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Abstract

This paper concerns the estimation of object pose in scenes where objects are
located on the ground plane which has known orientation and position w.r.t.
the camera. Novel algorithms are described, based on the concept of
interpretation planes and that of pencils of planes. The methods are linear,
computationally simple, and give unique and closed-form solutions, thus
eliminating many of the problems associated with the existing pose recovery
algorithms. They require a minimum of two 2D-3D line correspondences.
Experimental results are included which show that the proposed algorithms
are robust to noise, and capable of accurate pose recovery using real images
of outdoor scenes.

1 Introduction

Object pose recovery from monocular light intensity images is a major objective for
computer vision. Most previous work in the area has used either 2D-3D point [1-4] or
2D-3D line [5-12] correspondences. Although some success has been reported in the
literature (e.g., [5-6]), there are many problems associated with the existing pose
estimation algorithms [16], most importantly: high or unknown sensitivity to sensory
data noise, non-uniqueness of the solution, requirement of good initial guesses,
unguaranteed convergence to correct solutions, and high computational complexity.
These problems are mostly due to the inherent non-linearity of pose estimation and the
fact that the existing pose recovery algorithms are (rightly) concerned with the general
case of six degrees of freedom, and treat special cases as having marginal interest.

Nevertheless, special cases abound in the real-world. Their occurrence, if properly
ascertained, can help to avoid the above problems, and dramatically simplify pose
estimation. The particular special case considered here arises in traffic scenes where
objects (e.g., cars) are located on a ground surface which is, at least locally, substantially
planar. Other potential applications include model-based vision for industrial parts on
conveyor belts or other robot working surfaces.

We approximate the ground surface by the X-Y plane of a world coordinate system
(WCS) whose Z-axis points towards the sky. The pose of an object in this WCS is
uniquely determined by three independent pose parameters (assuming the X-Y plane of
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the object-centred coordinate system coincides with that of the world coordinate
system): the rotation angle 0 about the (vertical) Z-axis, and the two translations Tx and
T on the ground plane. The other three parameters are all zero:

4>. V, Tz = 0 (1)

where § and \|/ are the rotation angles around the X and Y axes, and T, is the translation
along the vertical axis. Equation (1) is called the ground plane constraint (GPC).

It is shown in this paper that by expressing object pose in the world coordinate
system and by incorporating the GPC into the formulation of pose constraint equations,
the pose estimation problem can be linearized. As a consequence, simple and robust pose
recovery algorithms can be developed, and the problems associated with the existing
algorithms listed at the beginning of this section are avoided. Moreover, closed-form
solutions can be obtained. This choice of the WCS simplifies the analysis since it directly
eliminates 3 of the 6 pose parameters; any other coordinate system could be used but
would introduce additional parameters with their corresponding constraint equations
computable from the GPC. The potential importance of the GPC in simplifying pose
recovery has been discussed in several articles (e.g., [1, 11, 17]), but either no use has
been made of the constraint [11], or it has not been used fully to avoid the problems
listed at the beginning of this section [1, 17]. It should be pointed out that this paper
concerns the use of the GPC in model-based object pose recovery. The application of the
GPC in 3D structure and motion estimation is described in a companion paper [18].

In the following sections, we first describe the imaging model used in this paper,
then discuss pose estimation under the GPC using 2D-3D line correspondences, and
finally summarize the experimental results obtained.

2 Coordinate systems and imaging model

We assume a pinhole camera model with perspective projection and no lens distortion.
This is sketched in Fig.l. It can be shown that under this imaging model and the GPC,

0 (Nodal Point)

'.r̂ u
Jmage plane

Figure 1. Coordinate systems and the imaging model.

the image coordinates (u,v) and the model or object coordinates (
x
m<)'m<zm) of point

P are related to each other by [16]:
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where 0, Tx and 7 are the three pose parameters of the object in the WCS, F the
camera focal length, s a non-zero scale, and m--, ij = 1, 2, 3,4, are the elements of
the 4x4 homogeneous perspective transformation matrix which maps 3D world
coordinates into 2D image coordinates, and which is assumed to be known in the
subsequent discussions.

3 Pose recovery algorithms

A 3D model line Li can be described either by two points F,-; and P^-

P
i2 ~

(3)

where subscript m indicates model coordinates, or by a unity directional vector N,- and a
point Pji

(4)

or by two intersecting planes IT.; and Uj2:

n j 7 :
^l2-

(5)

Equation (5) implies that 11^ and IL2 are assumed not to be parallel to the X-axis, and
11^ passes through the origin of the model (object-centred) coordinate system (MCS).
Let the corresponding image line /; of L- be specified by

j = 0 (6)

where a;, 6̂  and c(- are known constants. Substituting u and v denned in (2) into (6) and

writing the resultant equation in terms of model coordinates (xm, ym, zm) yields [16]

6 -x + e .y + £ .z + T| . = 0 (7)

where
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6 ; = (?[ • /?,) cos9 + (r2 • «,) sin0

e. = (r2 • n,) cos6 - (rj • n,-) sin0

C , = *3 * "«
Tl, = (rj • «,) 7", + (r2 • «,.) ry + r4 • «,- ( 8 )

*i = («, *,- ct)
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Equation (7) defines the plane FT in the MCS on which L( must lie. We call this plane
the interpretation plane of L(. The normal vector of Tlj is Nm = (bj ê  ^.) .

In terms of the relationship between Li and its interpretation plane 11 ,̂ we have the
following simple geometrical observations:

Observation I: If L-l is described by (3), then Pu and PQ must lie on Yl^

Observation II: If Li is described by (4), then Nj must be normal to NJH, and

?i must be on IL.

Observation III: If Li is described by (5), then Tl... II. , and Tli must all be

members of the pencil of planes containing L-x.

These three observations suggest three different algorithms for obtaining very similar
pose constraint equations (see Equations (10), (12) and (16)). The algorithms differ only
in the numerical stability of the calculation for deriving the coefficients of the equations.

From Observation I and for N 2D-3D line correspondences,
L^lj, i = 1,2 N, we have

, Vi€ {1,2 JV} (9)

which, by recalling the variables defined in (8) and by isolating the pose parameters, can
be rewritten as

Au cos6 + B u sine + Cu Tx + Dn Ty = £. ;

i , V/e {1,2 N} (10)

U l 7cos8 + fi.2sin6 + CaTx + Di2Ty = Ej2

where A •-, By •, C, •, D-- and E-- are terms computable from known constants [16].
From Observation II and for N 2D-3D line correspondences,

Ll<r^li, i = 1, 2, . . . , N, we can write

. W6 {1,2 N] (11)

which, by using the variables defined in (8) and by isolating the pose parameters, can be
equivalently written as
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, Vie {1,2 N} (12)

U,cos0 + B -sin0 + CiTx + D{Ty =

where Ajt 5(-, C,-, £>,, £,-, Z7,-, G(- and //, are terms computable from known variables [16].
To show how Observation IE can be used to derive pose constraints, we represent

planes II.. , FT, and FT by three 4x1 column vectors Tl-j, Tli2
 a n^ ^V

n 7 : n l 7 = (i bu cu 0)T

Ui2: rt,.2=(l b.2 ci2 da)T (13)

PI.: II- = (6. E. C- Tl.)^

then Observation in implies that there exist real A.]( ^2 and A, (not all equal to zero)
such that [14]

A.1n l7 + A.2n(.2 + A . 3 n / = o (14)

from which the following two pose constraint equations can be derived (for details, see

[16]):

_ (15)
A,-cos0 + 5;sin0 + C(Tx + D(T = Et

where At, Bt, C,-, Dit £,, Ft, G,- and //, are terms computable from known constants such
as the coefficients of the two intersecting planes [16]. Thus for N line correspondences,
Lt <-» ljt i = 1, 2, ...,N, there are 2N equations of the form of (15):

F,cos0+ G,-sin 0 = 77,-

, Vie {1,2 N} (16)

AjCOsQ + B,sin0 + C{Tx + 73,7"̂  = 7f,

It is clear from (10), (12) and (16) that, no matter what line representation method is
used, we need 2N S 3 or a minimum of two 2D-3D line correspondences to ensure that
the number of equations is no less than the number of unknowns. This contrasts with the
minimum of three lines in the general case of six degrees of freedom [6-8,10-11].

3.1 The linear solution technique

If cos0 and sin0 are regarded as two independent unknowns, then each of (10), (12) and
(16) becomes a set of 2N linear equations in four unknowns: cos0, sin0, TX and T , and
can be solved by the standard linear least squares technique [16]. We then compute the
rotation angle by 0 = tan" (sin0/cos0). The correct quadrant of 0 can be determined
from the senses of cos0 and sin0.
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3.2 The iterative solution technique

If cos9 and sin0 are not treated as two independent unknowns, then each of (10), (12)
and (16) is a set of 2N non-linear equations in the three pose parameters 0, Tx and T If
an approximate value for 0 is given, we can linearize cos0 and sin0, and thus transform
each of (10), (12) and (16) into a set of 2N linear equations which can then be solved
using an iterative linear least squares technique [16].

Several remarks can be made before concluding this section. The concept of pencil
of planes has been used in structure from motion algorithms (e.g., [15]), but has not
appeared in previous pose recovery algorithms to the best of our knowledge. (12) and
(16) show that the recovery of the rotation angle and the translational parameters can be
decoupled since the first TV equations of (12) and (16) only involve the rotation angle.

4 Summary of experimental results

The algorithms described in the above section have been tested under a variety of
conditions. For convenience, we call the linear solution technique associated with the
two points representation, the directional vector and point representation, and the
intersecting planes representation of 3D lines, Algorithms A, B and C respectively. They
are applied to solve (10), (12) and (16) respectively. Due to space limitation, full and
detailed experimental results are not included here but can be found in [16].

4.1 Robustness against image measurement errors

The robustness of the algorithms against image measurement errors has been
investigated using synthetic data. Lines were randomly generated from within a cuboid
of dimension 8x4x2 m (=length*width*height) located on the ground plane with a
depth of about 20 meters from the camera. Images were of size 512x512 pixels. To
generate a noisy 2D-3D line correspondence, each 2D noise-free line segment was first
translated in its normal direction by Ad pixels, and then rotated about its middle point by
Aoc degrees, where Ad was uniformly distributed over [-AD, +AD] (in pixels), and
Ace uniformly distributed over [-AA, +AA] (in degrees). The combination (AD, AA)
determines the noise level of the synthetic image data. Monte Carlo simulations were
conducted at various noise levels with a fixed number (=10) of lines, and the absolute
errors in the three pose parameters were recorded. As an example, Figure 2 shows the
absolute error curves of the pose parameters vs. translational (Fig.2(a)) and directional
(Fig.2(b)) errors of 2D image lines. (Tests carried out under a wider range of conditions
are reported in [16]). Comprehensive Monte Carlo simulation results show that

• The performances of Algorithms A and B are very similar.
• Pose estimation by Algorithm C is much less accurate than that of Algorithms A

and B. This may be due to the assumptions made in (5). If the randomly generated
3D lines during Monte Carlo simulation do not satisfy these assumptions, then the
resultant representation of the two intersecting planes becomes very unstable, and
may cause large errors in the recovered pose. Such accidental large errors can
easily be avoided by adopting more stable representations for the intersecting
planes.



606

°0""~4~~8 12 16 20

Translation Error AD (pixels)

0 4 8 12 16 20

Translation Error AD (pixels)

(a) AA = 10°

0 4 8 12 16 20

Translation Error AD (pixels)

0 4 8 12 16 20

Direction Error AA (deg.)

0.0
0 4 8 12 16 20

Direction Error AA (deg.)

0 4 8 12 16 20

Direction Error AA (deg.)

(b) AD = 10 pixels

Figure 2. Absolute error curves of pose parameters in Algorithms A (solid), B

(light), and C (dark).

• As a whole, the proposed algorithms are robust to image measurement errors. Even
at unrealistically high noise levels (AD = 20 pixels, AA=20°), the mean absolute
errors of Algorithms A and B are below 1.20 meters in Tx, 0.60 meter in T , and
22° in 6.

As an experiment, the iterative solution technique described in Section 3.2 was also
applied to solve (10), using the rotation angle given by Algorithm A as starting
conditions. Monte Carlo simulation results [16] show that under severe noise conditions,
the iteration actually increased the error. This illustrates the effectiveness of the (simpler)
linear solution technique. It also provides a clear case of Aggarwal's taunt that "Often it
is better to keep [a] good initial guess and forget about the [non-linear constraint]
equations!" [13].

4.2 Effectiveness of using more lines in controlling noise

Monte Carlo simulations were also conducted to investigate the effectiveness of using
more line correspondences in combating noise. The noise level was fixed at AD - 5
pixels and AA = 5°, and the number of lines was increased from the minimum of 2 to
40. The results are summarized in Fig.3. As expected, the accuracy of the estimated pose
parameters is consistently improved by using more lines. The improvement is most
dramatic when the number of line correspondences is increased from the minimum of 2
to 4 or 5, and beyond 8 there is little improvement. Therefore 5 to 8 line correspondences
may be regarded as adequate for robust pose estimation using these algorithms.
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Figure 3. Effectiveness of using more lines in improving the noise-robustness of

Algorithms A (solid), B (light), and C (dark).

43 Performance under real outdoor images

All three algorithms have also been applied to locate a saloon car in 9 frames taken at
0.48 Hz (i.e. every 12th video frame) of an outdoor image sequence. Because of space
limitation, only results related to Algorithm B are included. Three out of the nine frames
are shown in the left column of Fig.4, where the white car is the object to be located. The

Figure 4. Pose estimation in real outdoor images (see text for detailed captions).

gradient images inset in the left column of Fig.4 are the outputs of the Canny operator
applied to the small regions surrounding the car. Thresholding and a simple curve
segmentation operation were then applied to the gradient images to obtain a set of
straight line segments. A subset of these segments were retained which correspond to
contour segments of the car, and are inset in the right column of Fig.4. The number of the
retained line segments is between 5 and 10. No efforts were made to "tune" the various
parameters (such as the scale of the Canny operator) involved in the iconic to symbolic
data transformation. The correspondences between the selected 2D lines and the 3D
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saloon model lines were established manually. These correspondences were used as the
input to the pose recovery algorithms. The saloon model was then instantiated at the
recovered poses, and superimposed on the original intensity images as shown in the right
column of Fig.4. The accurate matching between the model and the image shown in
Fig.4 indicates the high accuracy of the recovered poses. The performance of the
proposed algorithms can be further appreciated from Fig.5 which shows the recovered X

Y Coordinates (m)

X

Frame Numbers

Figure 5. Recovered car path on the ground plane. The numbers along the curve are the

frame numbers, and the symbol "+" marks the recovered poses.

(i.e, Tx) and Y (i.e., Ty) coordinates of the car on the ground plane for all 9 frames. The
recovered orientations of the car are also shown in Fig.5. The resultant path is very
smooth and is physically plausible.

5 Conclusions

This work has been concerned with object pose estimation under the ground plane
constraint. A number of novel algorithms have been presented which make use of the
constraint. The algorithms are linear, computationally simple, and give unique and
closed-form solutions, thus eliminating many of the problems associated with the
existing pose recovery algorithms. They require a minimum of two 2D-3D line
correspondences, and are highly robust with 5 or more correspondences. The algorithms
are also applicable to point correspondences.

Experimental results show that the proposed algorithms are robust to noise, and
capable of accurate pose recovery in real images of outdoor scenes. The algorithms
provide practical and efficient methods for pose recovery which can be applied in a wide
range of industrial applications in which the objects move on a known plane.
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