New Jersey Institute of Technology

Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1967

Linear and adaptive delta modulation

John Edward Abate
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Cf Part of the Electrical and Electronics Commons

Recommended Citation
Abate, John Edward, "Linear and adaptive delta modulation" (1967). Dissertations. 1328.
https://digitalcommons.njit.edu/dissertations/1328

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.


https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1328?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



LINEAR AND ADAPTIVE DELTA MODULATION
BY

JOHN EDWARD ABATE

A DISSERTATION
PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE
OF
DOCTOR OF ENGINEERING SCIENCE
AT

NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with

due regard to the rights of the author.
Bibliographical references may be noted, but
passages must not be copled wilthout permis-
sion of the College and without credit being
given in subseguent written or published work.

Newark, New Jersey
1967
HEDO
Library
Newark CGollege of Enrineering



TO MY WIFE, MARY

ii



111

ABSTRACT

New results are presented offering insight into the
performance and optimization of linear and adaptive delta
modulation, together with a coméarison with pulse code
modﬁlation. The results are applied to three cases of
practical importance: television, speech, and broad-

band signals.

The results presented can be grouped Iinto the
following three categories. Flrst, a performance
characterizatlon of linear delta modulatlion (DM) is
glven. With the ald of certaln empirical observations
made from computer simulations, closed form expressions
are found for granular nolse, overload nolse, and
minlimum guantlzation nolse powers. These results per-
mit the prediction of the optimum performance obtainable
from DM at varlous bandwldth expansion factor values for
many classes of signals. A defined guantlty called the
slope loadlng factor 1s usefully employed in the char-
acterization of DM performance. It is shown that the
slope loadlng factor 1s a normallzing varlable when
used to describe S/NQ performance. The optimum perform-
ance of DM wilth signals such as televislion and speech
having an integrated spectrum exceeds that wlth a broad-

band signal having a uniform spectrum. It was also found
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that DM performance obtained with a Gausslan message
signal amplitude probabilility density 1is essentially the

same as that obtained wilth an exponential density.

Second, the advantages to be gained when adaptive
control is introduced into the DM system are investi-
gated. If the message signal ensemble 1s nonstationary,
a companding function 1s required. It is shown that
this may be provided 1In a DM system by forcing the step
size to respond adaptlvely to changes in the derivative
of the input signal. Adaptlve DM may take elther a
discrete or continuocus form. It 1s shown that dilscrete
adaptive DM does not sacrifice optimum linear DM per-
fformance to achieve companding, and further that large
values of companding improvement are possible. Because
of the nonstationary nature of television and speech
signals, it is concluded that adaptive DM appears better
sulted than llnear DM to such signals. Flnally, linear
DM is shown to be a speclal case of discrete adaptive

DM.

Third, the nolse performance of PCM wlth Gausslan
and exponential signal densitles is presented together
with a comparison between DM and PCM for television,
speech, and broadband message signals. It 1s shown

that the characteristic form of the performances of PCM
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and DM are simlilar when the 1ndependent variables are

the amplitude loading factor and slope loading factor
respectively. The effects of logarithmic companding

and signal amplitude limiting on PCM performance are
investigated. It has been found that adaptive DM appears
capable of realizing a larger companding improvement than
PCM, and that amplitude 1limiting in PCM is the counter-
part of slope limiting in DM. For a television signal,
it 1s concluded that DM provides a greater maximum S/NQ
performance than PCM for wvalues of the bandwildth expan-
sion factor less than elght. For a speech signal, 1t

is concluded that the performance of discrete adaptive

DM with a bandwldth expansion factor value of four and a
final galn factor value of only eight 1s approximately the
same as that of companded PCM with a compression param-
eter value of one hundred. For a broadband slgnal, 1t

1s concluded that the performance of PCM 1s superior to
that of DM. Finally, because of the complex nature of
television and speech communication, it 1s concluded that
sub jective tests are needed before further conclusions
regarding the performance advantages of discrete adaptilve

DM can be reached.

For an abridgment of the material In this dlsserta-
tion, the reader 1s referred to a paper of the same
title, written by the author, appearing in the Pro-

ceedings of the IEEE, March, 1967.
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1. INTRODUCTION

In recent years, systems designed for transmitting
continuous messages but containing discrete signals
have become widespread. Pulse Code Modulation (PCM)
and Delta Modulation (DM) belong to this class of com-

munication systems into which 1s included a discrete

communication channel. Shannon proposed that such
systems be called mixed. In the general case, a mixed
system consists of: (1) an encoder which transforms

the continuous message into a discrete one; (2) a dis-
crete channel or digital transmission network which con-
veys the transformed message to a receiver; and (3) a
decoder or recelver which transforms the dilscrete mes-
sage back into its continuous state. These transforma-
tiong, however, are not achieved without incurring some
penalty upon the guality of the received continuous
message. Thils penalty generally takes the form of a
type of distortion termed quantization nolise, which 1is
attributed in the encoding process to the dividing of a
continuous signal into a finite number of representative
levels. The gquantization nolse can be made arbitrarily
small at the expense of channel bandwidth. Obviously,
the challenge to be taken here 1is the optimization of
system performance; that 1s, the minimization of both

gquantization noise and channel bandwidth. It 1is



necessary, in order to accomplish such an optimization,
to understand how the quantization noise 1s affected Dby

the characteristics of the signal and the parameters of

ct
-
@D
[

ncoding system.

One of the purposes of this dissertation is to
provide insight into the noise behavior and optimiza-
tion of linear DM by characterizing its performance by
relatively simple closed form approximate solutions.
The fidelity criterion used to define optimum perfor-
mance is that of minimum mean square error or noise
power. Linear DM is a simple type of predictive
guantizing system and 1is essentially a one digit dif-

29,31,33

ferential pulse code modulation system. Such

systems are based primarily on an invention by Cutler7
and de Jager;ll who used one or more integrators to
perform the prediction function. Thelr invention 1is
based on transmitting the quantized difference between
successive sample values rather than the samples them-
selves. When the guantizer contains only two levels,
the system is reduced to its simplest form and is re-
ferred to as delta modulation, or simply DM. Both the
encoder and decoder make an estimate or prediction of
the signal's value based on the previously transmitted

signal. In linear DM, the value of the signal at each
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ample time 1s predicted to be a particular linear

92}

function of the past values of the quantized signal.

has given a good description of linear DM

I_J

rst to compare the results of digital com-

b
analysis. Van De Weg ~

and was the f

=iy

puter simulation with those ©
has provided an expression for granular noise power,
35
and Protonotarios has described slope overload noise
in detail. In addition to the above, the literature
abounds with discussion, modification and application
of linear DM (e.g., see References 1, 2, 3, 10, 11, 13,

16, 17, 18, 19, 20, 23, 24, 25, 30, 34, 36, 37, and Li).

For problems concerning the performance and optimi-
zation of DM, 1t is convenient to have a model, involv-
ing only a few essential parameters, which will satis-
factorily characterize the nolise performance of the DM
system. Present formulations of DM are complex and
unwieldy. In Section Three the description of linear
DM performance l1s simplified by employing useful ap-
proximations and observations of computer simulation
results. Using simple closed form expressions to
describe DM nolse performance, We can gain insight into
the coperation of linear DM, egpecilally with an eye
toward characterizing adaptive systems. These simple
formulations do suggest adaptive systems as well as

thelir characterization.



Unfortunately, the performance of linear DM is

sensitive to changes in the mean power of the message
signal. As a result, optimum performance from the linear

DM system is limited to a very narrow range of message

. This is indeed a severe

+

signal mean power variatior
restriction for many sigials of practical importance. It
will be shown that by incorporating an adaptive technique

into the DM system, the restriction is abated.

The second purpose of this dissertation is to intro-
duce and investigate an adaptive DM concept which appears
to provide a promlsing means for the binary encoding of
television and speech signals. In adaptive DM, the
value of the signal at each sample time is predicted to
be a nonlinear function of the past values of the
guantlzed signal. Introducing nonlinear prediction into
DM by forcing the system to respond adaptively to change
in the slope of the input signal provides a useful means
of extending the range over which the delta system yields
its optimum performance. This would not be necesgsary 1if
the message signal ensemble were stationary. However,
ensembles of many communication signals are nonstationary.
These include speech, television, facsimile signals and
the like. It is, therefore, useful to consider a means
of incorporating adaptive techniques into the delta pro-
cess, enabling the system to encode nonstationary en-

sembles in an opftimal way.



\J1

In Section Four, an adaptive DM system which
for the encoding of television ang
speech signals is presented. From the simple closed
form approximations of Section Three, the expected per-
formance of the adaptive system is found, and presented
in Section Hive. Computer simulations are used to
verify the predictions of performance and aid in system
optimization. The amount of companding improvement
achieved by the adaptive sgystem 1s found and presented
along with expressions relating to the optimum selec-

tion of linear and adaptive DM parameters.

The third and final purpocse of this dissertation
is to quantitatively compare the performance of linear
and adaptive DM with that of PCM. Since encoding a
continuous message by DM may be much simpler and lower
cost than by pulse code modulation (PCM), there is con-
siderable interest in determining how the performance of
DM relates to that of PCM. In comparlson with PCM, DM
has a number of important differences and several
advantages. Since DM overlcads on slope, its optimum
performance 1is a function of the message signal spectrum.
Since PCM overloads on amplitude, its optimum perfor-
mance is a function of the message signal amplitude
probability density function. When companding 1s used

for nonstationary ensembles, the optimum performance



range of PCM is extended, as it is in the adaptive DM

! Eal
1

amental differences in the overload

(@

un
characteristics of DM and PCM require that the optimum
performance range of each be well defined for the

classes of message signals to be considered.

In Section Six, a performance comparison is made
between PCM and linear and adaptive DM. First, a
characterization of PCM granular and overload noise

powers 1s given for the following cases.

(1) Gaussian and exponential message signal

amplitude probabllity densities
(2) With and without logarithmic companding

(3) With and without message signal amplitude

limiting

Then the optimum performance of PCM with a television

signal 1s compared with that of adaptive DM. Next, a

comparison of the performances of adaptive DM and com-
panded PCM is made when the message signal 1s speech.

Finally, linear DM performance 1is compared to that of

PCM having uniform quantization for the case of a

broadband signal.

The computer simulations cited herein and described

in Appendix D were obtained using a FORTRAN program



30
reported by O'Neal,~"

who used random numbers to repre-
sent sample values of the message signal. His program,
written for linear DM, was modified to incorporate the

parameters necessary for the adaptive case.

The results of this work are applied mainly to
three cases of practical importance: television,
speech, and broadband message signals. The first two
wlill be approximated by a signal having an integrated
power spectrum and an exponential probablility density
function. The Integrated spectrum is defined as one
having an asymptote of negative six decibels per octave
of increasing frequency starting at wB and bandlimited
to some maximum freguency wm. The suitability of the
integrated spectrum and exponential density for de-
scribing television and speech signals can be established
by examining the results of Kretzmer,22 O'Nealj33

14 . .
The broadband signal (e.g.,

Davenport,9 and Fletcher.
frequency division multiplexed signals) will be ap-
proximated by one having a uniform or white spectrum
bandlimited to &h’ and a Gaussian amplitude probability
density functlion. The results also can be applied
directly to other communication or stochastic signals
which have the spectrum and density characteristics

described above. The assumptions and restrictions used

in this work are that (1) error free transmission exists
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2. LINEAR DM, A QUALITATIVE DISCUSSION

2.1 System Description and Performance

The basic linear DM system consists merely of a
two level quantizer and a feedback path containing a
single integrator, as 1llustrated in Figure 2-1. A
sampler 1is included elther in the guantizer or prior
to the subtractor. The guantizer produces at each
sampling instant a pulse of uniform duration and
amplitude k, the latter commonly referred to as the
step size. The pulse or step is of positive polarity
if the error signal or guantizer input is positive, and
of negative polarity if the error signal is negative.
The sequence of binary pulses produced by the guantizer
is transmitted via the digital channel to the decoder
where a replica of the original input signal is re-
constructed. The decoder conslsts of an integrator

identical to that 1in the encoder, and a low pass

filter having the same bandwidth as the input signal.

In the delta system, quantization noise manifests
itself in two forms. The first of these 1s granular
noise which results from the fact that the continuous
signal is forced to assume discrete values which are
multiples of the gquantizer step size. Granular noise
can be viewed as being similar to PCM gquantizing noilse,

and as in PCM, is a monotonic function of step size
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FIG. 2-1 DELTA MODULATION (DM) SYSTEM
WITH SINGLE INTEGRATION.



(i.e., as the step size increases, granular noise
increases). The second form of DM gquantization noise
is overload noise which is also a monotonic function

of step size, but instead decreases with increasing
step size. Typical waveforms of the DM system with
single integration are illustrated in Figure 2-1. The
guantization nolse is 1llustrated at the bottom of
Figure 2-2. 1If the step size 1s not too large relative
to the standard deviation of the signal, the autocor-
relaticn of the granular portion of the quantization
noise becomes zero for time intervals which are large

compared to the sampling period.ll

For relatively
large step sizes, perilodlc patterns and tendencies
appear 1in granular nolse waveforms. Figure 2-3 1llus-

trates the characteristic periodic behavior with large

step sizes.

For small step sizes, overload nolse predominates.
As the step size approaches zero, the difference be-
tween the output and input approaches the input itself.
Therefore, the overload nolse power approaches the
signal power, while the granular nolse power approaches
zero. This behavior is illustrated in Figure 2-4,
which portrays granular nolse power NG’ overload nolse
power NO, and thelr sum or total guantization noise

povwer NQ as a function of the DM step size k, assuming
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a signal whose mean power, S, does not vary with time.

N

Figure

09

-l illustrates that optimum performance (i.e.,
minimum NQ) occurs for only a small range of variation
of k., Alternatively, it could be stated, as will be
shown quantitatively in Section Three, that optimum
performance occurs for only one value of the signal
standard deviation, and that for other RMS values of
the signal the performance is degraded. Unfortunately,
this represents a serious limitation of linear DM, but
one which can be removed by recourse to adaptive
techniques, as will be discussed in Sections Four and

Five.

Because the DM quantizer 1in the encoder contalins
only two levels, the digital transmission channel pulse
rate P 1s equal to the DM sampling rate fS. The
minimum bandwidth fD reguired of the transmissgion
channel 1s then egual to one half the sampling rate.
The ratio of transmission channel bandwidth to message
signal bandwidth fm which shall be termed the bandwilidth
expansion factor and denoted by B In this work, 1s then

simply one half of the ratio of sampling rate fs to

signal bandwidth fm’ or since,

P=f =2f (2-1)
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and,
B =-§P (2-2)
m
then,
B = ;En‘— (2-3)

2.2 Comparisons With PCM

As 1in DM, the gquantization noise in PCM manifests
itself into twe forms. The first is fthe nolse resulting
from the discrete guantization process. We shall refer
to thilis as granular noise so as to draw an analogy with
its DM counterpart. In the literature, however, this is
commonly referred to as guantizing noise, since the second
fform of noise 1s usually lgnored. Thls second form of
PCM guantization noise 1s caused by the limiting of the
message signal to the maximum and minimum levels of
the gquantizer. We shall refer to this noise as over-
load noise. As opposed to DM overload noise which 1s
produced when the message signal slope exceeds the slope
capability of the DM guantizer, PCM overload nolse 1is
produced when the message signal amplitude exceeds the
maximum level of the PCM guantizer. Exact analytical

expressions for both PCM granular and overload nolse
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-

powers are given in Section Six as a function of the
bandwidth expansion factor and a defined quantity
called the "amplitude loading factor." It will be
shown later that the relationship between quantization
noise and amplitude loading factor produces results

similar in form to those illustrated in Figure 2-4.

DM and PCM are functionally different in a number
of ways. First, 1iIn a PCM system the signal is generally
sampled at a rate commonly known as the Nyquist rate
which is twice that of the highest frequency present in
the signal. In a DM system, by comparison, the sampling
rate 1s generally many times that of the Nyquilist rate.
In a PCM system, the pulse rate is the sampling rate
multiplied by the number of digits of encoding. The
bandwidth expansion factor for PCM 1s then simply egual

to the number of digits of encoding.

The number of quantizing levels 1n a PCM system
is generally many times greater than two (e.g., in the
order of 128 levels, or seven digits, for volce signals),
whereas in DM it is only two levels. It should be
noted here that & feedback guantizing system with a
guantizer having more than two levels is generally
referred to as differential PCM, or DPCM. Although the
DPCM system has many of the characteristics of DM, 1t

requires much more terminal egulpment.



ignal is converted into pulse ampli-
tude samples, which are then encoded into pulse words

or groups. As a result, information concerning the

pulse groupings referred to as 'framing' must be in-

4

rted into the binary pulse seguence. In DM, since

w
D
o

[}
oy

e quantizer consists of only two levels, the encoding
into binary form is done in a single operation. As a
result, no framing 1s required in DM, The conseguence
resulting from the lack of required framing as well as
only two levels of quantizing 1s the outstanding

simplicity and economy of the DM system.

The PCM system encodes the signal itself whereas
the DM system, because of its feedback loop integrator,
encodes the derilvative of the signal.ll As a result,
if the signal amplitude 1s greater than the largest
representative level of the guantizer, the PCM system
is overlocaded. With deterministic signals, this con-
dition can be prevented through simple design. With
stochastic signals, however, there will always be a
finite probability that overload will exist. The
optimum design in this case, then, is one that minimizes
the quantization nolse power as a function of the mean

power of the signal.



In the DM system, overload will not be a function

in PCM, but instead will

2]

of the signal amplitude a

D

.

r

}=i

occur when the slope or d vative of the signal exceeds

it

the slope capab

|

lity of the DM system. Again, overload

Ity

i

[@7)

cannot be prevente the signal i1s stochastic, it can
cnly be minimized with respect to the mean power of the
signal. If, however, the stochastic signal ensemble

is nonstationary, then there can be no optimum linear

DM system, and 1t will be shown that only an adaptive

system will suffice.

In the PCM system, performance optimization 1s
dependent on the amplitude probability density function
of the input signal, but 1s independent of the signal's
power spectrum. As a result, a PCM quantizer can be
optimum only with regpect to one input sigrnal probabil-
ity distribution, which of course requires that the
statistics of the ensemble be stationary. Thus, even
if the signal power remains constant, 1f the probability
density of the signal changes, the PCM system may be
nc longer optimum. By contrast, DM performance will be
shown to be dependent on the signal power spectrum and,
for the densitles considered in Sectlons Three and Five,
independent of the signal amplitude probabllity density
function. A summary of some comparisons between PCM and

DM is gilven 1in Table 2-1.



Some Comparlisons Between PCM

TABLE 2-1

and DM

Characteristic

PCM

Linear DM

Adaptive DM

4,

Prediction

Number of Quantization Levels

Sampling Rate

Signal Function Encoded
Overloading Function
Optimization 1s a Function
of':

Range of Optimum Perfor-
mance With Nonstatilonary
Signals

Bandwidth Expansion
Factor, B, Equals

Framing Requilred

None

Usually Many More
Than Two

2 fm

Amplitude
Amplitude

Signal Amplitude
Density
Large With, But
Small Without,
Companding

Number of Diglts

Yes

Linear

Two

f

S
Derivative
Slope

Power Spectrum

Small

nof =

()

No

Nonlinear
Two, But of
Variable Silze
f

S
Derivative
Slope

Power Spectrum

Very Large

1 (f.a)
2 fm

; No
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3. LINEAR DM, A PERFORMANCE CHARACTERIZATION

b=ty

3.1 Slope Loading Factor Defined

In order to avoid slope overload, the slope
capability of the DM system must be greater than the
slope of the input signal. Since the former is given
by the product of step size k and sampling rate fs)

then in order that the system not be overloaded, the

following condition must be satisfied:

ko > £ (8) | (3-1)
where | £/ (t) | represents the magnitude of the input
signal derivative with respect te time. If we denote

the mean power of the derivative of the stationary
stochastic signal by D, then we ghall define a term,
denoted by A and called the slope loading factor, as

follows:

kf
8

/P

&>
1

The slope loading factor given by Equation (3-2) repre-
sents the ratio of the slope capabllity of the system
to the effective value of the slope of the stationary

signal. It is, therefore, a dimenslonless guantity and



a measure of the degree by which the input 1s loading
the DM system. In terms of the one

sided power spectrum F(®) of the signal, the mean power

of the signal derivative 1s given by
68}
m
}> ‘2 3 N0
D :J WTF (w)dw (3-3)
O
where wm = 2me is the maximum angular frequency to

which the signal 1s bandlimited prior to encoding.

In Table 3-1, the values of F(®) and A are given
ffor the types of signals to be considered in this work.
For ftelevision and speech, the integrated power spectrum
as glven 1in Table 1 will be used with values of wB/wm
of 0.011 and 0.23 respectively. These values, which
will be used consistently herein are obtalined from the
results of O’Neal32 and Fletcher.“L The slope loading
factor is expressed in Table 3-1 in terms of the band-

width expansion factor, B, which for DM is given by

Equation (2-3).

3.2 Quantization Noise Power

It is shown in Appendix B that granular ncige

powey NG as a function of A can be given with reasonable

accuracy by two asymptotes. The [irst of these has a
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TABLE 3-1

and Slope Loading Factor

Power Spectrum
For Uniform and Integrated Signal Spectra
Uniform Spectrum Integrated Spectrum
1 1 1
F(w) o w 2
m I
w — W
Btan o 1+ <_~
2 W,
b
3 Bk
P ﬁ%-kB
2
w_Sw W
. 5/ <3>
-1 W
an o /W m
E m/ 3
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slope of six decibels per octave, that is granular
nolse power increases by six decibels per octave
increase of A, and exists in the region 4 < 8. The

second asymptote has a slope of nine decibels per

octave, and exists in the region 4 > 8. The asymptotes

are
D o
T DY A™ -
NG = <;§> gé- for A < 8, (3-
m
and
2 - 3
o Dy A
Ny = 7g Q;§> 3 for A > 8. (3~
m

For uniform and integrated spectra, these expressions
are given 1in Table 3-2, where for convenience the mean
signal power, S, and all impedances are assumed to be
unity. When S is not unity, it is of course simply
necessary to include it in the numerators of both F(w)
and N,, and to include VS 1in the denominator of A
(i.e., divide k by /8 , the standard deviation of the

signal). Noise power 1s of course expressed in watts.

In DM systems, granular nolse predominates for
large values of 4, and overload nolse predominates for

small values of 4. From the computer simulation result

5)

5



TABLE 3-2

Linear DM Results With Uniform And

Integrated Signal Spectra

Eoigg?on Uniform Spectrum Integrated Spectrum
r-— )y ™
2 52 2,2 5 TG
T 2
B~ 6B =1 m m
tan v
w')
2
- B
e B3 T3 53 0g 2
Ngo &> © (3-5) o 3 - <ar>
B 48R =1 Tm m
tan e
o
3
" _
gre 34 872 “n fﬁAg =3A,
0 (3-7) g7 ¢© (3A+1) > " - {5 o (34+1)
tan 5%~ m

G2



TABLE 3-2 (Cont)

Linear DM Resulfts With Uniform And

Integrated Signal Spectra

From o . . . -~
Equation Unifiorm Spectrum Integrated Spectrum
- _
)
2 2 - 2 6§' w_\"
. 7 [ (1n B)® + 2.06 1n B + 1.17 T n <W3>
Mini - — T
Minimum NQ (3-8) 10 [ 3 =z B o
tan (JT:
3
_[{1n BYY + 2.06 1n B + 1.17]
2

BJ




given in Appendix D, it has been observed that minimum

gquantization noise power occurs at a value of the slope

loading factor given approximately Dby
A = 1n 2B. (3-6)

This relationship is illustrated in Figure 3-1 along
with points obtained by computer simulation for the
cases of uniform, television, and speech spectra. In
the computer simulation, both Gaussian and exponential
signal amplitude distributions were used with each of
the three spectra cited. It was found that the results
were substantially the same, that is neither the value
of minimum quantization noise power nor the points
illustrated in Figure 3-1 changed significantly when
the amplitude distribution of the signal was changed.

More will be saild about this in Section RFive.

Using Equation (3-6) and the fact that at its
minimum the derivative of gquantization noise with re-
spect to slope loading factor must vanlsh, closed form
empirical expressions for overload nolse power NO and
minimum quantization nolse power NQ can be obtained.

The results from Appendix B are as follows:
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87 /' D\ -3a
Yo = 57 Q’z “T(3a41) (3-7)
7 D\ [(1n B)° + 2.06 1n B + 1.17
minimum N, = —» -> L - : = (3-8
Q 6 <@2 B3
m

For uniform and integrated spectra, Equations (3-7) and
(3-8) are given in Table 3-2. The optimum performance

(

of mean signal power to minimize N

l_l.

.., maximum S/NQ> expressed in decibels is the ratio
or simply

Q}

maximumn S/NQ = - 10 log,,(minimum NQ) (

and where S has been agsumed unity for convenlence, as
stated earlier. Throughout this work, signal-to-noise
power ratio computations will be accomplished using the

method shown by Egquation (3-9).

Equations (3-2) through (3-9) provide a complete
noise performance characterization of the linear DM
system. Equation (3-8) indicates that the optimum delta
system is capable of trading nolse Improvement with
bandwidth expansion at a rate somewhat less than nine
decibels per octave increase of B. A factor to note

from Equation (3-8) is the strong dependence of maximum



5/N, on signal power spectrum. In the examples to
follow, it will be shown that this characteristic of
its performance gives the DM system an advantage over
PCM for the class of signals having an integrated

spectrum.

3.3 Application to Television, Speech, and Broadband

Signals

The optimum performance (i.e., maximum S/NQ)for
uniform (e.g., broadband signal), television, and speech
spectra are given in Table 3-3 and i1llustrated in
Figure 3-2 as a function of the bandwidth expansion

factor, along with points obtained by computer

simulation.

The S/NQ performance as a function of the slope
loading factor is 1llustrated in Figure 3-3 for the
uniform signal spectrum and Gaussian density {i.e.,
broadband signal) case at several values of B. For the
integrated spectrum case, the performance curves are
identical to those of Figure 3-3, the only change re-
quired being a shifting of the ordinate scale. It 1is
clear that this is so from Equations (3-4), (3-5), and
(3-7), since noise power at some specified value of 4
is proportional only to derivative power D. Similarly,

for a specified value of B, the minimum guantization
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noise power given by Equation (3-8) is proportional to

the derivative power., For exam
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to obtain the S/NQ

television or speech, it is simply neces-
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.G dB or 4.5 dB respectively to the S/NQ

values that appear on the ordinate scale in Figure 3-3.
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ng factor 1s shown, therefore, to be a

normalizing variabl

0]

for describling the S/NO performance
%

D

of linear DM. The computer points shown in Figure 3-3
o , , 32 . . .

were first reported by O'Neal; his normalized step

size can be shown to be related to the slope loading

factor.

From Equations (3-8) and (3-9), the improvement in

maximum S/N. of the integrated spectrum (e.g., television

Q
and speech signals) relative to the uniform spectrum
(e.g., broadband signal), expressed in decibels, is

given by

Maximum S/NQ Improvement

of Integrated Spectrum (wm
= [10 1og10\6~> - 4.8
Relative to Uniform 3
Spectrum (in decibels) - 10 log < 1 _ fﬁ)}
10 -1 wm wm
tan o
3

(3-10)



Applied to the cases of television and speech, Equa-
tion {3-10) is given in Table 3-3.

For a large class of signals, the ratio (®q/wm
D !

much less than unity. Television and facsimile signals,

Maximum S/N. Improvement

Q

Integrated Spectrum i

=ty

o)
Relative to Uniform

Spectrum (in decibels)

Equations (3-10) and (3-11) are illustrated in
Figure 3-4 along with points obtained by computer

simulation.

Before leaving the subject of linear DM, it may be
interesting to consider one digression, namely, exploring
the possibility that integrating the input signal could
perhaps improve DM performance. That this is in fact
not the case will be seen from the following example.
Given an input signal having a uniform gpectrum, it is
desired to determine what performance can be expected
from DM 1f the signal 1s integrated prior to encoding

and differentiated after decoding. The rationale for
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minimum noise than 1f the original uniform spectrum
were encoded. The falacy with such logic is that the
additional noise produced by the differentiation pro-
cess at the decoder output compensates for noise re-
duction through signal integration. The proof of this
statement 1s arrived at directly through the use of

the relationships for minimum quantization noise power
in the cases of uniform and integrated signal spectra.
If the original uniform spectrum signal is integrated
with a network having a transfer response such that the
power spectrum denslity at the output of the network
becomes that of the integrated spectrum; and if the DM
system step size 1s adjusted such that the quantization
noise power is minimized, and given by Eguation (3-8),
then the minimum quantization noise power is lesg than
that which would have resulted had the original uniform
spectrum signal been encoded. The nolse reduction can
be expressed by the ratio of the minimum quantization
nolge obtained with an integrated spectrum to that

obtained with a uniform spectrum, or

w
3 2
Minimum NQ (Integrated Spectrum) @ w3>
Minimum NQ (Uniform Spectrum) 19 - <—;
tan o
3
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At tThe output of the DM decoder, a differentiator
network (i.e., the inverse of that which integrated the
original uniform spectrum signal) processes both the
decoded signal and quantigzation noise. As a result,
the mean power of both is increased. The ratio of the

S/N at the differentiator output to the S/N at its input

is given by

S/N (D Ifefentlacor>

\ output _ 1
. A . 2
Differentiator
S/N ( input > fﬁ -1 wm 1 (wm
. I tan B 1 + = &-)‘—
m 3 D \\ 3

Then, by combining Equations (3-12) and (3-13), the

ratic of the differentiator output maximum S/N. to the

Q

maximum S/N. realizable with a uniform signal spectrum

Q

becomes

Differentiator)

Maxin I
Maximum S/RQ< Sutput

Uniform >

i I
Maximum S/RQ<Spectrum

= L (3-14)
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performed on the input uniform spectrum signal. This

is not to say, however, that such networks are useless.
Thelr effect in the DM system is clearly one of changing
the spectrum characteristics of the quantization noise.
In the example above, the differentiator at the decoder
output has the effect of increasing the power spectrum
of the nolse at high frequencies. For some applications,
such as television, this can be advantageous since the
sensitivity of the human eye to random nolse decreases
with 1ncreasing frequency. In general, it can be stated
that although signal spectrum shaping prior to delta
encoding and complimentary reshaping after decoding can
accompligh a net effect of shaping the noise power
spectrum, 1t cannot produce for a uniform signal spectrum

a significant performance improvement.

3.4 Discussion of Results

In this section, i1t has been shown that the
granular, overload, and minimum guantization noilse
powers of linear DM can be described by simple closed
form solutions. As a result, 1t is possible to predict

with a simple expression the optimum performance
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expansion factor. A defined quantity called the

actor has been shown to bhe a useful
parameter in characterizing DM performance. It has
been shown that minimum quantization noise power 1s
proportional to the mean power of the signal derivative.
As a result, S/NQ performance with an integrated
spectrum such as television or speech exceeds that of

a broadband (i.e., uniform spectrum) signal. Further-
more, it has been found that S/NQ performance with a
signal having a Gaussian density i1s approximately the
same as that obtained with a signal having an exponential

density.

It has been shown that the slope loading factor
i1s a normalizing variable when used to describe S/NQ
performance. That is, the S/NQ performance character-
istic curves for broadband, televislion, and speech
signals are identical 1In form, the only difference

between them being one of the magnitude of the ordinate

scale.

Unfortunately, in the linear DM system the quantiza-
tion noisge is sensitive to small changes in the mean
power of the signal. As a result, the range of 4 over

which S/NQ is near maximum ig small. From Equation (3-2)
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it is clear that a change in signal power produces a
change in slope loading factor A. If A is substantially
different in value from that given by Equation (3-6),
then the value of NQ will be greater than the minimum
value and the DM system 1s suboptimum. As an example,
for the case of B = 8 in Figure (3-3) if the quantilza-
tion noise power 1s to be held to less than twice 1its
minimum value (i.e., S/NQ > 17 db), the slope loading
factor musﬁ be constrained such that 2 < A < 4. This

in turn requires that the effective value of the signal
must be constrained to a variation of less than approxi-
mately *40 percent. This is indeed a severe restriction
for signals of practical importance such as television
and speech. TForcing the DM system to respond adaptively
to changes in the input signal by changing the slope
loading factor with time, overcomes the restriction of

a narrow optimum performance range. This adaptation

of linear DM will be the subject of the next section.



4. ADAPTIVE DM, A QUALITATIVE DISCUSSION

It has been shown in Section Three that DM system
performance is a function of the slope loading and
bandwidth expansion factors. For any specified sampling
rate, the total quantization nolse reaches a minimum at
a particular value of the slope loading factor. For
any sampling rate then, Tthere exists some value of step
size K such that for a given signal spectrum, the ratio
of signal power to quantization nolise power is a maxi-
mum. Implicit in the above statements, is the con-
straint that the signal mean power and spectrum density
are stationary with time. Unfortunately large and
important classes of gstochastic communication signals
processed today are either nonstationary or at best
only short term stationary. Two examples of such signals

are televislon and speech.

In order to give the DM system the capability of
encoding nonstationary signals in an optimal way, the
restraint that exists in linear delta (i.e., that slope
loading factor is fixed) must be removed. That is, the
system should be permitted to become self-regulating
or adaptive so that optimum performance (i.e., maximum
S/NQ) is achieved over a broad range of input signal

variation. If the signal 1s stationary, then the
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accordance with the changing signal parameter. The
objective of the adaptive DM system discussed herein
is to maintain optimal loading and performance (i.e., .
maximum S/NQ) by controlling the value of the slope
loading factor. Since the sampling rate is assumed
constant for a given system, 1t 1is clear from Equa-
tion (3-2) that by controlling the step size, the
slope loading factor may be assigned any specified

value.

The problem 1s to decide how to measure the non-
stationary of the signal, and hence, the changing slope
loading factor. That 1s, what measurement should be
made and how should 1t be accomplished so that signal
variations can bring about a reassignment of the value
of k. Undoubtedly there are many approaches to this
problem. In this work, a solution that appears promilis-
ing 1is presented. It involves monitoring the instanta-
neous derivative of the encoded signal, determining if
the condition specified by Equation (3-1) is satisfied,
and changing the step size 1f necessary in a discrete

manner to prevent slope overload.
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ssentially, there can be both a discrete and a
continuous method of adapting the system t0 changes in
the signal derivative. The former observes the binary

pulse sequence at the quantilizer output and changes the
step size in finite increments. The latter observes
the continuous input signal and changes the step in a
continuous manner. The former method will be called
"discrete adaptive DM" and is illustrated in Figure 4-1.
The latter method will be called "continuous adaptive
DM" and is illustrated in Figure 4-2. In this work,
only the discrete adaptilve system 1s quantiftatively
discussed. Brown and Brolin6 have discussed a system

similar to the continuous adaptive DM system for speech

application.

In the discrete adaptive system, the switch con-
trol chooseg, 1in effect, a gain Ki by which to increase
the quantum step size. The choice made by the control
ig dictated by a logical decision process based on
observations of the sequence of pulses leaving the
quantizer. For example, when slope overload occurs,
causing suboptimum performance, the gquantizer output 1is
a series of pulses of the same polarity (i.e., a
series of plus one's or minus one's). In response to

thls series of consecutive pulses, the switch control
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such that the new
larger step size is K, multiplied by the smallest step
size k, or simply Kik. If the pulse polarity remains

unchanged, the step size 1s incrementally increased to

K, -k, K k, etc., until the largest value of Knk is

i+2

reached. The step size Incrementally decreases when

+1

}_J

polarity reversals occur. In the decoder, the same
pulse sequences are sensed by a switch control identical
to that in the encoder, and thus the step size change
are made synchronously and Identically. Since the step
size 1s changed at a rate equal to that of the sampling
rate, the digcrete adaptive DM system may be viewed as

a linear DM into which instantaneous companding has been

introduced.

Figure 4-3 illustrates possible waveforms of the
discrete adaptive system. Note that from sampling
intervals 1 through 9 inclusive, there are never more
than two consecutive pulses of the same polarity; hence
no slope overload. But at the 10th interval, a pulse
of the same polarity as the previous two intervals
appears indicating the beginning of overload. Detecting
this condition, the control switches to the K2 position
making the new step size 1in the 10th interval equal to
K. k. Similarly, the 1lth interval step size 1s in-

2

creased to K.k, where K3 > Kg. At the 12th interval,

3
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the polarity reverses and the step size decreases to
K. k. Similarly, the polarity reverses again at the

13th interval and the smallest size k is reached.

2]
ct
D
@)
o

From the 1l4th on, the pulse sequence indicates no

slope overload. The dotted line illustrates the over-

load of a linear delta systen.

Because the discrete adaptive system is able to
change its step size as a function of the pulse
sequence, it 1s thus capable of modifying its overload
noise performance. As a result, the range over which
it produces optimum performance 1ls expanded, as shown
in Figure 4-4. The amount and character of this ex-
pansion will be part of the subject of the guantitative

discussion gilven 1in Section Five.

In the continuous adaptive system illustrated Iin
Figure 4-2, the control signal is the continuous deriva-
tive of the input signal. Recause the control signal
must occupy some of the transmission channel frequency
space, it must of necessity require only a fraction of
the input signal bandwidth. As a result, the rate at
which the step size i1s varied is very much smaller than
the sampling rate. Thus the continuous adaptive DM
system can be conslidered as the eguivalent of a linear

DM into which syllabic companding has beern introduced.
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Several configurations similar to those

g
.6’12’QO’Q2’MS Brown and Brolin6 have
quantitatively discussed a continuous adaptive DM

4o, 43

system for speech application. Winkler has given
a qualitative description of a specilal case similar to

that of discrete adaptive DM.

In Section Five, a quantitative account of the
performance characteristics of discrete adaptive DM
with television, speech, and broadband signals will be
given. In Section Six, a quantitative comparison of
the performances of linear DM, discrete adaptive DM,

and PCM will be made.
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5.1 Normalized Slope Loading Factor Defined

Because the discrete adaptive DM system is able to
increase its step size in an instantaneous manner at
the sampling rate from the smallest value k to
sz""’Knk in sequential increments, slope overload
is not the controlling degradation until the derivative

of the signal f£’(t) is greater than the maximum slope

capability of the system, that 1s when
| £/ (t) ] > K kf_. (5-1)

As a result, the maximum value of the slope loading
factor for adaptive DM 1is greater than that given by
Equation (3-2) for linear DM by the factor K, and

is therefore

Knkfs

"’—\-/__]5_ (D‘ )

maximum A (adaptive DM) =
It is somewhat more convenient, for purposes of com-
parison with linear DM, to use a slope loading factor
definition consistert with that of Equation (3-2). We
therefore define what will be called the "normalized
slope loading factor" (A’) for adaptive DM. It is

given by
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where k'’ 1is the product of Kp and k. The normalized
slope loading factor thus has a value at each sampling

instant given by one member of the sequence

1 , KE ; K
= A", K—“/l}...,
n

That is, when the instantaneous derivative of the signal

is and remains very small, the normalized slope loading

ffactor value becomes

and when the derivative 1is and remains very large, the

normalized slope loading factor value becomes

5.2 Quantization Nolise Power

It 1s shown in Appendix B that the asymptotic

boundgs for discrete adaptive DM overload noise power
]
granular nolse power, NG’ and minimum guantization

are given by

!
O)

nolse power, minlimum N

N

QJ
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A< Kﬂx/r(ln 8)2 + 2.06 In B + 1.17
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Equation (5-4) applies in the

=

egion of slope
overload, that is the region defined by values of the
slope loading factor which are less than that value
representing the optimum value given by Equation (3-6),
or 4’ < (ln 2B). Eqguation (5-5) applies for values of
A" greater than that obtained when Eguations (5-5) and
(5-7) are set equal, and less than 8Kn' The former of
these bounds states, in effect, that granular noise
power must be equal to (or greater than) the minimum
total guantization nolise power given by Eguation (5-7).
The latter bound contains the factor Kn as a conseguence

of slope loading factor normalization.

Because the maximum value of the slope loading
factor is given by Equation (5-2), and since Equa-
tions (3-2) and (5-3) are equivalent except for a
change of varlable, the asymptotic lower bound for
adaptive DM overload nclse power 1s the same as that for
linear DM given by Equation (3-7) in which A is replaced

by A'.

Since granular nolse power has been decreased
relative to that of linear DM by the factor l/Ki as
shown in Equations (5-5) and (5-6), and since it is
subject to the constraint imposed by Equation (5-7), then

the range of normalized slope loading factor over which
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vantization nois is minimum has been extended.
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In other words, discret

D

adaptive DM does not produce
optimum performance at only one particular value of
the slope loading factor as 1s the case with 1linear DM
but extends the range of optimum performarce from that
value given by Eguation (3-6) to that value obtained
when granular noise power NG(Q < 8Kn> is set equal to
the minimum value of quantlzation noise power. As a
result, adaptive DM performs what may be considered a
companding operation, that is, it extends the useful

performance range of the linear DM system.

Companding in a quantizing system refers to the
process of signal compression and later expansion,
the former in the encoder and the latter in the

39

decoder. The purpose of companding is to allow weak
signals (i.e., small signal power) to be encoded with
approximately the same guantizing noise as strong
signals (i.e., large signal power). In PCM, companding
can be obtained by using a nonuniform guantizer. In
the dlscrete adaptive DM system, companding 1s thus
achieved by changing the size of the quantum step in
sequential Increments. A guantitative comparison of
adaptive DM companding with PCM logarithmic companding

will be given in Section Six.



5.3 Selection of Final and Intermediate Galin Factors

An important problem in discrete adaptive DM is

the selection of the final gain factor Kn. It is clear

=)
o

rom Equations (5-5), (5-06), (3-4), and (3-5), that the

amount of signal power varlation that the adaptive
system tolerates before performance falls substantially

below that of maximum S/N has been increased by the

Q

o 2 . . .
factor [K“]. In the communication literature,
n

increase of tolerable signal power variation without

29
-7 an
performance degradation has been referred to as com-
panding improvement or simply the amount of companding,
and 1s usually expressed 1in decibels. For discrete
adaptive DM, the approximate companding improvement C

expressed 1n decibels becomes

C = (20 log K_) (5-8)

At Kn = 1, the special case of linear DM results and
optimum performance occurs at only one value of mean
signal power, or in other words one value of the slope

loading factor [i.e., that value given by Equation (3-6)].

If the pcwer of a given message signal varies from
some smallest value S] to some largest value 82, it is

a simple matter to select the appropriate values of



step size k and multiplier fn to achieve the desired
companding. From Equations (3-2) and (3-6), it is
clear that the step size should be
/D 5
k = [%= 1In 2B)./S, (5-9)
L 1

W

where D is the derivative power calculated on the basis

of unity mean signal power, and ‘/Sl is the smallest

w
ct
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n of the signal. Combining Equations (5-9)

and (2-3), the adaptive DM encoder step size thus becomes
s 9 N
w /) D lg;-@)x/s (5-10)
w? B 1 :
m

The gain multiplier Kn is simply the ratio of the
standard deviations of the largest and smallest values

of signal power, or

Another problem in discrete adaptive DM 1is the
selection of intermediate gain factors KQJKB"“’K

The choice of final gain factor K _ 1is dictated by the

n-1"

amount of desired companding as discussed above. The

aeffect of intermediate gain factors on S/NQ performance



was investigated by computer simulation, and typical

N

lustrated in Figure 5-1, where K_ = 4

[
—

results are
(i.e., the largest step size is four times that of the
smallest step). Three cases are illustrated. Case I
represents a two level (i.e., n = 2) adaptive system,
that 1s a sequence of two consecutive pulses of the
same sign causes the step size to increase from the
smallest value k to its largest value Kok = 4%, with

no intermedliate values. The performance of this method

falls considerably below the predicted asymptotes

illustrated. Case II represents exponential gain
factor increments, that is K, = Ei—l, and is a three
level adaptive system (i.e., n = 3). The sequence
k,ng;...,Knk becomes k,2k,l4k. Although the results

of Case II are significantly better than those of

Case I, they still are somewhat less than expected.

Case III in Figure 5-1 represents linear gain
factor increments, that is Ki = 1, and is in this
instance a four level adaptive system (i.e., n = 4).
The results using linear increments show approximately
a three decibel increase over exponentlal increments
in companding Improvement near maximum S/NQ, and are
closer to the asymptotes predicted by Equations (5-4)

through (5-7). Computer simulation results using
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linear increments as in Case III will be given in the

applicaticons to follow.

5.4 Application to Television, Speech, and Broadband

In this section, the application of the results
of Sections 5.1, 5.2, and 5.3 to television, speech,
and broadband signals will be given along with several
numerical examples 1llustrating the performance of
adaptive DM as a function of the normalized slope loading
factor, using the gain multiplier Kn as a system variable.
Table 5-1 summerizes the parameters that will be used to
illustrate the adaptive DM system performance. In the
1llustrations to follow, bandwldth expansion factor
values of four and eight will be used; other values of
course can be substituted into the expressions given

in Table 5-1.

5.4.2 Television Signal

Figureg 5-2 and 5-3 illustrate television signal
performance with a value of eight for the bandwidth
expansion factor. Computer simulation points are
illustrated with linear gain factor increments, and
with both exponential and Gaussian signal densities

given for comparison. This comparison 1s an Important
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one gince the statistics of television signals are
fand

he studies of O0'Neal

[

rarely stationary, as
. 22 . . , . , , , .
Kretzmer indicate. The computer results show that
the performance of adaptive DM with an exponential

signal density 1s essentially the same as that with a

Gaussian density.

The granular nolise power asymptotes illustrated in
Figures 5-2 and 5-3 are gilven in Table 5-2. The
asymptote for overload noise power is given in Table 5-1;
that for maximum S/NQ is determined from Equation (5-7)

as 37 decibels for the case B = 8.

The power of a video signal varies considerably from
line to line 1n a raster scanned field as well as from
picture to picture over long periods of time. Since one
would 1like to make Kn as large as possible to encompass
as many different picture types as possible, but since
equipment complexity irncreases as Kn increases, a
reasonable compromise can be cbtained by letting Kn = 4.
This value of Kn represents the ratio of the standard

deviations of two video signals, the first obtained

joN

from a pilcture which is half black and half white, an
3

(R

the gsecond obtalined from the measurements of O'Neal.
For some applications {e.g., closed circult television,

graphics display, etc.), other values of Km may be more
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appropriate. Filgures 5-2 and 5-3 illustrate values of

-

¥

Kﬂ of two and four. Other values can be obtained from

the expressions given in Table 5-1.

As an example of how the parametric optimization
of the adaptive DM system might be completed for the
television signal case, we shall use a value of four

for Kn, and assume an input termination at the encoder

2

of one ohm. The value of Sl can be obtained from the
33 .

results of O'Neal who, letting the peak-to-peak

composite signal voltage of a raster scanned picture

be unity, computed the rms video of three scenes to be

approximately 0.1 volts. Using Equation (5-10) and

Table 5-1, the step size in volts would then be
K = o.oz6<£%?-§> (5-12)

For the value of B illustrated (i.e., B = 8), the step
size becomes 9.0 millivolts. For entertainment tele-
vision having a bandwidth of 4.5x106 Hertz, the required
sampling rate 1s then 72x106 Hertz. In this example,
the adaptive DM system would yield a maximum S/NQ of

36 decibels, and produce a companding improvement of

12 decibels. Had the linear DM system been used for a

signal whose rms value varies over the range of four

to one, a decrease of at least nine, and possibly as much



68

would have Dbeen

Q

as thirteen decibels from maximum S/N
the performance advantage of adaptive

obtained. Thus,
DM 1s obvious.

5.4.3

Speech Signal
Figures 5-4 and 5-5 i1llustrate speech signal per-
formance with bandwidth expansion factor values of four

Computer simulation points are

and eight respectively.
illustrated with both exponential and Gaussian signal
Again the computer re-

densities given for comparison.
sults show that the performances with both densitiles
Table 5-3 gives the asymptotes

are essentially the same.
The overload nolise power asymptote 1s

illustrated.

in Table
o

given 5-1.
The mean power of speech varies considerably with
.g.

3

time as well as with individual characteristics (e
age, sex, inflections, etc.). A detailed treatment of

N 2 r N o - FIY n ! 11}
such considerations can be found in the work of Fletcher.
At best, a companded system designed to process speech 1s

a compromlise between practical and theoretical considera-
for both theoreti-

tions. In one widely used PCM system,
calgg-and practical reasons a compandor has been
found useful for speech which employs a logarithmic

In Section 8ix, a quantitative

nonuniform quantizer.
comparison will be made of this PCM system with that of
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adaptive DM. It will suffice to say at this point that
the PCM system yilelds a companding improvement which
appears to be about the same as that of the adaptive

DM system having a final gain factor Kp value of eight
as 1llustrated in Figure 5-5. Although in the adaptive
DM system, it is only necessary to increase the value of
Kn fto achlieve a greater companding improvement, it is

in practice very difficult to increase the companding
improvement of PCM for reasons discussed by Mann, et 31.26
As a result, 1t appears that for speech application,
adaptive DM may have some advantages not presently en-

Jjoyed by PCM. More will be said about comparisons with

PCM in Section Six.

As an example of the optimum selection of parameter
values of adaptive DM for speech application, a value
of eight for Kn will be assumed. Let it be required
that the guantization ncise power be less than the
signal power by approximately 25 decibels. From Equa-
tion (5-7) or by use of Figure 3-2, we find that a band-
width expansion factor value of elght is needed. If we
assume that 82 is unity in Eguation (5-11), then the
value of step size from Equation (5-10), letting the
input terminatlion at the encoder be one ohm, becomes

0.047 volts.



5.4.4 Broadband Signal

Figures 5-6 and 5-7 illustrate broadband signal
(i.e., uniform spectrum) performance, the former for
K, = 1,2,4,8 and the latter for K, = 1,16,32,64. 1In
general, computer results for the spectra considered
show again that both Gaussian and exponential signal
amplitude distributions yield substantially the same
performance. For large values of K. (i.e., K, > 16),
the results indlcate that S/NQ performance falls below
that predicted by Equations (5-4) and (5-7), especially
in the region 2 < s’ < 8, as shown in Figure 5-7. The
companding improvement, however, for large Kn i1s not
greatly decreased. For example, when K, = 64 as in
Flgure 5-7, the companding improvement realized such
that S/NQ remains within three decibels of maximum
S/NQ, as shown by computer results, 1s approximately

32 decibels. This result differs from that predicted

by Equation (5-8) by four decibels.

The granular nolse power asymptotes i1llustrated
in Figure 5-6 and 5-7 are given in Table 5-4. The over-
load nolse power asymptote is given in Table 5-1. The

max imum S/NQ asymptote is obtained from Equation (5-7),

and 1s 20 decibels for a bandwidth expansion factor

value of eight.
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5.5 Discussion of Results

L

In this section, 1t has been shown that the
discrete adaptive system provides DM with a companding
capability. Large values of companding improvement are
possible. A comparison of adaptive DM companding with
that of companded PCM will be made in the next section.
Computer simulation results have verified that the
maximum S/NQ performance of adaptive DM remains es-
sentially the same as that of linear DM. The use of
linear rather than exponential increments for the inter-
mediate gain factors KQ,K3)...,KH_1 yields a performance
substantially that of the predicted asymptotes. In all
cases studiled, the computer simulation results using a
Gaussian signal density were essentially the same as
those using an exponential density. The companding
improvement afforded by the adaptive system igs deter-

mined by the final gain factor Kn'

Because of the nonstationary nature of both tele-
vision and speech signals, adaptive DM appears better
suited than linear DM to such signals. For television,
small values of the final gain factor (i.e., K, = 4)
should suffice; for speech, larger values would be
recommended. More will be said about television and

speech 1in the next section.
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&. COMPARISONS WITH PCM

6.1 General

Quantigation in PCM is a memoryless operation of
converting the continuous message signal into a dis-
crete signal that assumes only a finite number of
levels. As in DM, the guantization noise in PCM mani-
fests itself into two forms. The first 1s that result-
ing from the discrefe guantization process, and will be
called granular noise so as to draw an analogy with its

4,39

DM counterpart. In the literature, nowever, this
is commonly known as quantizing nolise, since the second
form of noise is usually ignored. This second form of
PCM guantization nolse is caused by the limiting of

the message signal to the maximum and minimum levels of
the quantizer. This nolige is similar to that produced
by a linear device with saturation (i.e., an ideal
limiter), and will be called overload noise. As opposed
to DM overload noise, which is produced when the mesg-
sage signal slope exceeds the slope capability of the
DM guantizer, PCM overload noise 1s produced when the
message signal amplitude exceeds the maximum level of
the PCM quantizer. Exact analyticalyexpressions for
both PCM granular and overload noise powers are de-

rived in Appendix C as a function of the bandwildth
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expansion factor (which for PCM eguals the number of
digits of encoding), and a defined guantity called
herein the "amplitude loading factor."' The analogy of
the amplitude loading factor with the slope loading

factor of DM will become obvious.

When the number of gqguantizing levels 1is sufficiently
large (i.e., when the PCM guantum step size is small
compared to the standard deviation of the signal), PCM
granular and overload noises are uncorrelated and thelr
powers are additive. The sum will be referred to as
the gquantization nolse power. It will be assumed that
(1) the message signal is stochastic with zero mean,
unit standard deviation, and bandlimited to ® ; (2) the
signal is sampled at the Nyquist rate (i.e., the sampling
rate ®  is twice wm); (3) errorless transmission exists

in the digital channel.

In a PCM system, the guantizer levels or steps
need not be uniformly spaced. There are two different
reasons why a nonuniform guantizer may improve the
performance of the PCM system. The first 1s that if
the message signal statistics are both well known and
stationary, then the guantizer deslign may be optimized
for a given amplitude density by spacing the levels

such that the mean square error (i.e., granular nolse
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27

power ) is minimized. Max determined for a Gaussian
distribution the optimum level spacing and computed

the error. The results, however, are not dramatic,

the improvement amounting to less than three decibels.
Furthermore, changes in either the amplitude density

or the mean value of the signal produce larger changes
in the noise power than those of a uniform guantizer.
The second reason for desiring a nonuniform quantizer
is to achieve companding for nonstationary signals.
Speech 1s a good example of a signal for which PCM
companding has been usefully employed. Unfortunately,
the nonuniform quantizing characteristic required for
companding may not be similar to that of the nonuniform
optimum guantizer characteristic discussed by Max.27

As a result, a noise penalty may be paid 1if companding

is used.

Smith39 has described a logarithmic nonuniform
quantizer which provides companding and has been found
desirable when the message signal 1s speech. Using
his result for granular noise in PCM with logarithmic
companding, the optimum performance of PCM will be
determined and compared with that of a uniform quantizer.
Then, both of these will be compared with that of linear

and adaptive DM.
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.2 Quantization Noise Power of PCM

(02

[O)

.2.1 Quantization Noise Power With Uniform

Quantizer

Given that the PCM quantizer sorts the input into

a finite number of ranges and produces uniformly spaced
ocutput of representative levels whose upper and lower

saturation levels are a times the standard deviation of the
signal, then it is shown in Appendix C that the granular

nolilse power NG and overload noise power N, are gilven

O
by
2
1 Q
Ne =3 38 (6-1)
- 2
Ny = zjr (x-a)%p (x)dx (6-2)

where p(x) represents the message signal amplitude
probability density function, and B is agaln the band-
width expansion factor of the transmission channel.

The quantity a will be called the amplitude loading
factor for PCM. It is analogous to the slope loading
factor of linear DM since it represents the ratio of
the quantizer maximum encoding level to the standard
deviation of the signal. In general, as the amplitude
loading factor increases in value, overload nolge power

decreases, and granular noise power increases. This



is s0 since both the level at which saturation occurs
and the size of the quantum step (i.e., spacing be-

tween levels) increases as @ increases.

Table 6-1 summarizes the results from Equa-
tions (6-1) and (6-2) for message signals having
Gaussian and exponential amplitude probabllity density
functions. The results in terms of signal to quantiza-
tion noise power ratio in decibels as a function of the
amplitude loading factor is given for the Gausslan case
in Figure 6-1 and the exponential case in Figure 6-2.
The form and shape of the characteristic curves 1llus-
trated are shown to be similar to those of DM in
Figure 3-3. The difference basically 1s that whereas
DM performance is limited by slope overload; PCM per-
formance is limited by amplitude overload. The dashed
lines in Figures 6-1 and 6-2 illustrate the asymptotic

bounds of overload noise power.

Figures 6-1 and 6-2 show that the optimum perfor-
mance of PCM with uniform quantization is greater for
a message signal having a Gaussian amplitude probability
density than it is for one having an exponential density.
These figures also show that PCM realizes its optimum
performance at only one value of the amplitude loading

factor. Thus, if the standard deviation of the signal
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changes, the performance of PCM is affected. In

O

Section Three, 1t was found that the performance of
linear DM was also sensitive to changes in the mean
power of the signal. Adaptive DM, however, was able
to provide the companding necessary for nonstationary
ensembles. It will be shown next that the companding
in PCM provided by a logarithmic guantlizer does in
fact extend the range of optimum performance, but by
differing amounts for Gaussian and exponential signal

densities.

6.2.2 Quantization Noise Power With Logarithmic

Companding

If the PCM system employs the logarithmic com-

panding reported by Smith:;'9 then the granular noise

power N with such companding has been shown to be

GC
given by

o= [t [ @ o] e

where u, a dimensionless quantity called the compres-
sion parameter, determines the companding improvement,

and the guantity A is defined as



Table 6-2 summarizes the results of Equations (6-3)
and (6-4) applied to the cases of Gaussian and ex-

ponential densities. When the PCM system contains no

companding (i.e., w = 0), Equation (6-3) reduces to
that of Equation (6-1). This corresponds to direct
uniform quantization of the input signal. Overload

noise power as given by Equation (6-2) is of course
unchanged regardless of whether uniform or nonuniform

quantization is employed.

Figures 6-3 and 6-4 illustrate the results given
in Table 6-2 for the cases of bandwidth expansion
factor values of 4, 6, 8, and 10 (i.e., 4, 6, 8, and
10 digits of encoding respectively) and a value of
100 for . This particular value of | is chosen be-
cause 1t represents the largest value that has been
found practicable. For PCM, a higher degree of com-
pression (i.e., @ > 100) is in practice very difficult
to achieve for reasons explained by Mann, et a1,26
although Smith39 had recommended for speech,values of
100 < 1 < 1000. From Figures 6-2 and 6-4, it is shown
that such companding improves the optimum performance

(i.e., maximum S/N when the sigral has an exponential

Q
distribution for values of the bandwidth expansion
factor greater than four. This 1s caused by the match-

ing of the guantizer logarithmilic characteristic to the
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signal amplitude exponential probabilitfy density, thus

jaY]

s Y,

reducing the minimum mean sguare error.

For the Gaussian case shown in Figures 6-1 and
6-3, however, it is shown that optimum performanoe
for B < 10 is degraded when the quantizer uses a
logarithmic companding characteristic. Thus a per-
formance penalty must be pald if such companding is

used.

Figures 6-3 and 6-4 show that the optimum per-
formance with companding is approximately the same for
both Gaussian and exponential densities. The companding
improvement, however, is greater for a Gaussian signal

density than it is for an exponential signal density.

6.2.3 Quantization Noise Power With Amplitude Limiting

In many practical applications, the message signal
arriving at the encoder terminals has been limited or
saturated in amplitude by one or more physical devices.
Such saturation will be referred to herein as amplitude
limiting. The amplitude probability density will be
assumed zero beyond some value P multiplied by the
signal standard deviation. With such peak limiting of
the signal, Equation (6-2) is modified simply and

becomes



Equation (6-1) describes the granular noise power,
which remains unchanged. If a > f, then Eguation (6-5)
vanishes since by definition overload does not exist,
and the granular nolse power becomes the only source

of degradation.

For the case of a signal having a Gaussian ampli-

tude probability density, Equation (6-5) becomes

Nop = [<l+a2> <2jﬁwp(X)dx> —\/ig ae"%ag}
- [<l+a2> <2J1;p(x)dx> —\/i% (EG-B)e_%BEJ

For the exponential signal density case, Equa-

tion (6-5) becomes

on = e"\/§ O{l - e v2 (B_a)(l + [B—a]'[{s—a+\/§])}

(6-7)
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Figures 6-5 and 6-6 illustrate the case of B = 4

and a uniform guantizer for Gaussian and exponential

k

densities respectively. The effect of a 8 > 4 on PCM
performance for the Gaussian case is small for any
number of digits less than ten. For the exponential
case, however, the effect on performance 1is more sub-
stantial since the overload noise power is significantly
reduced. The effect on performance can be seen by com-
paring Figure 6-6 with 6-2, and Figure 6-5 with 6-1

for exponential and Gaussilan densities respectively.

The dashed lines in Figures 6-5 and 6-6 illustrate the

asymptotic bounds of overlcad nolse power.

Because overload noise power is reduced in the
presence of signal amplitude limiting, PCM optimum
performance 1s improved. The improvement can be oOb-
served by comparing Figures 6-1, 6-2, 6-5, and 6-6.
Amplitude limiting in PCM can thus be viewed as the
counterpart of slope limiting of DM. That 1is, the
effect in both systems is one of reducing the overload

nolse power.
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©.3 Application to Television, Speech, and Broadbangd
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For a television signal, DM provides a greater

@

maximum S/NQ than PCM for values of B less than eight

=

(i.e., eight digits of PCM encoding). For entertainment
television, approximately six or seven digits of PCM en-

coding has been found to produce pictures of good

quality.l5 Although the S/NQ performance 1s not the
only important criterion in characterizing picture
gquality, it provides a sound basis upon which to objec-
tively compare and optimize promising encoding systems.
A final comparison rests of course with a subjective
test. Because of the nonstationary nature of television
signals, adaptive DM and companded PCM appear better

suited to such signals than linear DM and PCM with

uniform guantizing.

The optimum performance of DM and PCM with uniform
quantizing are illustrated in Figure 0-7 for the tele-
vision signal case characterized by the integrated power
spectrum given in Tables 3-2 and 3-3, and the exponential
amplitude probability density gilven in Table 6-1. Adap-
tive DM produces the same optimum performance as linear
DM, which was illustrated in Figures 5-2 and 5-3. Al-

though PCM with nonuniform quantizing should produce
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encoded television pictures of a quality superior to
that of uniform quantizing, neither the degree of com-

ression nor the optimum gquantizer characteristic for

@]

video signals have been reported. A study of such
optimization should include the results of subjective
tests. This conclusion of course also applies to
adaptive DM. The next task required toward the appli-
catlion of adaptive DM to television signals should be
that of organizing and conducting subjective tests.
These tests could determine, for example, the minimum
value of the adaptive DM final galn factor as well as
the optimum selection of intermediate gain factors.
Using a selected ensemble of pictures, the subjective
tests could also provide a measure of the relative
acceptability of encoded pictures as a function of the

bandwidth expansion factor.

Figure 6-8 i1llustrates the performance of linear DM,
adaptive DM(Kn = 4), and PCM with an amplitude limiting
factor of ten (i.e., B = 10), and a value of eight for
the bandwidth expansion factor. The value of ten for £
was found by O‘Neal33 to represent a video signal based
on measurements of three different scenes. The per-
formance asymptotes of linear DM (dashed line) and
adaptive DM are obtained from the results of Sectilons 3.3

and 5.4.2 respectively. The abscissa values of
D
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Figure ©0-8 are obtained by letting zero decibels corre-
spond to that value of the slope loading and amplitude
loading factors at which optimum performance is obtained.
For DM, the slope loading factor at optimum performance
is given by Eguation (3-6) of Section 3.2, and, for B = 3,
has the value 4 = 2.77. The abscissa is related to the
normalized slope loading factor by the expression
Input Relative to Full Loadl _ 1n 2B
{ (in Decibels) = 20 1og1g 57 (6-8)
where 1In 2B is egual to 2.77 for B = 8. For PCM, the
abscissa 1s related to the amplitude loading factor by
the expression
Input Relative to Full Loadl| _ 7.0
{ (in Decibels) } = 20 1ogy g g (6-9)
where the guantity 7.0 represents the value of amplitude

loading factor at which maximum S/NQ is achieved by PCM

at B =8 and B = 10.

6.3.2 Speech Signal

Companded PCM using the nonuniform quantizer reported
by Smith39 can now be compared with the discrete adaptive
DM discussed in Section 5.4.3. McDonald28 computer
simulated the case of a speech message signal, and a

four digit nonuniform guantizer having the logarithmlc



His results are
illustrated in Figure 6-9 along with that for comparison
of the discrete adaptive DM system having the same band-
width expansion Tactor (i.e., for four digit PCM, B = 4),
and a K _~of eight. This particular value of Kn was
chosen because it yilelds approximately the same amount
‘ A . . 39
of' companding as the logarithmic guantizer of Smith
with L = 100. The abscissa of Figure 6-9 corresponds

. . 28 , . - :
to that gilven by McDonald, and for the case of adaptive
DM is related to the normalized slope lcocading factor by
the expression given by Eguation (6-8). The point zero
decibels on the abscissa of Figure 6-9 corresponds to a

value of 2.08 for the normalized slope loading factor

at B = 4.

Migure 6-10 illustrates the results given in

Tables 6-1 and 6-2 for the PCM system with a uniform

il

guantizer (i.e., K 0) and the logarithmic nonuniform

100), together with the results

Il

guantizer (i.e., K
from McDonald28 illustrated by the dashed line, and
adaptive DM performance points obtalned by computer
simulation. The zero decibel point of the abscilssa of

Figure 6-9 corresponds to the value a = 4 on the abscissa

of Figure 6-10.

For PCM, a higher degree of compandiné than that

illustrated in Figures 6-9 and 6-10 (i.e., & > 100) is 1n
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ficult to achieve for reasons explained
by Mann, et al. For discrete adaptive DM, on the other
hand, there appears to be no difficulty for either theo-

retical or practical reasons in extending the companding

in Figures 6-9 and 6-10. Whether the additional com-
panding capabllity that discrete adaptive DM offers
could in fact improve speech communication is not known
at this time. Because of the subjective nature of speech
communication, further tests would be required before
more conclusions regarding the possible benefits of

discrete adaptive DM over PCM could be reached.

The effect of amplitude limiting on PCM performance
is discussed in 6.2.3; the effect on DM performance 1is
small as shown by the computer simulation results
illustrated in Figure 6-10. For example, for values of
B > 2, the maximum S/NQ is dincreased with amplitude
limiting by approximately one decibel for linear and

adaptive DM when the signal 1s speech and the bandwidth

expangion factoer has a value of eight.

6.3.3 Broadband Signal

For broadband signals characterized by the uniform
spectrum cited in Tables 3-1 and 3-2, and the Gaussian

density in Table 6-1, it is clear that PCM provides



superior S/NQ performance to that of DM. Figure b-11

illustrates the optinmum performance of PCM and DM for

o
o
"3
Q
8]
Q.

iband signal as a function of the bandwidth expan-

Figure 6-12 illustrates the performance of companded
PCM and discrete adaptive DM, the former with a band-
width expansion factor value of six, and the latter with

a value of sixteen. The different values of B were
selected soO that the maximum S/NQ produced by both systems
would be approximately the same. The performance asymp-
totes of adaptive DM were obtained from Eguations (5—&),
(5-5), (5-6), and (5-7) and from Table 5-1; those for
companded PCM from Equations (6-3) and (6-4) and from

Table 6-2. Although the DM system illustrated in

(@)

Figure ©-12 requires a greater transmission bandwidth,
it 1s shown capable of achieving a higher degree of
compression than the PCM system. This particular per-

formance advantage of adaptive DM may be desirable for

certain applications.
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7. CONCLUSIONS

The performances and optimizations of linear DM,
adaptive DM, and PCM have been presented together with
the results of computer simulations. The three important
cases of television, speech, and broadband signals are

treated in detail.

The results presented can be grouped into the
following three categories. First, linear DM granular,
overload, and minimum quantization nolse powers are
described by simple closed form solutions. From these
expressions, and from computer simulations, the followirg
have been found for linear DM.

(1) It is possible to predict with a simple expres-

sion the optimum performance obtalnable from
DM at various bandwidth expansion factor values.

(2) Minimum guantization noise power 1s proportional

to the mean power of the signal derivative; as

a result, S/N,. performance with anintegrated

Q
spectrum such as television or speech exceeds
that with a uniform spectrum such as a broad-
band signal.

(3) A defined quantity called the slope loading

factor is a useful parameter in characterizing

DM performance. When used to describe S/NQ



a normalizing variable. The value of slope
loading factor at which optimum performance

Occurs 1s dependent only on the bandwidth

performance with a Gaussian signal
amplitude probability density is approxi-
mately the same as that with an exponential
density.

(5) If the mean power of the signal changes by a

relatively small amount, S/N. performance

Q
decreases; as a result, for signals such as
speech and television, consisting of non-
stationary message ensembles, companding is
desirable,

Second, an adaptive DM gsystem which seems promising
for television and speech is evaluated. Quantization
noise power asymptotes are presented which describe the
expected performance of the adaptive gystem. From these
results, and from those of computer simulations, the
following findings were made.

(1) The adaptive system provides DM with a com-

panding capability.

(2) The maximum S/NQ performance of adaptlve DM

remalins approximately the same as that of

linear DM.
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ain factor Kn determines for

09

adaptive DM the amount of companding imprcve-
ment. Large values of companding improvement
are possible.

The intermediate gain factors K LK

277 n-1

determine how well the companded S/N,. perfor-

Q
mance meets the predicted asymptotes. The

use of linear rather than exponential incre-
ments for the intermediate gain factors ylelds
a performance substantially that of the
asymptotes presented.

The S/NQ performance of adaptive DM is the
same for both Gaussian and exponential signal
densities.

Because of the nonstationary nature of tele-

vision and speech signals, adaptive DM appears

better suited than linear DM to such signals.

Third, the performance of PCM with Gaussian and

(1)

exponential signal densities 1s presented, and a compari-
son is made between PCM and linear and adaptive DM for
television, speech, and broadband signals, with the

following conclusions being reached.

The characteristic form of the S/NQ performance
relationships of PCM with amplitude loading

factor is similar to that of DM with slope



loading factor as the independent variable.
For PCM with uniform quantization, a signal
with Gaussian density yields a greater maximum
S/NQ performance than one with exponential
density.

When logarithmic companding is introduced in
the PCM system, the optimum performance is
approximately the same for both Gaussian and
exponential densities. The companding improve-
ment, however, is greater for a signal having
a Gaussian density than it is for one having
an exponential density.

When the message signal is amplitude limited,
the effect on PCM performance 1s one of de-
creasing the amplitude overload nolise power.
As a result, amplitude limiting in PCM 1is

the counterpart of slope limiting in DM.

For a television signal, DM provides a greater

maximum S/N. performance than PCM for values

Q
of the bandwidth expansion factor less than
eight. Alternatively, it could be stated
that for the same S/NQ performance, DM offers
a bit rate or channel bandwidth reduction

capability in comparison with PCM in the

region B < 8.
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For a speech signal with a bandwidth expansion
factor value of four, the performance of
adaptive DM, with & final gain factor value of
eight using linear increments for the inter-
mediate gain factors, is approximately the
same as that of companded PCM which uses a
logarithmic guantizer with p = 100.

Adaptive DM appears capable of realizing a
larger companding improvement than PCM.

For a broadband signal, the performance of

PCM is superior to that of DM.

Because of the complex nature of television
and speech communication, subjective tests

are reguired before further conclusions
regarding the performance advantages of dis-

crete adaptive DM can be reached.
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8. RECOMMENDATIONS

Fa
I

In the final analysis, the merit of a communication

t

L

of its distortions on

o

system 1is de

i

ermined by the effec
the perception characteristics of the ear or eye. The
mean square error or signal-fto-nolse power ratio criterion
applied to a communication system i1s often helpful in
making reasonable parametric choices and quantitative
system evaluations, but with few exceptions the final
fidelity test must involve listening or viewing the re-
ceived signal. It is hoped that this investigation has
provided the insight necessary to make reasonable judg-
ments regarding the performance and optimizaticon of

linear DM, adaptive DM, and PCM for television and speech
signals. But it is not claimed that the conclusions
herein can be substituted for the results of definitive
subjective tests. Thus, the first recommendation for
future study is that of experimentally investigating

and subjectively evaluating the effect of linear and
adaptive DM quantlzing distortions on speech and tele-

vigion communication.

Tt is clear that the study of adaptive systems for
television and speech communication is in an early stage
of development. One need only survey the literature to

appreciate the sparsity of information avallable on the



subject. A good deal of additional work remains to be
done with DM and PCM systems. For example, in Sec-

tion Four herein, a system referred to as continuous
adaptive DM and illustrated in Figure 4-2 appears to
have the potential of adapting to the statistics of the
message signal. Brown and Brolin6 have discussed a
system simllar to continuous adaptive DM for speech ap-
plication. The system appears promising enough to
warrant further investigation, particularly with respect

to television signals.

There are, of course, a number of other forms of
adaptive DM. For example, instead of controlling step
size, one might choose to adaptively control the
sampling rate, or perhaps the number of gquantizing
levels, or even the feedback network itself. The opti-
mization of such systems, or even their effect on system
performance is at present unknown in communication
science. In general, it may be sald that the study of
the potential and performance of adaptive feedback
gquantizing systems for television and speech communica-
tion is a vast area providing considerable opportunity
for exploration and research. It is obviously not
expected that any one research effort would answer all
guestions, but it is believed that the investigation of

such systems should continue, that coriginal contribution
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to engineering science is DOs

graduate level research in this subject area

main fertile for a long time.

will

ible, and that future

re-



APPENDIX A

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL OR
ABBREVIATION MEANTING
Q Amplitude loading factor
of" PCM
B Amplitude limiting factor
B Bandwidth expansion factor
C Companding improvement of

adaptive DM

D Mean power of signal
derivative
DM Delta modulation
DPCM Differential pulse code
modulation

(=

Total quantization error

J

sequence 1in computer
simulation of DM

£(t) Instantaneous value of
input message signal

(%) Instantaneous derivative
of input message signal

fD Digital transmission channel

bandwidth

INTRODUCED
IN SECTION

6.2.2
6.2.3

Ay

N
(W8]

3.1

Appendix D

Appendix B



LIST OF SYMBOLS AND ABBREVIATIONS
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(Cont )

SYMBOL OCR
ABBREVIATION

Hy

i)

N

m

MEANING

Message signal bandwidth‘

Eguivalent noise bandwidth
of DM error power

Sampling rate

One-sided power spectrum
of input message signal

Instantaneous value of
output message signal

Input sequence of samples
in computer simulation
of DM

Number of input samples
in computer simulation
of DM

DM quantizer step size

Normalized step size of
adaptive DM

Intermediate gain factor
of adaptive DM

Final gain factor of

adaptive DM

INTRODUCED
IN SECTION

no
ot

Appendix B

2.1

3.1

Appendlix B

Appendix D

Appendix D

2.1

I
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LIST OF SYMBOLS AND ABBREVIATIONS (Cont)

SYMBOL OR INTRODUCED
ABBREVIATION MEANING IN SECTION
28 Compression parameter of
PCM 6.2.2
nj Filtered nolse sequence
in DM computer simulation Appendix D
n(t) Instantaneous value of
noise or error Appendix B
NG Granular noise power 2.1
NGC PCM granular nolise power
with companding 6.2.2
NO Overload noise power 2.1
NOA PCM overload nolse powerp
with amplitude limiting 6.2.3
NQ Quantigzation nolge power 2.1
p(x) Probability density func-
tion of input signal 6.2.1
p(n) Probability density function
of granular noise Appendix B
P Binary transmission chan-
nel pulse rate 2.1
PCM Pulse code modulation 1
Q Number of PCM quantizing

levels Appendix C



LIST OF SYMBOLS AND ABBREVIATIONS (Cont)

SYMBOL OR
ABBREVIATION

A

/3,'

S/N

S/N

S/N

MEANING

Quantizer output sequencé
in DM computer simulation

Slope loading factor of
linear DM

Normalized slope loading
factor of adaptive DM

Mean signal power

Sequence consisting of sum
of all previous values
of Qj—l in DM computer
simulation

Signal to granular noise
power ratio

Signal to overload nolse
power ratio

Signal to guantigation
nolse power ratio

Angular frequency

Corner (i.e., 3 decibel)
frequency of integrated

spectrum

INTRODUCED

IN

SECTION

Appendix D

3.1

U
fomd

no
-

Appendix D

Appendix B

Appendix B

W
n



LIST OF SYMBOLS AND ABBREVIATIONS (Cont)

SYMBOL OR INTRODUCED
ABBREVIATION MEANING IN SECTION
wm Message signal maximum
angular frequency 1
wN Error signal noise

egulivalent bandwidth Appendix B
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Granulay noise in DM is similar to that of PCM.

I [
Bennett and Bruce

\J

have shown for PCM that both the
spectrum and amplitude probability density function of
the error are uniformly distributed. The error or
noise n(t) is defined by the difference between the DM

input signal £(t) and output signal g(t) or
n(t) = £(t) - g(t) (B1)

In the granular noise region (i.e., no slope overload),
the noise signal varies with time, resembling a serles
of straight lines of varying slopes extending over an
interval between minus and plus k, the quantum step
size, as 1llustrated in Figure 2-2 of Section 2.1. The
probability density function p(n) of granular noise can

therefore be approximated by
1
p(n) = 5% (B2)

This function is illustrated in Figure Bl. The granular

noise power N, can then be obtained by calculating the

G
mean square error of a signal uniformly distributed be-

tween minus and plus the DM step size k, and then letting
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the noise power in the bandwidth of the signal

(0 = wm) be proportional to the ratio of signal band-
width to total error power bandwidth. Since the vari-
e s - . , . o1l 2
ance of the noise of uniform density p(n) is 5 k~, then
>

the granular noise power N, within the signal bandwidth

. is given by

where wN represents the rectangular noise eqguivalent
bandwidth of the error power, as illustrated in

Figure Bl.

In Section Three, a quantity called the DM slope
loading factor was defined as
kfs
L=, <Bbr>
/D
where D represents the mean power of the signal

derivative.

When the value of A is not large (e.g., 4 < 8), the

value of w,. can be given approximately by wS. When the

N
value of A is large (e.g., A4 > 8, from either large step
size or small slope), periodic patterns as mentloned In

Section Two and illustrated in Figure 2-3 appear in the
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U

error waveform. These patterns tend to reduce the

equivalent total error power bandwidth @, in proportion

where ¢ 1is a constant of proportionality which can be
determined empirically. This expression is equivalent
to the statement that the period of a pattern 1s equal
to the step size divided by the effective value of the
input signal slope. Combining Equations (B4) and (B5)

yields,

e
I
O
&l

(B6)

Solving Eguation (B4) for k, and substituting 1t
into Eguation (B3), we obtain after some manipulation

the following expression for granular nolse power,

= <D> <‘“m -

N, = 5=/ l—) = (B7)
G 3 2 w 2
W N B

where the bandwidth expansion factor B is given in
Section 2.1 by Equation (2-3). Substituting for o
in Eguation (BY) the values given above in the two

regions 4 < 8 and A > 8, we obtain



frd
Y]
(@)

) o)
2 2
N = = -‘D—>Qf‘)‘) for /_l<8 <B8)
G O 2 >
W B
m
and
o
T3 7 A
N, = i 49) 2 for A > 8 (B9)
G 3¢ 2 B

Since at the value 4 = 8, Equation (B8) and (B9) must

be equal, we find that ¢ = 16T, so that
2 3
T D\ A
J = [ Pl 3 -
Ng Eg‘<m2> 3 for A > 8 (B10O)
. m

For example. for a telvision spectrum, Equations (B8)

and (B 10) become

Ng = 0.011 2= | for 4 <8 (B11)
BJ
&3

N, = 0.0014 = , for A > 8 (B12)
G B>

The corresponding signal-to-noise power ratios expressed

in decibels become

il

<
For 4 < 8, = (in Decibels)

- [19.6+430 log,,B-20 1ogloa]

(B13)

For A > 8, == (in Decibels) [28.5+30 log,4B-30 10%10&}

il

=

(B14)
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A closed form expression fo

3

overload nolse power
NO which 1s sufficiently accurate when the signal-to-
nolse power ratio is not too small can be derived quite
simply with the aid of an empirical observation made
from computer simulation results. It is observed that
S/NQ has a maximum value for each and every B at some
value of the slope loading factor 4. The relationship
between B and 4 at maximum S/NQ is illustrated in
Figure 3-1. From the computer derived results, the
relationship between the bandwidth expansion factor B
and slope loading factor 4 at the maximum signal to
quantization noise ratio can be given with reasonable

accuracy as

o8B (B15)

®
i

Since the guantization nolse power NQ consists of the

sum of granular N, and overload NO noise powers, and

G
since at 1ts minimum the derivative of guantization
noise with respect to the slope loading factor must
vanish, then for any given fixed value of the bandwidth
expansion factor B, the quantization nolse considered

as a function of 4 only is a minimum when Equation (B15)

is satisfied. In other words, since

NQ = Ny + Ny (B16)
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and

%@ =0 (B17)
when

e” = 2B, (B18)

then for each value of B, at minimum NQ (i.e., maximum

S/NQ), we have

dN, an «
vl vy (19)
.J;QZ)’:B
2\.1
and, tTherefore,
[ dN,
NO = - Tan N d A (B20)
J e =B

Since NO does not depend on the choice of B, and NG is
given by Equation (B8) in the region of minimum Ny, then

the overload nolise power becomes

¢ >
N, :j - _8%_ <%>me”3&da (B21)
' m

w

or,



9
] 8v“/D>~3aq. \
NO = “‘2-7“ \wg e (3&+1> (822/

m

Thus, overload noise power is characterized as a
function of the slope loading factor for a given signal
power spectral density. As a numerical example, con-
sider the case of a uniform signal spectrum. The over-

load nolse power becomes

2 2
Ny = %;f-e”>&(3a+1) (B23)

The signal to overload noise power ratio expressed in

decibels 1s then,

N%': [13.04 - 10 log(34+1)) (B24)
Equation (B24) is illustrated in Figure B2 along with
points obtained by computer simulation for B = 8,
Gaussian signal density. The departure of computer de-
rived results from that of Equation (B24) for values of
A greater than 1.6 is caused by the influence of granular
noise in this region of larger quantum step ;izes.

Figure 3-3 i1llustrates the composite effect of ovenrload

and granular nolse powers.
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AT optimum performance, the DM system produces its

minimum total quantigzation noise,NO. Since this total
%
noise 1is the sum of granular NG and overload NO noise

powers, and since peak performance occurs in cases of
practical importance at values of the slope loading

factor which are less than eight, then Equations (B8),
(B15), and (B22) may be combined to yield the minimum
total quantization noise N. as a function of the band-

Q

width expansion factor B. Th

D

result can be summarized

as follows.

minimum N

I
=
o>

I
,_..J
5
o
o

< 8} + N (A = 1n 2B}

Q Gt
(B2S)

where,

2 2
_— 1= /DY (In 2B) _
NG{(S = 1ln 2B) < 8} = ?;-<w2> inwggﬁw. (B26)
m
2 ;
NN | D 3 1n 2B+1
No{a = 1ln 2B} = §7~<;§> (~——g§-ﬂ-> (B27)
m

Substitution of Equations (B26) and (B27) into (B25)

yields

ini 7 /D [(1n B)® + 2.06 1n B + 1.17
minimum N. = 7z 5 L

m (B28)
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In the discrete adaptive DM system, since the

instantaneous value of the step size varies from a

minimum value Kk to the maximum Knk, the instantaneous

1

alu he

o
L

-
,..J

O

C)

op

@

loading factor will vary from a

—

minimum value of

g

' to a maximum of A’. The granular

=]

n
noise power NG’ therefore, can be no less than that given

by Equations (B8) and (Bl0) into which is substituted
the minimum value of the slope loading factor for adaptive
DM in place of the slope loading factor for linear DM.
The asymptotic bounds for discrete adaptive DM minimum

granular noise are therefore given by the following.

> >
T T (DY (a)° ) a8 x
Ng = 7§’<w2> 223 for 4 < 8 K (B30)
m
N = -—> (2r)3 for o' > 8 K (B31)
Mo 7 E8 U2 > tor > N B2

353
n

Because the maximum value of the normalized slope loading
factor is given by k’4, the asymptotic lower bound for
discrete adaptive DM overload noise power 1is the same as
that for linear DM glven by Equation (B22) in which the
slope loading factor A is replaced by the normalized slope
loading factor A’. The minimum value of total quantiza-

tion noise for the DM system has been given by Equation (B28).



The minimum quantation noise asymptote extends over
the range of normalized slope loading factor A’ beginning

at the value determined by equating NQ and minimum N

value determined by equating minimum N. and N {a < 8 K_)

- Q “ G n
given by Equations (B28) and (B30) respectively. The
former is given approximately by Equation (B15); the
latter is given by

/
A" =K/ (In B)T +2.06 In B + 1.17 (B32)

As a numerical example, consider the case of a

uniform signal spectrum with K, = 8, B=28. The

=

asymptotic bounds of granular, overload, and minimum
guantization noise powers corresgponding to Egua-

tions (B30), (B31), (B23), and (B28) respectively, are
given in Table Bl. These results are illustrated in
Figure B3 in terms of signal-to-nolse power ratio ex-
pressed in decibels, along with results obtained by

computer simulation.



TABLE Bl

Discrete Adaptive DM Performance With a

Uniform Signal Spectrum (Kn = 8,B = 8)

ramecor. | Bauation Result

N, (a7 < 6L) (B30) 1.67x1072 (A1)

Ny (a7 > 64) (B31) | 2.62x107 (ar)3
N, (B23) e 3P (3a741)

Minimum NQ (B28) 010
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APPENDIX C

PCM QUANTIZATION NOISE POWER DERIVATIONS

The expression for granular noise power can be

P - . - 4 L
ocbtained from the work of Bennett, who showed that

o= 75k (c1)

where k is the silze of a guantum step, assuming that the
steps are of equal size (i.e., uniform guantizer).

Given that the magnitude of the largest level is o times
the root mean sguare value of the signal, and the guantizer
produces a finlte number of levels Q, the step size

becomes
k = = (c2)
where again for convenlence, the mean signal power, S,

1s assumed unity. Since the bandwlidth expansion factor B

is equal in PCM to the number of digits of encoding, then

Q=2 (c3)
and the granular nolse power becomes
2
1« .
NG = 3 8 (64)
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expr ion for the overload noise power, that

nois

o
D

is, ©

4]
[
o

aused by limiting the signal to the
largest quantum level @, can be obtained by writing the
mean square value of the difference between the output
of an ideal limiter and its input. Given an input sig-
nal with amplitude probability density function p(x),

a mean of zero and a unit variance, the mean sguare

difference (i.e., overload noise power) was first re-

ported by ShteinDS as

For the Gausslan density case, since

1 -kt
p(x) = ——e 2 (cé)
\’27T
then,
P 2
Ly
Ny :\/7% | (x-a)%e 2" ax (c7)
a
or,
<o 2 fee 2 ‘OO
/2 2 -ix -% /2 2 -ix
Ny =/ % [} x“e 2% dx - EQ\/F% xe 2%+ = a e 2
e o a



xpression
- o0 2 Q
| 2 i { 1 ""‘lQ_r /_§ -1~
Ny = (1+a )LQ = e 2% dx} 4 = ae 2% (c9)
J(I\/gv' .
For the exponential density case, since
- /D :
p(X)=-1-‘/~2;e V2 x| (C10)
Y
then,
oo
_ - /O 5 .
Ny = /2 jﬁ (x-a)e J2 x (c11)

-2« (c12)

If the PCM system employs the logarithmic companding

reported by Smith,39 then the granular nolge power NGC

was shown by Smith to be gilven by

lﬂiﬂiﬂiqg-[l + (%)2 + 2A<%>J, (c13)
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where the quantity A is defined by Smith as

b j
O
L
o+
=y
®

Gaussian density, the guantity A becomes

and the granular noise power is then

JE () (@)
(c16

el 7y (2

2

o
M

GC
)

In many applications, it is commonly found that o > 3,
in which case, then, Equation (Cl€) can be given approxi-

mately by

oo * 3 1‘11’1 5 ﬂl * <%>2 v2/2 (ﬁ-)] (c17)

For the exponential density case, the quantity A

becomes

A = 1 - e™ V2 9 /5 a1)], (c18)

1
/3
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(c19)

Again, if o > 3, then Equation (Cl9) can be given

approximately by

Nyp 2 % [ﬁlng“éw ﬂi + <%>2 ) (%)J (C20)



APPENDIX D

COMPUTER SIMULATION OF LINEAR

AND ADAPTIVE DM

The compuier simulations of linear and adaptive
DM were accomplished using a Monte Carlo method reported
by O‘Ne&l.32 Employing a FORTRAN program, he simulated
linear DM, and used independent random numbers with a
Gausslan distribution to simulate a flat bandlimited
(i.e., uniform power spectrum) input signal. In thils
appendix, the method used by O'Neal is reviewed, the
modifications necessary to simulate discrete adaptive
DM are discussed, and the numerical results of all
computer simulations are presented. The following were

simulated as wpart of this investigation:

(1) Linear DM with variable step size and band-
width expansion factor.

(2) Discrete adaptive DM with variable step size,
intermediate gain factors, final gain factor,
and bandwldth expansion factor.

(3) Message signals having Gaussian and exponen-
tial amplitude probabiliiy densities, with
variable amplltude limiting.

(4) Message signals having uniform and integrated

power spectra.
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t 1s not necessary to simulate the
DM system decoder since the logic in the encoder feed-
back path is identical to that of the decoder. The
adder and delay element in the feedback path form an
accumulator (i.e., the integrator illustrated in

Figure 2-1). The delay time is simply that of one

sample.

A message signal having a uniform power spectrum
and a bandwidth of one half the sampling rate is easily
simulated by using independent random numbers. This
of course yields a value of unity for the bandwidth
expansion factor, B. To obtain different values of
the bandwidth expansion factor, it is simply necessary
to filter the random samples with a digital low-pass
filter whose cutoff frequency is the fraction 1/2B of
the sampling rate. O’Neal32 used a nonrecursive
digital filter which obtained its low-pass characteristic
by convolutling the input signal samples with a sequence
of numbers representing the digital filter impulse
response. Digital filtering techniques of this type

23 A

have been reported by Kalser. message signal having
an integrated power spectrum is easlly simulated by

passing the random samples through a digital simulatlon
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a low-pass resistance capacitance metwork.SE The

O
=N

input seqguence of random samples is obtained from pub-

)

36

}_._J

ished tables, such &s those of the RAND Corporation.

The program reguired to accomplish the functions
of linear DM operation is simple. Given the input
sequence of numbers Ij with J = 1,2,3,...,J where the
amplitude density and power spectrum of this seguence
are those stated above, then the guantizer output Qj in

the interval J has a magnitude given by the step size k,

and a sign given by the difference (Ij—Sj_l) or
Qy = (stgn(I;-8; 1)) |k { (p1)

where Sj~1 is the summation of all previous values of

Qj_l} or
S = @ Tt Q- (D2)

The method by which these operations are accomplished
is illustrated in Figure Dl. The total qguantization

nolse or error Ej in the interval j is simply

E, = (I.-S.) (D3)

To obtain the guantlzation noise power NQ, 1t 1s neces-

sary to filter the sequence E., into the seguence n.,
Y h J



and then average the sum of the squares of the sequence n
5

A"

over the number of samples used, or

J

Yo

— J
J = ——-——————-—-—J:~ !
Ng 3 (D4)

The number of samples, J, used to represent the
signal in the examples presented earlier for linear
and adaptive DM is 5000. Although as few as 500 samples
produced results which differed from those presented by
less than 1.5 decilbels, in all simulations glven in this
work 5000 samples were used. Iigure D2 illustrates the
effect on S/NQ by the use of either 500, 1000, 2000, 4000,
or 5000 samples for the case of a message signal having
a uniform spectrum and Gaussian signal density, with a
bandwidth expansion factor value of eight. The case of
5000 samples is represented in Figure D2 by dashed lines
for the three values of the slope loading factor 1llus-
trated (i.e., 4 = 0.55, 2.2, and 8.8). The results of
using 5000 samples for a brcadband signal were illus-
trated in Figure 3-3 of Section 3.3. The results illus-
trated in Figure D2 show that the variation of S/NQ
with number of input samples 1s small. Table D1 presents

the numerical results of S/NQ expressed in decibels from



1]

iEOOO SAMPLES,s=2.2 &
sop o —

1010 % %

5000 SAMPLES,«=8.8

S/Ng IN DECIBELS

J_

o {“ - I A
5000 SAMPLES ,.a=0.55
0 | |
500 1000 2000 4000

NUMBER OF INPUT SAMPLES,J

FIG.D2 S/Ng PERFORMANCE OF LINEAR DM FROM

COMPUTER SIMULATION RESULTS;
UNIFORM SPECTRUM, GAUSSIAN DENSITY,
B =8.



TABLE D1

Computer Simulation Results for Linear DM,
Gaussian Signal Density, Uniform Signal Spectrum,

B = 8, with Several Input Sample Sizes.

Number S/NQ in Decibels for Following Step Sizes
of Input
Samples 0.090 0.125 0.18 0.25 0.36 0.50 0.72 1.0 1.4 2.0
500 1.8 3.0 h,6 7.7 12.8 19.0 19.8 18.2 13.6 10.1
1000 2.0 2.9 h.5 7.1 12.7 19.1 20.8 17.9 13.9 10.2
2000 1.9 3.0 L7 8.0 14.1 20.1 20.5 17.3 13.4 9.7
LO0O 2.2 3.3 5.3 8.7 15.1 20.6 19.8 16.7 13.1 9.3
5000 2.0 3.2 5.1 8.4 | 14.2 | 20.1 19.5 16.6 | 12.7 9.0

LHT
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o

computer simulating linear DM with a signal having a
Gaussian density, unit variance, uniform spectrum, and

a2 bandwidth expansion factor value of eight. The

1.0, 1.4, and 2.0. The slope loading factor correspond-
ing to each of these step sizes can be calculated from

the results given in Table 3-3 of Section 3.3.

The S/NQ results from computer simulations of
linear DM at various step sizes for television, speech,
and broadband signals are given 1in Tables D2 through D5
inclusgive. In all cases, the number of input samples
is 5000. The slope loading factors corresponding to
each of the step sizes gilven can be calculated from

the results of Table 3-3 of Section 3.3.

Figure D3 illustrates the block diagram of dis-
crete adaptive DM computer simulation. The accumulator
1s the same as that of linear DM. The seguence ol
two congecutlve guantizer outputs of the same sign are
sensed by the comparator, which in turn actlvates gain

factor increments K; (i.e., 1 <1 < nj.

The modification of the linear DM program reqguired

to include the gain factor increments is simple.



MESSAGE
SIGNAL
INPUT
I

TWO LEVEL *k,
QUANTIZER

0

_T DELAY |e—s

Qj
I DELAY
GAIN
¢ COMPARATOR

F o e

7\;51

FILTER

QUANTIZATION
NOISE OUTPUT
n .

1

FIG. D3 BLOCK DIAGRAM OF DISCRETE

ADAPTIVE DM COMPUTER
SIMULATION.
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Equations (D1), (D3), and (D4) remain the same. Equa-

tion (D2) is changed to read

2]
|
a0
+
=]
+
+
J
W)
\J1

where the quantity RJ has the same sign as that of Qj’
but has a magnitude greater than Qj by the gain factor Ki’

or

Ry = {Sign(IJ—Sj_l)}l Kikl . (D6)

The gain factor Ki 1s obtained from an IIF statement
which reads, in effect, that if the signs of Qj—l and
Qj are alike, increase Ki to Ki+?5 if unalike, decrease

Ky to Ki—l'

The S/NQ results from computer simulations of dis-
crete adaptive DM at various step sizes and gain factors
for television, speech, and broadband signals are glven
in Tables D6 through D10. In all cases, the number of
input samples 1s 5000. The normalized slope loading
factor corresponding to each of the step sizes glven
can be calculated from the results of Table 5-1 of

—

Section 5.4.
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