notice that SOF over Ω is connected iff SOF over
C is connected (as Ω and C are elementarily equivalent) and by [35], page 35,
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3rd paragraph, SOF over C is connected iff SOF (C) is connected in the Hausdorff
topology, which is a standard fact (see Gorbatsevich et al. [13], p. 23).

For the second assertion, we quote some results from Dieudonné [4]. Our group
SOF is O+

7 (Ω, F ) in Dieudonné’s notation. Again in his notation, F has index
ν ≥ 1 (see Section 9, page 17), since there is some non-zero (x1, · · · , x7) ∈ Ω7

with x2
1 + · · ·x2

7 = 0. So by Prop. 12, page 28, O+
7 (Ω, F ) = C7(Ω, F ), since every

element of Ω is a square, where C7(Ω, F ) is the commutator group of O+
7 (Ω, F )

(see Section 12, pp. 23-24). Then by Section 14, Th. 2, page 29, PC7(Ω, F ) is
simple, where PC7(Ω, F ) is the quotient of C7(Ω, F ) by the center of O+

7 (Ω, F )
(see section 13, page 25). But this center is trivial (again see Section 13), so
SOF = O+

7 (Ω, F ) = C7(Ω, F ) = PC7(Ω, F ) is simple. a

Lemma 3.7. Qp-rank(SOF )≥ 2.

Proof. According to the definition in [35], page 85, the Qp-rank of SOF is the
maximal dimension of a Qp-subgroup of SOF , which can be diagonalized over Qp.
It will then be enough to find a Qp-subgroup H of the diagonal matrices in GL7

and a matrix M in GL7(Qp), such that H has dimension ≥ 2 and MHM−1 ⊆SOF .
This follows from some standard facts on quadratic forms over Qp. We use Serre

[31], Ch. IV, as a reference. By Serre [31], Theorem 6 in page 36 and Definitions
7, 4′ and Proposition 3′ in pp. 32-33, the form F = x2

1 + · · · + x2
7 over Qp is

equivalent to F ′ = x1x2 + x3x4 + g(x5, g6, x7) over Qp for some form g. Then if
the matrix M ∈ GL7(Qp) implements the equivalence and SOF ′ is the Q-group of
matrices in GL7 preserving F ′, then M [SOF ′(Qp)]M−1 ⊆SOF (Qp). Let H be the
group of all diagonal 7× 7 matrices (λ1, · · · , λ7) such that λ1λ2 = 1, λ3λ4 = 1 and
λ5 = λ6 = λ7 = 1. Then H is a Q-group, thus a Qp-group, and has dimension 2.
Moreover, H(Qp) ⊆ SOF ′(Qp), so M [H(Qp)]M−1 ⊆ SOF (Qp) and thus, by Zariski
density of H(Qp) in H , we see that MHM−1 ⊆ SOF . a

Note also that SOF is semisimple, i.e., the (solvable) radical of SOF , which is
defined to be the maximal normal connected solvable subgroup of SOF , is trivial,
since SOF is simple.

To be in a position to apply 3.3, we now consider the algebraic universal cover
of SOF , say G (see the paragraph following 3.1.11 in Zimmer [35] or Margulis [26],
1.4, particularly 1.4.12). This maneuver is necessary to ensure the hypothesis that
the group is algebraically simply connected.

Then G is a connected semisimple Qp-group, which is also algebraically sim-
ply connected and almost Qp-simple. (Indeed, assume N is a proper normal Qp-
subgroup of G, and π : G → SOF is a Qp-isogeny, i.e., a Qp-epimorphism with
finite kernel. Since SOF is simple as an abstract group, either π(N) = 1 or π(N) =
SOF . In the former case, N is a finite subgroup of G. In the latter case, N has
finite index in G, which contradicts the fact that G is connected.)

Moreover, by 3.7 and Margulis [26], 1.4.6(a), Qp-rank(G) ≥ 2 (in applying
1.4.6(a) recall that semisimple ⇒ reductive).

Let π : G→ SOF as above be a Qp-isogeny. Then we can use π to lift the action
of SOF (Qp) on X to an action of G(Qp) on X defined by g ·x = π(g) ·x (note that
π(G(Qp)) ⊆ SOF (Qp)). We can also lift the cocycle α : SOF (Qp)×X → SOF (Qq)
to the cocycle α1 : G(Qp)×X → SOF (Qq) given by α1(g, x) = α(π(g), x).

We claim that it suffices to show that α1 is equivalent to a cocycle taking values
in a compact subgroup, say K1, of SOF (Qq). To see this argue as follows: In
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general, by Zimmer [35], page 34, paragraph 6, when H1, H2 are k-groups and
ϕ : H1 → H2 a k-morphism, then ϕ(H1) is a k-group and ϕ(H1(k)) is a subgroup
of finite index in (ϕ(H1))(k). Thus π(G(Qp)) has finite index in SOF (Qp) (actually
in this particular case it turns out that π(G(Qp)) = SOF (Qp) – see Margulis [26],
page 42, line 7). So by 2.7, α is equivalent to a cocycle taking values in a compact
subgroup of SOF (Qp).

Now G satisfies all the hypotheses of 3.3, but unfortunately we cannot take
H = SOF (Qq) and α = α1 in 3.3. One problem is that α1 might be equivalent
to a cocycle with range contained in a proper subgroup of the form L(Qq) for a
Qq-subgroup L ⊆ H . So we proceed as follows:

Call a cocycle β : G(Qp)× Y → SOF (Qq) close to α : G(Qp)×X → SOF (Qq) if
Y is a finite extension of X and if β is equivalent to the lift of α to Y . (Note that
this notion is not symmetric.)

Now let C denote the collection of all Qq-subgroups L of SOF such that there is
a cocycle β : G(Qp)× Y → SOF (Qq), β close to α1, with β(G(Qp)× Y ) ⊆ L(Qq).

By the descending chain condition for algebraic groups, there is a minimal ele-
ment H in C. Then choose a cocycle β : G(Qp)× Y → SOF (Qq) which is close to
α1 such that β(G(Qp)×Y ) ⊆ H(Qq). By 2.6, in order to show that α1 is equivalent
to a cocycle taking values in a compact subgroup of SOF (Qq), it is enough to show
that the same holds for β.

First we will use the minimality of H to deduce that H must be connected, i.e,
that H = H0, where H0 is the Zariski connected component of the identity of H .
Now H0 is a normal Qq-subgroup of H of finite index, so H0(Qq) is a closed normal
subgroup of finite index in H(Qq). Then, by 2.5, there exists a finite extension Z

of Y such that if β̂ is the lift of β to Z, then there exists a cocycle γ ∼ β̂ such that
γ takes values in H0(Qq). But γ is close to α1; and so, if H0 is a proper subgroup
of H , then this violates the minimality of H .

Now H might not be semisimple, so let R be the (solvable) radical of H and
S = H/R, τ : H → S the canonical epimorphism. Then S is a connected semisimple
Qq-group and τ is a Qq-morphism. By Margulis [26], first two paragraphs of 0.24
in pages 20, 21, there are normal connected almost Qq-simple, Qq-subgroups of S,
say G1, · · · , Gk, so that the multiplication operation from G1 × · · · ×Gk into S is
an isogeny (i.e., an epimorphism with finite kernel), say ρ. Let Zi be the center of
Gi and let Si = Gi/Zi. Then since Gi is connected and almost Qq-simple, every
normal Qq-subgroup is finite, so contained in the center (see Margulis [26], 0.18),
so Si is a connected Qq-simple, Qq-group, and since the kernel of ρ is finite it must
be contained in the center of G1 × · · · × Gk, since this group is connected. So
the kernel of ρ is contained in the product Z1 × · · · × Zk and there is a canonical
Qp-epimorphism τ∗ : S → S1 × · · · × Sk. Denote by τi the composition of τ∗ with
the projection of S1 × · · · × Sk onto Si.

Let σi = τi ◦ τ and βi = σi ◦ β : G(Qp) × Y → Si(Qq). Now all the hypotheses
of 3.3 are clearly satisfied for H = Si, α = βi. Recall that σi(H(Qq)) has finite
index in Si(Qq), as σi maps H onto Si. View βi : G(Qp) × Y → σi(H(Qq)) as
a cocycle into σi(H(Qq)). Suppose that, viewed as a cocycle into Si(Qq), βi is
equivalent to a cocycle taking values in L(Qq), where L is a proper Qq-subgroup of
Si. Apply 2.4 to get that, as a cocycle into σi(H(Qq)), βi is equivalent to a cocycle
with values in Li = σi(H(Qq)) ∩ hL(Qq)h−1, for some h ∈ Si(Qq). But then, by
2.1, there is a βi-invariant Borel function f : X → σi(H(Qq))/Li, so clearly there
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is a β-invariant Borel function f ′ : X → H(Qq)/σ−1
i (Li), and so β is equivalent

to a cocycle taking values in σ−1
i (Li) = σ−1

i (hL(Qq)h−1). But L′ = hLh−1 is
a proper k-subgroup of Si, and so σ−1

i (L′) is a proper k-subgroup of H , while
σ−1
i (hL(Qp)h−1) = σ−1

i (L′(Qp)) = σ−1
i (L′)(Qp), contradicting the minimality of

H .
We conclude, for all i, that βi is equivalent to a cocycle with values in a compact

subgroup Ki of Si(Qp). Thus τ∗ ◦ τ ◦ β is equivalent to a cocycle taking values in
K1 × · · · × Kn. Then, as in the preceding argument, an application of 2.4 shows
that β is equivalent to cocycle γ taking values into A = τ−1(τ−1

∗ (K)), where K
is a compact subgroup of S1(Qq) × · · · × Sn(Qq). In fact, K is a conjugate of
K1 × · · · ×Kn. Now τ−1

∗ (K) is an extension of a compact group by a finite group,
so it is amenable and τ−1(τ−1

∗ (K)) is an extension of an amenable group by a
solvable group (i.e., R), so A is amenable (see [35], 4.6 and 4.1.2).

By Margulis [26], III 5.3 in page 130, G(Qp) is Kazhdan. So, by 3.1, the cocycle
γ is equivalent to a cocycle taking values in a compact subgroup of A, and so β
is equivalent to a cocycle taking values in a compact subgroup of H(Qq) and the
proof is complete. a

The following cocycle reduction result will be needed in Section 6.

Theorem 3.8. Let n ≥ 3 and let X be a standard Borel SLn(R)-space with an in-
variant, ergodic probability Borel measure. Let m<n and let Hm=SL±1

m /{Im,−Im}
be the group of all m × m matrices with determinant ±1, modulo the subgroup
{Im,−Im}, where Im = the identity m ×m matrix. Let p be a prime or ∞ and
let Q∞ = R. If α : SLn(R) ×X → Hm(Qp) is a cocycle, then α is equivalent to a
cocycle taking values in a compact subgroup of Hm(Qp).

Proof. The argument is similar to that of 3.5, using 3.4 instead of 3.3, so we will
only indicate the changes.

First since SLn(C) is connected (see, e.g., Gorbatsevich et al. [13], page 22,
Prop. 4.4), so is SLn. Also SLn(R) is connected (same reference). Every normal
subgroup of SLn(K), K any field of characteristic 0, is contained in its center which
is finite (see Rotman [29], 8.9 and 9.4.6). In particular, SLn is semisimple. Finally,
R-rank(SLn(R)) = n−1 (see Zimmer [35], page 85, first paragraph), so since n ≥ 3
all the hypotheses about G = SLn(R) in 3.4 are satisfied.

Then, by repeating the argument in 3.5, we end up with a cocycle of the action
of SLn(R) on X into a group of the form Si(k), where k = Qp or R, and Si is a
connected k-simple, k-group for which there is a k-epimorphism from H onto Si,
where H is a connected k-subgroup of Hm. We have to conclude that this cocycle
is equivalent to one with values in some compact subgroup of Si(k). Applying 3.4,
this is the case unless k = R and there is a non-trivial R-morphism ρ from SLn into
Si. But this is impossible, since the dimension of Si is less than or equal to that of
Hm, which is m2− 1, and thus strictly smaller to that of SLn, which is n2− 1, and
the kernel of ρ is finite (see Humphreys [17], 7.4).

Finally, we need that SLn(R), for n ≥ 3, is Kazhdan (see de la Harpe and Valette
[3], 2.a.4, page 21). a

We conclude this section with the proof of a well-known fact that we will need
in the next section.
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Proposition 3.9. Let Z[ 1
p ] be the ring of rationals whose denominators (in reduced

form) are powers of p. Then SOF (Z[ 1
p ]) is a Kazhdan group.

Proof. We will need the following standard result:

Lemma 3.10. Let G,H be lcsc groups, Γ ⊆ G a lattice in G and f : G → H a
continuous epimorphism with compact kernel. Then f(Γ) is a lattice in H.

Proof. Let K = kernel of f . Then KΓ = ΓK is a closed subgroup of G and let φ
be the canonical map from G/Γ onto G/KΓ given by ϕ(hΓ) = hKΓ. Then for the
canonical actions of G on G/Γ and G/KΓ we clearly have ϕ(g · x) = g · ϕ(x), so
if µ is a G-invariant measure on G/Γ, then ν = ϕ∗(µ) is a G-invariant probability
Borel measure on G/KΓ. Now let ψ : G/KΓ→ H/f(Γ) be the canonical bijection
given by

ψ(hKΓ) = f(h)f(Γ).

Then, as ψ(g · x) = f(g) · ψ(x), it follows that ψ∗(ν) is H-invariant. Finally it is
easy to check that f(Γ) is discrete in H . a

Now take Γ = SOF (Z[ 1
p ]) and let K = SOF (R), H = SOF (Qp). Then K is

compact. Define δ : Γ→ K×H by δ(x) = (x, x). Then by Zimmer [35], 10.1.1 (with
G = SOF , S = {p} in his notation), δ(Γ) is a lattice in K×H , so if ρ : K×H → H
is the projection, by the previous lemma, ρ(δ(Γ)) = Γ is a lattice in SOF (Qp). By
Margulis [26], III 5.3 in page 130, SOF (Qp) is a Kazhdan group and by Zimmer
[35], 7.4.3, every lattice in a Kazhdan group is also a Kazhdan group, so SOF (Z[ 1

p ])
is a Kazhdan group. a

4. Embedding Borel sets under inclusion

Our goal in this section is to prove the first main theorem of this paper.

Theorem 4.1. The partial ordering of Borel sets under inclusion can be embed-
ded in the partial (pre)order of countable Borel equivalence relations under Borel
reducibility. More precisely, there is a map A 7→ EA assigning to each Borel subset
of 2N, A, a countable Borel equivalence relation, EA, so that

A1 ⊆ A2 ⇔ EA1 ≤B EA2 .

The proof of 4.1 is based on the following result.

Theorem 4.2. There is a map x 7→ Ex assigning to each x ∈ 2N a countable Borel
equivalence relation Ex on 2N such that:

(i) Ex admits an ergodic, non-atomic, invariant measure µx.
(ii) If x0 6= x1 and f : 2N → 2N is a Borel function such that yEx0z ⇒

f(y)Ex1f(z), then there is a Borel Ex0-invariant set M of µx0-measure 1 such
that f(M) is contained in a single Ex1-class. In particular, for any Borel set N of
µx0-measure 1, Ex0 |N 6≤B Ex1 .

(iii) The assignment x 7→ Ex is “Borel”, in the sense that E ⊆ (2N)3 below is
Borel:

(x, y, z) ∈ E ⇔ yExz.

Moreover x 7→ µx is Borel.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



928 SCOT ADAMS AND ALEXANDER S. KECHRIS

Granting 4.2 we can prove 4.1 as follows:
To each Borel set A ⊆ 2N assign the following equivalence relation:

EA =
⊔
x∈A

Ex,

that is, the direct sum of the Ex with x ∈ A. This is precisely defined as follows:
EA is an equivalence relation on A× 2N, and

(x, y)EA(x′, z)⇔ x = x′ & yExz.

Then EA is Borel and, since there is a Borel bijection of A× 2N with 2N, we may,
if we wish, think of EA as being an equivalence relation on 2N. It is clear that if
A1 ⊆ A2, then EA1 ≤B EA2 via the identity function. Now assume that A1 6⊆ A2

and let x ∈ A1 \ A2. Then clearly Ex ≤B EA1 (via y 7→ (x, y)). On the other
hand, we claim that Ex 6≤B EA2 , so EA1 6≤B EA2 . Because, otherwise, there is a
Borel function f : 2N → A2 × 2N with yExz ⇔ f(y)EA2f(z), and so, in particular,
yExz ⇒ π(f(y)) = π(f(z)), where π(a, b) = a. By ergodicity, there is a Borel set
M of µx-measure 1 with π(f(y)) constant for y ∈M , say with value π(f(y)) = x0.
Then y 7→ ρ(f(y)), where ρ(a, b) = b, is a Borel reduction of Ex|M into Ex0 , which
contradicts 4.2(ii), as x 6= x0.

We will devote the rest of this section to the proof of Theorem 4.2.
For any infinite countable group Γ, consider the compact Polish space 2Γ of all

functions from Γ into 2 = {0, 1} with the product topology (so that it is homeo-
morphic to 2N). Γ acts on 2Γ by (left) shift: g · x(h) = x(g−1h). We denote by
E(Γ, 2) the associated equivalence relation

xE(Γ, 2)y ⇔ ∃g(g · x = y).

We also let F (Γ, 2) be the restriction of E(Γ, 2) to the free part of the action, i.e.,

F (Γ, 2) = E(Γ, 2)|FrΓ,

where FrΓ = {x ∈ 2Γ : ∀g 6= 1(g · x 6= x)}. We also denote by µΓ the product
measure on 2Γ (where each bit in {0, 1} has measure 1/2). It is clearly invariant
under the shift action and it is non-atomic. The next lemma is quite standard.

Lemma 4.3. µΓ(FrΓ) = 1.

Proof. It is clearly enough to show that for each g 6= 1, Xg = {x ∈ 2Γ : ∀h(x(gh) =
x(h))} has µΓ-measure 0. It is clear that if x ∈ Xg, then x is constant on each right
coset 〈g〉h, h ∈ Γ, of the subgroup 〈g〉 generated by g. Since either 〈g〉 is infinite
or there are infinitely many cosets, this implies that µΓ(Xg) = 0. a

If ∆ is a subgroup of Γ, then also ∆ acts on 2Γ by left shift and we denote by
E(∆,Γ, 2) the corresponding equivalence relation, so that

xE(∆,Γ, 2)y ⇔ ∃g ∈ ∆(g · x = y).

The following lemma is also standard. In fact, the action of Γ on 2Γ turns out
to be mixing, a property which is inherited by infinite subgroups of Γ, and which
implies ergodicity. For the sake of completeness, we include a proof which does not
depend on understanding the mixing property.
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Lemma 4.4. For any infinite subgroup ∆ of Γ, µΓ is E(∆,Γ, 2)-ergodic.

Proof. Suppose X ⊆ 2Γ is Borel and E(∆,Γ, 2)-invariant. Enumerate Γ =
{γ0, γ1, · · · , γn, · · · }. Then for each n, choose δn ∈ ∆ such that δn is not one
of γiγ−1

j , for i, j < n. Then δn{γ0, · · · , γn−1} ∩ {γ0, · · · , γn−1} = ∅. Consider the
Boolean algebraA of clopen subsets of 2Γ. Denote by MALGµΓ the measure algebra
of µΓ, i.e., the Boolean algebra of Borel subsets of 2Γ modulo sets of µΓ-measure
0. Then A is dense in MALGµΓ (see, e.g., Kechris [21], 17.43]), so for each n there
is An ∈ A with µΓ(X + An) → 0, where + denotes here the symmetric difference
of two sets. Now each An is a finite union of sets of the form

Ns = {x ∈ 2Γ : x|F = s},

where s : F → 2, for some finite subset F ⊆ Γ. Call F the support of Ns and if An =
Ns1 ∪· · ·∪Nsk , with the support of Nsi equal to Fi, call F1∪· · ·∪Fk the support of
An. Say it is included in {γ0, · · · , γkn−1}. Then it is clear that if εn = δ−1

kn
, An and

εn ·An are independent for µΓ, so µΓ(An ∩ εn ·An) = µΓ(An)µΓ(εn ·An) = µΓ(An)2

by the invariance of µΓ. Also µΓ(An+X) = µΓ(εn ·(An+X)) = µΓ(εn ·An+X), as
εn ·X = X . So An → X and εn ·An → X in the measure algebra, so, as intersection
is continuous (see Kechris [21], 17.43), An∩εn ·An → X and thus µΓ(An∩εn ·An) =
µΓ(An)2 → µ(X). But also µΓ(An)→ µΓ(X), so µΓ(X)2 = µΓ(X), i.e., µΓ(X) = 0
or 1. a

Recall that SOF is the Q-group of all 7×7 matrices A with det(A) = 1, AAt = I.
For each non-empty subset S of primes, let Z[S−1] be the ring of rationals whose
denominators (in reduced form) have prime factors in S, and let

ΓS = SOF (Z[S−1])

be the set of all 7×7 matrices in SOF with coefficients in Z[S−1]. Let ES = F (ΓS , 2)
and XS = FrΓS , µS = µΓS . Then we have the following lemma:

Lemma 4.5. If S 6⊆ T , and f : XS → XT is Borel such that xESy ⇒ f(x)ET f(y),
then there is a Borel ES-invariant set M with µS(M) = 1 such that f maps M into
a single ET -class.

Granting this, we can prove 4.2 as follows: Let π be a Borel function from 2N

into the power set of the primes (which we identify with 2P , P = the set of primes)
so that each π(x) is infinite and

x 6= y ⇒ π(x) ∩ π(y) is finite,

i.e., {π(x)}x∈2N is an almost disjoint family of subsets of primes. (The existence of
such a Borel function π is a standard fact and here is a quick proof: It is clearly
enough to replace P by N. Fix a bijection 〈 〉 : 2<N → N of the set of finite sequences
〈s0, · · · , sn−1〉 from N with N, and for x ∈ 2N let π(x) = {〈x(0), · · · , x(n− 1)〉 : n ∈
N} ⊆ N.) For x ∈ 2N, put

Ex = Eπ(x)

and µx = µπ(x). Then (i)-(iii) of 4.2 are clear. (Literally Ex is not an equivalence
relation on 2N but it can be considered as such by fixing Borel bijections of each
Xπ(x) with 2N, uniformly in x.)
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Proof of Lemma 4.5. Fix p ∈ S \ T , and consider Γp = Γ{p} ⊆ ΓS , i.e., Γp =
SOF (Z[ 1

p ]). By 4.4 the measure µS is ergodic and invariant for the action of Γp on
XS. We can now define the following strict Borel cocycle α : Γp ×XS → ΓT :

α(g, x) = the unique h ∈ ΓT such that

h · f(x) = f(g · x),

which exists since xESy ⇒ f(x)ET f(y), and the action of ΓT is free.
Since, by 3.9, Γp is a Kazhdan group, it follows from 3.2 that α ∼ β, where

β(Γp ×XS) ⊆ ΛT , with ΛT ⊆ ΓT a finitely generated subgroup of ΓT . So there is
a finite T0 ⊆ T such that ΛT ⊆ ΓT0 . Say T0 = {p1, · · · , pn}. By Zimmer [35], B. 9
(on page 200), we can also assume that β is a strict cocycle.

Now ΓT0 = SOF (Z[T−1
0 ]) is a discrete subgroup of SOF (R)× SOF (Qp1)× · · · ×

SOF (Qpn) (as Z[T−1
0 ] is a discrete subring of R × Qp1 × · · · × Qpn) and thus of

SOF (Qp1) × · · · × SOF (Qpn), as SOF (R) is compact. (Here an element g ∈ ΓT0

is identified with (g, · · · , g) in this product and similarly for elements of Z[T−1
0 ].)

Also Γp = SOF (Z[ 1
p ]) is a lattice in SOF (R) × SOF (Qp), by Zimmer [35], 10.1.1

(since SOF is a connected semisimple Q-group), and so by 3.10, it is a lattice in
SOF (Qp).

Consider the action of Γp on (XS , µS) and the strict cocycle β : Γp×XS → ΓT0 .
Using Section 2 (paragraph following 2.2), consider the induced Borel action of
SOF (Qp) on Y (which also has an invariant, ergodic measure) and the induced
strict cocycle β̂ : SOF (Qp) × Y → ΓT0 . Viewing β̂ as a cocycle β̂ : SOF (Qp) ×
Y → SOF (Qp1)× · · · × SOF (Qpn) and letting πi be the projection of SOF (Qp1)×
· · · × SOF (Qpn) to SOF (Qpi), i = 1, · · · , n, consider the cocycle β̂i = πi ◦ β̂ :
SOF (Qp) × Y → SOF (Qpi). By 3.5, β̂i ∼ γi, where γi is a Borel cocycle with
γi(SOF (Qp) × Y ) ⊆ Ki, Ki a compact subgroup of SOF (Qpi). Set K = K1 ×
· · · × Kn. Then β̂ ∼ γ where γ : SOF (Qp) × Y → SOF (Qp1) × · · · × SOF (Qpn)
is a Borel cocycle with γ(SOF (Qp) × Y ) ⊆ K. Then by 2.4, now viewing β̂ as a
cocycle into ΓT0 , we have that β̂ ∼ β′ where β′ : SOF (Qp) × Y → ΓT0 is a Borel
cocycle with β′(SOF (Qp) × Y ) ⊆ ∆0, ∆0 a finite subgroup of ΓT0 . Now using
2.3, this shows that β ∼ β0, where β0 : Γp × XS → ΓT0 is a Borel cocycle with
β0(Γp ×XS) ⊆ ∆0 and so α ∼ β0. Thus there is a Borel function A : XS → ΓT
such that for all g ∈ Γp, α(g, x) = A(g · x)β0(g, x)A(x)−1, µS-a.e.(x). Since ΓT is
countable, find some Borel set N0 ⊆ XS of positive µS-measure, such that A is
constant, say with value A0, on N0, and, since Γp is countable, we can assume that
α(g, x) = A(g · x)β0(g, x)A(x)−1, for all g ∈ Γp, x ∈ N0. Then if x, g · x ∈ N0 for
some g ∈ Γp, α(g, x) = A0β0(g, x)A−1

0 ∈ A0∆0A
−1
0 . Since α(g, x) · f(x) = f(g · x)

it follows that as g varies over Γp so that g ·x ∈ N0, f(g ·x) takes only finitely many
values. Let M0 = Γp · N0 be the Γp-saturation of N0. Then M0 has µS-measure
1 by ergodicity. Moreover, the map on M0 defined by F (x) = f((Γp · x) ∩ N0) is
Γp-invariant and assigns in a Borel way to x a finite subset of XT , so, by ergodicity
again, it is fixed on a Borel set M1 ⊆ M0 of µS-measure 1. Note that if x0 ∈
M0, then F (x) is a finite subset of the ET -class which f assigns to the ES-class
containing Γp ·x. Hence f maps M1 into a single ET -class. Finally, let M = ΓS ·M1.
Then clearly M is a Borel ES-invariant subset of µS-measure 1 which is mapped
into a single ET -class. a
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5. The descriptive complexity of Borel reducibility

Let us first fix a parametrization of Borel relations on NN. This consists of a set
D ⊆ 2N and two sets P, S ⊆ (NN)3 such that

(i) D is Π1
1, P is Π1

1 and S is Σ1
1.

(ii) For d ∈ D, Pd = Sd (where Pd = {(x, y) : (d, x, y) ∈ D}). Denote by Dd the
set Pd (= Sd), for d ∈ D.

(iii) {Dd : d ∈ 2N} = {B ⊆ (NN)2 : B is Borel}.
(iv) If A ⊆ X × (NN)2, X a Polish space, is Borel, there is a Borel function

p : X → 2N, such that Ax = Dp(x), for all x ∈ X (see Kechris [21], 35.5).
It is straightforward, using Kechris [21], 29.19, that

E = {d ∈ D : Dd is a countable equivalence relation}

is Π1
1 and it is also easy to check that

E≤ = {(d, e) ∈ D2 : d, e ∈ E & Dd ≤B De},

E∼ = {(d, e) ∈ D2 : d, e ∈ E & Dd ∼B De}

are Σ1
2.

Recall that a set A in a standard Borel space X is called Σ1
2-complete if it is

Σ1
2 and for any Σ1

2 set B ⊆ Y , Y a standard Borel space, there is a Borel function
f : Y → X such that B = f−1(A). The following therefore computes the exact
complexity of E≤, E∼.

Theorem 5.1. The sets E≤, E∼ are Σ1
2-complete. In other words, the notions of

Borel reducibility and bi-reducibility of countable Borel equivalence relations are
Σ1

2-complete.

Proof. We will prove in fact the stronger statement that there is a fixed countable
Borel equivalence relation E∗ such that the countable Borel equivalence relations
to which E∗ Borel reduces, resp. which are Borel bi-reducible with E∗, are both
Σ1

2-complete or more precisely that

E∗≤ = {d ∈ D : d ∈ E & E∗ ≤B Dd},

E∗∼ = {d ∈ D : d ∈ E & E∗ ∼B Dd}

are Σ1
2-complete. The relation E∗ is simply defined as follows: For any countable

Borel equivalence relation E on X let cE be the sum of continuum many copies of
E. We view cE as defined on NN ×X by

(a, x)cE(b, y)⇔ a = b & xEy.

By trivially modifying 4.2, fix a map x 7→ Ex from NN into Borel equivalence
relations on NN, satisfying (i)-(iii) of 4.2 (with NN replacing 2N), and put

E∗x = cEx

and

E∗ =
⊔
x

E∗x

(where we can of course view all of these as living on NN).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



932 SCOT ADAMS AND ALEXANDER S. KECHRIS

Consider a tree T on N×N (see Kechris [21], 2.1). Each such T defines a closed
subset [T ] ⊆ (NN)2 given by

[T ] = {(x, y) ∈ (NN)2 : ∀n(x|n, y|n) ∈ T }.

Associate with T the following countable Borel equivalence relation, where ∆ is
the equality relation on NN:

ET =
⊔

(x,y)∈[T ]

E∗x t
⊔

(x,y) 6∈[T ]

∆.

Let us say that a closed set F ⊆ (NN)2 admits a full Borel uniformization if there
is a Borel function f : NN → NN such that for every x, (x, f(x)) ∈ F . The main
observation that we will use in the calculation of the complexity of E∗≤, E∗∼ is now
the following:

Lemma 5.2. For each tree T we have

E∗ ≤B ET ⇔ E∗ ∼B ET

⇔ [T ] admits a full Borel uniformization.

Proof. Since ET ≤B
⊔

(x,y)∈(NN)2 E∗x ≤B
⊔
x(cE∗x) ∼=B

⊔
x c(cEx) ∼=B

⊔
x cEx = E∗,

where ∼=B denotes Borel isomorphism, clearly

E∗ ≤B ET ⇔ E∗ ∼B ET .

Now assume that [T ] admits a full Borel uniformization, say f . View E∗x as being
defined on NN and E∗ as defined on NN × NN by

(x, y)E∗(x′, z)⇔ x = x′ & yE∗xz,

and let g : NN × NN → (NN × NN)× NN be defined by

g(x, y) = (x, f(x), y).

Then g is a Borel reduction of E∗ into ET .
Conversely, let the Borel function g : NN × NN → (NN × NN) × NN reduce E∗

into ET . Then the function gx(y) = g(x, y) is a Borel reduction of E∗x into ET . We
clearly have a Borel function ρ reducing each Ex into E∗x (ρ is defined independently
of x), so gx ◦ ρ is a Borel reduction of Ex into ET , thus in particular

yExz ⇒ π1((gx ◦ ρ)(y)) = π1((gx ◦ ρ)(z))

where π1(u, v, w) = (u, v). Since µx (as in 4.2(i)) is ergodic, this implies that there
is a set Mx of µx-measure 1, so that π1 ◦ gx ◦ ρ is constant on Mx, say with value
(u(x), f(x)). But then, if π2(u, v, w) = w, π2 ◦ gx ◦ ρ is a Borel reduction of Ex|Mx

into E∗u(x), if (u(x), f(x)) ∈ [T ], or into ∆, if (u(x), f(x)) 6∈ [T ]. By applying
ergodicity one more time, we conclude that (u(x), f(x)) ∈ [T ] and there is a Borel
set of µx-measure 1, Nx, so that Ex|Nx ≤B Eu(x), so by 4.2(ii), u(x) = x. So
clearly f is a full uniformization of [T ] and it only remains to check that it is Borel.
To see this, notice that the graph of f is given by

(x, y) ∈ Gf ⇔ y = f(x)
⇔ µx({z : (π1 ◦ gx ◦ ρ)(z) = (x, y)}) = 1,

so Gf is Borel, by Kechris [21], 17.25, thus f is Borel. a
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Denote by FBU the set of all trees T for which [T ] has a full Borel uniformization:

FBU = {T : T is a tree on N× N &
[T ] has a full Borel uniformization}.

We can identify here a tree with its characteristic function, a member of 2N
<N×N<N ,

which we can simply identify with 2N. Clearly the set of trees is Borel. Since the
set E ⊆ 2N × (NN)2 given by

(T, x, y) ∈ E ⇔ T is a tree and (x, y) ∈ ET
is clearly Borel, it follows that there is a Borel function p such that for each tree
T , p(T ) ∈ D and

ET = Dp(T ).

So by 5.2, p−1(E∗≤) = p−1(E∗∼) = FBU; thus in order to show that E∗≤, E∗∼ are
Σ1

2-complete it is enough to show that FBU is Σ1
2-complete.

Following up a conversation with one of the authors, John Steel first found a
proof of this using non-standard models. We give below a different proof based
on effective descriptive set theory. We assume that the reader is familiar with this
theory as exposed for example in Moschovakis [28].

Lemma 5.3. The set FBU is Σ1
2-complete.

Proof. It is enough to show that every Σ1
2 subset of NN is of the form f−1(FBU)

for some Borel f .
We will first need some simple facts about trees (see Kechris [21], Section 2).

Let S, T be trees on sets A,B, resp. We let

S � T ⇔ there is a strictly monotone map

ϕ : S → T.

Also let S ∗ T be the tree on A×B given by

S ∗ T = {(s, t) ∈ A<N ×B<N : length(s) = length(t) & s ∈ S & t ∈ T }.
Then, recalling that a tree is called illfounded if it has an infinite branch, we clearly
have that S∗T is illfounded iff both S, T are illfounded, so S∗T is wellfounded (i.e.,
not illfounded) iff at least one of S, T is wellfounded. Moreover, if S is wellfounded
but T is illfounded, then clearly S � S ∗ T . To see this, let x ∈ [T ] be an infinite
branch of T and define ϕ(s) = (s, x|length(s)). Finally, recall that the set WF for
all wellfounded trees is Π1

1-complete and that the map

ρ : WF→ ω1

(ω1 = the first uncountable ordinal) given by

ρ(S) = the rank of S

is a Π1
1-rank (also called Π1

1-norm) on WF. Note also that for T ∈ WF, S � T ⇔
S ∈WF & ρ(S) ≤ ρ(T ).

Now fix a Σ1
2 set A ⊆ NN and let B ⊆ (NN)2 be Π1

1 so that u ∈ A⇔ ∃v(u, v) ∈ B
and let g : (NN)2 → NN be recursive so that g(u, v) is a tree on N, for each u, v, and
(u, v) ∈ B ⇔ g(u, v) ∈ WF. Thus

u ∈ A ⇔ ∃v(g(u, v) ∈WF)
⇔ ∃T (T ∈WF & ∃ϕ : g(u, v)→ T, ϕ strictly monotone).
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Since {(x, y) : y ∈ ∆1
1(x)} is Π1

1, let f also be a recursive function such that
f(x, y) is a tree on N for all x, y and

y ∈ ∆1
1(x)⇔ f(x, y) ∈WF.

Now define R ⊆ (NN)3 by

(u, x, 〈y, T, v, ϕ〉) ∈ R⇔ ϕ : g(u, v)→ f(x, y) ∗ T is strictly monotone,

where 〈 〉 is an appropriate recursive coding of the objects indicated by a member
of NN. It is clear that R is closed in (NN)3, so it is of the form R = [U ] =
{(x, y, z) ∈ (NN)3 : ∀n(x|n, y|n, z|n) ∈ U}, for some tree U on N× N × N. Then if
f(u) = U(u) = {(s, t) : length(s) = length(t) & (u|length(s), s, t) ∈ U}, f is a Borel
map and Ru = [f(u)]. We show that

u ∈ A ⇔ Ru has a full Borel uniformization
⇔ f(u) ∈ FBU,

which shows that A = f−1(FBU).
Recall that a closed set C ⊆ (NN)2 admits a full Borel uniformization iff there

is a parameter p ∈ NN such that for every x there is y ∈ ∆1
1(x, p) with (x, y) ∈ C

(Moschovakis [28], 4D.4). So it is enough to show that:

u ∈ A⇔ ∃p∀x∃〈y, T, v, ϕ〉 ∈ ∆1
1(x, p)R(u, x, 〈y, T, v, ϕ〉).

⇐: Fix such a p. Then take x = p and find y, T, v, ϕ ∈ ∆1
1(x, p) = ∆1

1(x) such
that ϕ : g(u, v)→ f(x, y) ∗ T is strictly monotone. As y ∈ ∆1

1(x), f(x, y) ∈WF, so
f(x, y) ∗ T ∈WF, so g(u, v) ∈ WF and thus u ∈ A.
⇒: Let T0 be a fixed recursive illfounded tree, e.g., T0 = N<N. Let u0 ∈ A.

Pick v0 so that g(u0, v0) = S0 ∈ WF. Put p = 〈u0, v0〉 (so also S0 is recursive in p).
Given any x we now have to find 〈y, T, v, ϕ〉 ∈ ∆1

1(x, p) satisfying R(u0, 〈y, T, v, ϕ〉).
We take v = v0 ∈ ∆1

1(x, p). To find y, T, ϕ we consider two cases:
(i) ωx1 > ρ(S0) (where ωx1 is the first ordinal not recursive in x).
Then let S∗0 be a wellfounded tree recursive in x with ρ(S0) = ρ(S∗0 ). It fol-

lows that there must be some y ∈ ∆1
1(x) ⊆ ∆1

1(x, p) such that ρ(S0) = ρ(S∗0 ) ≤
ρ(f(x, y)), since otherwise

∀y(y ∈ ∆1
1(x)⇔ ρ(f(x, y)) < ρ(S∗0 )),

so that {y : y ∈ ∆1
1(x)} is ∆1

1(x), a contradiction (Moschovakis [28], 4D.16).
Therefore there is also some ϕ1 : S0 → f(x, y) strictly monotone such that ϕ1 ∈
∆1

1(x, y, S0) ⊆ ∆1
1(x, p) and this immediately gives some ϕ : g(u0, v)(= S0) →

f(x, y) ∗ T0, ϕ ∈ ∆1
1(x, p), which is strictly monotone. Thus if we choose T =

T0, 〈y, T, v, ϕ〉 works.
(ii) ωx1 ≤ ρ(S0).
Then we claim that we can find y 6∈ ∆1

1(x) such that Ox,y ∈ ∆1
1(x, p), where Oa

is the Kleene O relative to a, i.e., the complete Π1
1(a) subset of N.

Granting this claim, f(x, y) is illfounded and we pick a branch b ∈ [f(x, y)],
which is recursive in Ox,y, thus b ∈ ∆1

1(x, p). Then let ϕ(s) = (b|length(s), s) for
s ∈ g(u0, v). Clearly ϕ ∈ ∆1

1(x, p) and ϕ : g(u0, v)(= S0) → f(x, y) ∗ S0 is strictly
monotone. Thus if we now choose T = S0, 〈y, T, v, ϕ〉 works.

It remains to prove the claim: Look at the set

{y : ωx,y1 = ωx1 & y 6∈ ∆1
1(x)).
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Since ωx1 ≤ ρ(S0) < ωS0,x
1 we have that Ox ∈ ∆1

1(S0, x), so this set is ∆1
1(S0, x). It is

also comeager, so it has an element y ∈ ∆1
1(S0, x) (Moschovakis [28], 4F.20). Then

as ωx,y1 < ωS0,x
1 = ωS0,x,y

1 , we have thatOx,y ∈ ∆1
1(S0, x, y) ⊆ ∆1

1(S0, x) ⊆ ∆1
1(x, p),

so we are done. a

Now let us say that a closed set F ⊆ (NN)2 has full projection if for every x
there is some y with (x, y) ∈ F . By the Jankov, von Neumann Uniformization
Theorem (see Kechris [21], 18.1), this is equivalent to saying the F admits a full
σ(Σ1

1)-measurable uniformization, where σ(Σ1
1) is the smallest σ-algebra generated

by the analytic sets.
Then by inspecting the argument in 5.2, we see the following, where E ≤σ(Σ1

1) F

means that E can be reduced to F via a σ(Σ1
1)-measurable function, and similarly

for ∼σ(Σ1
1).

Lemma 5.4. For each tree T we have

E∗ ≤σ(Σ1
1) ET ⇔ E∗ ∼σ(Σ1

1) ET

⇔ [T ] has full projection.

Let

FP = {T : T is a tree on N× N &
[T ] has full projection}.

Then it is quite standard that FP is a Π1
2-complete set: If A ⊆ NN is Π1

2, then
x ∈ A⇔ ∀y(x, y) ∈ B, where B is Σ1

1, so (x, y) ∈ B ⇔ ∃z(x, y, z) ∈ F , where F is
closed in (NN)3, thus F = [U ], for some tree U on N×N×N. For each x ∈ NN, let

U(x) = {(s, t) | length(s) = length(t) and (x|length(s), s, t) ∈ U}.
Then x ∈ A⇔ U(x) ∈ FP, and clearly x 7→ U(x) is Borel.

We have FBU⊆FP and since the first set is Σ1
2-complete while the second is

Π1
2-complete, they are clearly not equal, i.e., FBU$FP. (This is a well-known

fact; see, e.g., Kechris [21], 18.17, but the argument used here seems to be new.)
In particular, it follows trivially that there is a tree T such that E∗ ≤σ(Σ1

1) ET but
E∗ 6≤B ET . So we have:

Theorem 5.5. There is a pair of countable Borel equivalence relations E,F such
that E ≤σ(Σ1

1) F but E 6≤B F (and we moreover have that F ≤B E).

6. Finite rank torsion-free abelian groups

Let ∼=n be the isomorphism relation on torsion-free abelian groups of rank ≤ n.
These are exactly the groups isomorphic to subgroups of (Qn,+). Let us also denote
by ∼=∗n the restriction of ∼=n to the rigid groups, where we call an abelian group rigid
if its only automorphisms are x 7→ x, x 7→ −x.

It follows from a result of Baer (see, e.g., Fuchs [10]) that (∼=1) ∼B (∼=∗1) ∼B E0,
where E0 is the equivalence relation on 2N defined by: xE0y ⇔ ∃n∀m ≥ n(xm =
ym). Hjorth [15] has shown that E0 <B (∼=n) for all n ≥ 2 and Thomas [33]
extended this to show that E0 <B (∼=∗n) for n ≥ 2. Also Hjorth [15] showed that
for n ≥ 3, ∼=n is not essentially treeable, i.e., there is no treeable countable Borel
equivalence relation E with (∼=n) ∼B E, and Thomas [33] extended this to ∼=∗n, for
n ≥ 3. Recently Kechris showed that ∼=n is not essentially treeable for all n ≥ 2.
This is still open for ∼=∗2. (Recall that a countable Borel equivalence relation E on
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X is treeable if there is a Borel acyclic graph on X whose connected components
are the E-classes.) We show here the following, which in particular implies that no
∼=∗n is universal.

Theorem 6.1. For any n ≥ 1, (∼=∗n) <B (∼=∗n+1).

Proof. Let S(Qn) be the space of all subgroups of Qn (a closed subset of the space
of all subsets of Qn). Since every isomorphism between subgroups of Qn is induced
by a matrix in GLn(Q), we can view, up to ∼B, ∼=n as being the equivalence relation
on S(Qn) induced by the canonical action of GLn(Q).

Let Zn ⊆ S(Qn) consist of all subgroups containing Zn. Then SLn(Z) acts on
Zn and Hjorth [15] shows that there is a probability measure νn on Zn invariant
under this action with the following properties:

(i) The equivalence relation on Zn induced by this action is not tame, even on
any set of νn-measure 1.

(ii) (Thomas [33]) There is a Borel set of νn-measure 1, Yn, such that every
element of Yn is rigid.

Now consider the ergodic decomposition of the action of SLn(Z) on Zn, as in
Varadarajan [34]. More precisely, let E be the standard Borel space of ergodic,
invariant measures of this action. Then there is a Borel surjection π : Zn → E , which
is SLn(Z)-invariant, such that if Xe = {x ∈ Zn : π(x) = e}, then e(Xe) = 1, ∀e ∈ E ,
and for any Borel set A ⊆ Zn, and any SLn(Z)-invariant probability measure, ν,
we have ν(A) =

∫
e(A)dν∗(e), where ν∗ = π∗ν is the measure on E defined by

ν∗(B) = ν(π−1(B)).
Since νn(Yn) = 1, it follows that there is a Borel set E1 ⊆ E such that (νn)∗(E1) =

1 and for e ∈ E1, e(Yn) = 1. Then there must be some e1 ∈ E1 which is non-atomic,
since otherwise for each e ∈ E1, there is a unique orbit of SLn(Z), say θe, with
e(θe) = 1, and then the set W = {x ∈ Zn : π(x) ∈ E1 & x ∈ θπ(x)} = {x ∈ Zn :
π(x) ∈ E1 & π(x)(SLn(Z) · x) = 1} is Borel, SLn(Z)-invariant, and the action of
SLn(Z) on W is tame, as for x, y ∈ W, y ∈ SLn(Z) · x ⇔ π(y) = π(x). But clearly
νn(W ) = 1, which is a contradiction.

So we can assume that there is an ergodic, non-atomic, SLn(Z)-invariant measure
µn (= e1) on Zn and there is a Borel SLn(Z)-invariant set Xn (= Xe1 ∩ Yn) ⊆ Zn
with µn(Xn) = 1, such that every element of Xn is rigid.

It is clear that (∼=∗n) ≤B (∼=∗n+1) and Thomas’ result shows that (∼=∗1) <B (∼=∗2).
So assume n ≥ 2 and (∼=∗n+1) ≤B (∼=∗n), towards a contradiction. Say f is a Borel
function reducing ∼=∗n+1 to ∼=∗n. In particular, for x, y ∈ Xn+1 we have

xE
Xn+1

SLn+1(Z)y ⇒ f(x) ∼=∗n f(y).

By ergodicity, there is m ≤ n and a set of µn+1-measure 1, so that for x in that
set f(x) actually has rank exactly m, so that we can actually assume (by shrinking
Xn+1 a bit if necessary) that for x ∈ Xn+1, f(x) ∈ S(Qm), f(x) has rank m, and

xE
Xn+1

SLn+1(Z)y ⇒ f(x) ∼=∗m f(y).

It follows that there is a strict Borel cocycle α : SLn+1(Z)×Xn+1 → Am(Q), where
Am = GLm/{Im,−Im}, with Im = the identity m×m matrix, such that

α(g, x) =
[
the unique h ∈ Am(Q) such that h · f(x) = f(g · x)

]
.

Now | det(α)| is also a strict Borel cocycle, | det(α)| : SLn+1(Z) ×Xn+1 → Q∗+ (=
the multiplicative group of the positive rationals), so since Q∗+ is amenable and
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SLn+1(Z) is Kazhdan (see Zimmer [35], 4.1.2, and de la Harpe and Valette [3], 3.a.5,
page 34, resp.), it follows by 3.1 that there is a Borel cocycle δ : SLn+1(Z)×Xn+1 →
Q∗+ taking values in a finite subgroup of Q∗+, thus into {1}, such that | det(α)| ∼ δ.
So there is Borel F : Xn+1 → Q∗+ with | det(α(g, x))| = F (g · x)F (x)−1 µn+1-a.e.

Choose for each a ∈ Q∗+ an element ā ∈ Am(Q) with | det(ā)| = a and let
F̄ : Xn+1 → Am(Q) be defined by F̄ (x) = F (x). Then if

ᾱ(g, x) = (F̄ (g · x))−1α(g, x)F̄ (x),

ᾱ is a Borel cocycle from SLn+1(Z) ×Xn+1 into Am(Q), α ∼ ᾱ, and as

| det(ᾱ(g, x))| = | det(F̄ (g · x))−1| · | det(α(g, x))| · | det(F̄ (x))|
= F (g · x)−1 · | det(α(g, x))| · F (x) = 1 µn+1-a.e.,

we conclude that ᾱ(g, x) ∈ Hm(Q), µn+1-a.e., with Hm = SL±m/{Im,−Im} ⊆ Am,
where SL±m consists of all m×m matrices with determinant ±1. Now SLn+1(Z) is
a Kazhdan group, so by 3.2 we have that ᾱ ∼ β, where β(SLn+1(Z)×Xn+1) ⊆ Λ, a
finitely generated subgroup of Hm(Q), and we can assume that β is a strict cocycle.
So there is a finite set of primes p1, · · · , pn such that Λ ⊆ Hm(Z[1/p1, · · · , 1/pn]).

Now Hm(Z[1/p1, · · · , 1/pn]) is a discrete subgroup of Hm(R)×Hm(Qp1)×· · ·×
Hm(Qpn) (see the corresponding argument in the proof of 4.5) and SLn+1(Z) is a
lattice in SLn+1(R) (see Zimmer [35], page 1, Example (c)).

Consider the action of SLn+1(Z) onXn+1 and the cocycle β : SLn+1(Z)×Xn+1 →
Hm(Z[1/p1, · · · , 1/pn]), and using Section 2 (paragraph following 2.2) consider the
induced Borel action of SLn+1(R) on Y (which also has an invariant, ergodic mea-
sure) and the induced cocycle β̂ : SLn+1(R)×Y → Hm(Z[1/p1, · · · , 1/pn]). Viewing
β̂ as a cocycle into Hm(R)×Hm(Qp1)× · · · ×Hm(Qpm) and letting π be the pro-
jection of this product to one of its factors, consider the cocycle π ◦ β̂. By 3.8, π ◦ β̂
is equivalent to a cocycle with values in a compact subgroup, so this shows that
β̂ ∼ γ1, where γ1 is a cocycle with values into a compact subgroup, so, by 2.4, β̂ is
equivalent to a cocycle with values in a finite subgroup of Hm(Z[1/p1, · · · , 1/pn])
and thus, by 2.3, β is equivalent to a cocycle γ with values in a finite subgroup
of Hm(Z[1/p1, · · · , 1/pn]) ⊆ Am(Q). Since α ∼ ᾱ ∼ β ∼ γ, we have α ∼ γ as
well. Say α(g, x) = B(g · x)γ(g, x)B(x)−1, µn+1-a.e., B : Xn+1 → Am(Q) a Borel
function. Then let M ⊆ Xn+1 be a Borel set of positive µn+1-measure on which
B is constant. It follows that φ(x) = {f(y) : y ∈ M & yE

Xn+1

SLn+1(Z)x} is finite, for
all x ∈ M . By ergodicity, φ(x) is fixed on a Borel set M0 ⊆ M of positive µn+1-
measure, and so if M1 = SLn+1(Z) ·M0, it follows that µn+1(M1) = 1 and f(M1)
is contained in a single ∼=∗m-class. But since f is a reduction, this means that M1 is
contained in a single ∼=∗n+1-class, i.e., in a single GLn+1(Q) orbit, so it is countable,
violating the non-atomicity of µn+1. a

7. Miscellanea

We mention here some other results that can be proved by the methods used in
this paper.

(i) Consider the canonical action of GLn(Z) on Tn = (R/Z)n and denote by
Rn the corresponding equivalence relation. Then we show (Theorem 7.1) that
m < n ⇒ Rn 6≤B Rm. (In fact, in Theorem 7.1, we will prove a more general
result concerning “essential” Borel reducibility, defined below.) We also show that
m ≤ n⇒ Rm ≤B Rn (Theorem 7.2), therefore, m < n implies that Rm <B Rn.
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On the other hand, consider the canonical action of SLn(Z) on Tn = (R/Z)n

and denote by R′n the corresponding equivalence relation. It should be pointed out
here that we do not know whether, in general, m < n⇒ R′m <B R′n.

If R is a countable Borel equivalence relation on a standard Borel space X , if
µ is a measure on X , and if S is a countable equivalence relation on a standard
Borel space Y , then we say that R is essentially reducible to S if there is a conull
Borel subset X0 ⊆ X such that R|X0 ≤B S. This will be denoted R ≤B S (a.e.).
The notation R 6≤B S (a.e.) will mean that R is not essentially reducible to S, i.e.,
that, for any conull Borel subset X0 ⊆ X , we have R|X0 6≤B S.

For all integers v ≥ 1, let Zv := (1/v)Z = {i/v : i ∈ Z} ⊆ Q. For all integers
l, v ≥ 1, let Rlv be the equivalence relation defined by the orbits of the action of
GLl(Z) on (R/Zv)l.

Theorem 7.1. For all integers m,n, s, t ≥ 1: m < n⇒ Rnt 6≤B Rms (a.e.).

Proof. The proof is by induction on m, and we may assume m ≥ 2. Fix integers
n, s, t ≥ 1 and assume that Rnt ≤B Rms (a.e.). We aim for a contradiction.

Let G := GLm(Z), R := Rms and S := Rnt. Then S ≤B R (a.e.). Let A :=
(R/Zs)m and let B := (R/Zt)n. We denote the action of G on A by (g, a) 7→
ga : G × A → A. Let A′ := {a ∈ A : ∃g ∈ G\{1G} (ga = a)} and let µ be the
canonical measure for S. By the argument in 6.1, we see that S 6≤B R|(A\A′)
(a.e.). Ergodicity of µ then implies that S ≤B R|A′ (a.e.).

For any integer d ≥ 1, for any a = (a1, · · · , ad) ∈ Rd, we will say that a is totally
irrational if 1, a1, · · · , ad are linearly independent over Q. For any integer d ≥ 1,
for any a = (a1, · · · , ad) ∈ Rd, we will say that a is in canonical position if there
exists i ∈ {0, · · · , d} such that (a1, · · · , ai) ∈ Qi and such that (ai+1, · · · , ad) is
totally irrational. We call i the index of a and we call (a1, · · · , ai) the rational part
of a. (Note: If a ∈ Qd, then a is in canonical position, with index d and rational
part a. If a is totally irrational, then a is in canonical position, with index 0 and
with no rational part.)

The conditions that a be totally irrational or in canonical position are both
invariant under translation by elements of Qd. It follows that, if Γ is an additive
subgroup of Qd and if a ∈ Rd/Γ and if a preimage of a in Rd is totally irrational
(resp. in canonical position), then all preimages of a in Rd are totally irrational
(resp. in canonical position). In this case, we will say that a is totally irrational
(resp. in canonical position).

We claim, for all additive subgroups Γ ⊆ Qd, for all a ∈ Rd/Γ, that there exists
g ∈ GLd(Z) such that ga is in canonical position. Sketch of proof: It suffices to
prove this when Γ = {0}. By induction on d, it suffices to show that if a is not
totally irrational, then, for some g ∈ GLd(Z), the first coordinate of ga is rational.
However, if a is not totally irrational, then there exists k ∈ Zd\{0} such that
k · a ∈ Q, where · denotes the standard dot product. Dividing k by the gcd of its
entries, we may assume that k is primitive (i.e., that the entries of k are relatively
prime). Then k is the first vector in some base of the finitely generated abelian
group Zd. So, making a change of base, we may replace a by some element of
(GLd(Z))a and k by (1, 0, · · · , 0). The first coordinate of a is then k · a, which is
rational, as desired. The claim is proved.

For all i ∈ {1, · · · ,m}, let Qi := (Q/Zs)i. For all i ∈ {1, · · · ,m}, for all q ∈ Qi,
let A′iq denote the collection of all a ∈ A such that a is in canonical position with
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index i and with rational part q. Note, for all q ∈ Qm, that we have A′mq = {q}, so
|A′mq| = 1. Let A′0 be the union of all A′iq over i ∈ {1, · · · ,m} and q ∈ Qi.

Let a ∈ A′. Then there is some g ∈ G\{1G} such that (g − 1G)a = 0. Then
if k is a non-zero row in g − 1G, we have k · a = 0, where · denotes the standard
dot product. This proves that a is not totally irrational. Choosing g0 ∈ G such
that g0a is in canonical position, we find that g0a is not totally irrational, so the
index i of g0a is not 0. If q is the rational part of g0a, then we have g0a ∈ A′iq, so
a ∈ g−1

0 A′iq ⊆ GA′0. This argument proves that A′ ⊆ GA′0. Since A′ is G-invariant
and since A′0 ⊆ A′, it follows that GA′0 ⊆ A′. Then A′ = GA′0.

Then R|A′ ≤B R|A′0, so, by ergodicity of S, fix i ∈ {1, · · · ,m} and q ∈ Qi
such that S ≤B R|A′iq (a.e.). Since µ is not atomic, we see that |A′iq| 6= 1, which
implies that i 6= m, so i ∈ {1, · · · ,m − 1}. Choose q1, · · · , qi ∈ Q/Zs such that
q = (q1, · · · , qi).

Let U := {s, 2s, 3s, · · · }. For all u ∈ U , let pu : R/Zs → R/Zu be the canonical
homomorphism. Choose r ∈ U such that Zq1 + · · ·+ Zqi = kerpr. Let j := m− i.
Then 1 ≤ j ≤ m− 1.

Define p : (R/Zs)j → (R/Zr)j by p(c1, · · · , cj) = (pr(c1), · · · , pr(cj)). Define
f : A′iq → (R/Zr)j by f(a1, · · · , am) = p(ai+1, · · · , am). It remains to prove that f
is a Borel reduction of Rms|A′iq to Rjr , whereupon we will have S ≤B Rjr (a.e.),
contradicting the induction assumption.

So fix a = (a1, · · · , am) ∈ A′iq and b = (b1, · · · , bm) ∈ A′iq. Let a0 := f(a) and
let b0 := f(b) so a0, b0 ∈ (R/Zr)j . We wish to show:

∃g ∈ G (ga = b) iff ∃g0 ∈ GLj(Z) (g0a0 = b0).

Set a′ = (a1, · · · , ai) and b′ := (b1, · · · , bi). Set a′′ = (ai+1, · · · , am) and b′′ :=
(bi+1, · · · , bm). Then a′ = q = b′. Moreover, a′′ and b′′ are totally irrational. Also,
a0 = p(a′′) and b0 = p(b′′).

Proof of “if”. By definition of r, we have ker p = Zj×iq. So, since we have
p(b′′ − g0a

′′) = b0 − g0a0 = 0, choose Z ∈ Zj×i such that b′′ − g0a
′′ = Za′.

Recall that a′ = q = b′.
Let I denote the i× i identity matrix and let 0 denote the i× j matrix with all

entries equal to 0. Let g :=
(

I 0
Z g0

)
. Then ga = b. This concludes the proof of

“if”.

Proof of “only if”. Choose X ∈ Zi×i, Y ∈ Zi×j , Z ∈ Zj×i and g0 ∈ Zj×j such that

g =
(
X Y
Z g0

)
.

Then ga = b implies that Xa′ + Y a′′ = b′ and Za′ + g0a
′′ = b′′. We wish to show

that det g0 ∈ {±1} and that g0a0 = b0.
We have Y a′′ = b′ −Xa′ ∈ Qi + Zi×iQi ⊆ Qi. On the other hand, a′′ is totally

irrational. It follows that Y = 0. Then det g = (detX)(det g0) and detX, det g0 ∈ Z
and det g ∈ {±1}. So det g0 ∈ {±1}.

Define π : (R/Zs)i → (R/Zr)i by π(c1, · · · , ci) = (pr(c1), · · · , pr(ci)). Then
b0 = p(b′′) = p(Za′+g0a

′′) = Z(π(a′))+g0(p(a′′)). Since a′ = q, it follows from the
definition of r that π(a′) = 0. Moreover, p(a′′) = a0. Then b0 = g0a0, as desired.
This concludes the proof of “only if”. a
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Theorem 7.2. For all integers m,n ≥ 1 : m ≤ n⇒ Rm ≤B Rn.

Proof. We will use the notation and terminology established in the proof of 7.1. It
is of course enough to show that for m ≥ 1, Rm ≤B Rm+1.

We start by noticing that if d ≥ 1, then a ∈ (R/Z)d is in canonical position
with index i ∈ {0, · · · , d} and b ∈ (R/Z)d is in canonical position with index
j ∈ {0, · · · , d}, and if i 6= j, then a, b are not in the same GLd(Z)-orbit.

Next we verify that if (a1, · · · , ad) ∈ (R/Z)d is in canonical position and has
index i ≥ 1, then there exists g ∈ GLd(Z) with

ga = (0, · · · , 0, q, ai+1, · · · , ad),

for some q ∈ Q/Z. For that it is enough to check that if i ≥ 1 and (q1, · · · , qi) ∈
(Q/Z)i, then there is q ∈ Q/Z and g ∈ GLi(Z) with

g(0, · · · , 0, q) = (q1, · · · , qi).

To see this, notice that we can write q` = m`r mod Z, where (m1, · · · ,mi) ∈ Zi
are relatively prime and r ∈ Q, so there is g ∈ GLi(Z) with last column equal to
(m1, · · · ,mi) (viewed as a column vector). If q = r mod Z, then g(0, · · · , 0, q) =
(q1, · · · , qi).

So for 0 ≤ i ≤ m, let

Aim = {a ∈ (R/Z)m : a = (0, · · · , q, ai+1, · · · , am),

for some q ∈ Q/Z and (ai+1, · · · , am)

totally irrational}.

Then it is enough to show that

Rm|Aim ≤B Rm+1|Ai+1
m+1.

We consider cases on i ∈ {0, · · · ,m}.
Case 1: i = 0. Then (a1, · · · , am) ∈ A0

m 7→ (0, a1, · · · , am) ∈ A1
m+1 is a reduc-

tion.
Case 2: i > 1. Then again we claim that

(a1, · · · , am) ∈ A1
m 7→ (0, a1, · · · , am) ∈ Ai+1

m+1

is a reduction. The main point here is to observe that if (0, 0, · · · , 0, q), (0, 0, · · · , 0, r)
∈ (Q/Z)i+1 are in the same GLi+1(Z)-orbit and i > 1, then q, r generate the same
subgroup of R/Z, so (0, · · · , 0, q), (0, · · · , 0, r) ∈ (Q/Z)i are in the same GLi(Z)-
orbit.

Case 3: i = 1. Fix a set of representatives T = {tj : j = 0, 1, 2, · · · } for the
following equivalence relation on Q/Z : q ∼ q′ iff q = q′ or q = −q′. We agree that
t0 = 0 mod Z. Every (q, a2, · · · , am) ∈ A1

m can be sent to some (ti, a2, · · · , am) ∈
A1
m by an element of GLm(Z), so if

B1
m = {(q, a2, · · · , am) ∈ A1

m : q ∈ T },

it is enough to show that

Rm|B1
m ≤B Rm+1|A2

m+1.

For each j ≥ 1, choose mj , nj ∈ Z, nj 6= 0, relatively prime so that tj = mj
nj

mod Z. Then notice that by induction on j ≥ 1, we can find 0 6= kj ∈ Z such that
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kj ,mj are relatively prime and such that, if we put

sj =
1

kjnj
mod Z and uj =

mj

kjnj
mod Z,

then for ` < j, (sj , uj), (s`, u`) are in distinct GL2(Z)-orbits. The main point here
is that for 0 6= k ∈ Z, ( 1

knj
mod Z, 0) is in the GL2(Z)-orbit of ( 1

knj
mod Z, tj),

and for k 6= k′, ( 1
knj

mod Z, 0) and ( 1
k′nj

mod Z, 0) are in distinct GL2(Z)-orbits.
For each k = 1, 2, · · · , fix a Borel map x 7→ x//k : R/Z → R/Z such that

k(x//k) = x. We are now ready to define our reduction: First map (0, a2, · · · , am) ∈
B1
m to (0, 0, a2, · · · , am). Then, for each j ≥ 1, map (tj , a2, · · · , am) ∈ B1

m to
(sj , uj, a2//kj, · · · , am//kj) ∈ A2

m+1. a

(ii) Recall from the introduction that there is a universal countable Borel equiv-
alence relation E∞. This equivalence relation has many manifestations, i.e., there
are various examples of countable Borel equivalence relations E with E ∼B E∞.
For example, the translation action of the free group with two generations F2 acting
on its subsets gives rise to a universal equivalence relation. It has been observed
that there is no known free Borel action of a countable group which gives rise to a
universal equivalence relation. So this led to the following open problem: Is there
a countable group Γ and a free Borel action of Γ so that the corresponding equiva-
lence relation is universal? We only remark that one can show by the methods used
here that no Γ which is (up to isomorphism) a discrete subgroup of some GLn(C)
or GLn(Qp) can possibly work.

(iii) Finally, although in Section 5 we have computed the exact descriptive com-
plexity of the equivalence relation E∼ (of bi-reducibility of countable Borel equiva-
lence relations), there are other questions that can be raised concerning the possible
complexity of E∼. For example, Theorem 4.1 implies that if R is the equivalence
relation on the set of codes D of Borel sets, say of 2N (defined in a similar fashion
as in Section 5), and d ∈ D 7→ Dd is the associated map (so that the Borel sets are
exactly those of the form Dd, for d ∈ D), then the equivalence relation

R(d, e)⇔ Dd = De

is Borel reducible to E∼. From this it immediately follows that every Borel equiva-
lence relation is Borel reducible to E∼ and Gao [11] has extended this to show that
every Σ1

1 equivalence relation is Borel reducible to E∼. One can further ask here:
Is every Π1

1 or even Σ1
2 equivalence relation Borel reducible to E∼?
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