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ABSTRACT

New results are presented offering insight into the

performance and optimization of linear and adaptive delta

modulation, together with a comparison with pulse code

modulation. The results are applied to three cases of

practical importance: television, speech, and broad-

band signals.

The results presented can be grouped into the

following three categories. First, a performance

characterization of linear delta modulation (DM) is

given. With the aid of certain empirical observations

made from computer simulations, closed form expressions

are found for granular noise, overload noise, and

minimum quantization noise powers. These results per-

mit the prediction of the optimum performance obtainable

from DM at various bandwidth expansion factor values for

many classes of signals. A defined quantity called the

slope loading factor is usefully employed in the char-

acterization of DM performance. It is shown that the

slope loading factor is a normalizing variable when

used to describe S/N Q performance. The optimum perform-

ance of DM with signals such as television and speech

having an integrated spectrum exceeds that with a broad-

band signal having a uniform spectrum. It was also found



iv

that DM performance obtained with a Gaussian message

signal amplitude probability density is essentially the

same as that obtained with an exponential density.

Second, the advantages to be gained when adaptive

control is introduced into the DM system are investi-

gated. If the message signal ensemble is nonstationary,

a companding function is required. It is shown that

this may be provided in a DM system by forcing the step

size to respond adaptively to changes in the derivative

of the input signal. Adaptive DM may take either a

discrete or continuous form. It is shown that discrete

adaptive DM does not sacrifice optimum linear DM per-

formance to achieve companding, and further that large

values of companding improvement are possible. Because

of the nonstationary nature of television and speech

signals, it is concluded that adaptive DM appears better

suited than linear DM to such signals. Finally, linear

DM is shown to be a special case of discrete adaptive

DM.

Third, the noise performance of PCM with Gaussian

and exponential signal densities is presented together

with a comparison between DM and PCM for television,

speech, and broadband message signals. It is shown

that the characteristic form of the performances of PCM



and DM are similar when the independent variables are

the amplitude loading factor and slope loading factor

respectively. The effects of logarithmic companding

and signal amplitude limiting on PCM performance are

investigated. It has been found that adaptive DM appears

capable of realizing a larger companding improvement than

PCM, and that amplitude limiting in PCM is the counter-

Part of slope limiting in DM. For a television signal,

it is concluded that DM provides a greater maximum S/N

performance than PCM for values of the bandwidth expan-

sion factor less than eight. For a speech signal, it

is concluded that the performance of discrete adaptive

DM with a bandwidth expansion factor value of four and a

final gain factor value of only eight is approximately the

same as that of companded PCM with a compression param-

eter value of one hundred. For a broadband signal, it

is concluded that the performance of PCM is superior to

that of DM. Finally, because of the complex nature of

television and speech communication, it is concluded that

subjective tests are needed before further conclusions

regarding the performance advantages of discrete adaptive

DM can be reached.

For an abridgment of the material in this disserta-

tion, the reader is referred to a paper of the same

title, written by the author, appearing in the Pro-

ceedings of the IEEE, March, 1967.
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1. INTRODUCTION

In recent years, systems designed for transmitting

continuous messages but containing discrete signals

have become widespread. Pulse Code Modulation (PCM)

and Delta Modulation (DM) belong to this class of com-

munication systems into which is included a discrete

communication channel. Shannon proposed that such

systems be called mixed. In the general case, a mixed

system consists of:	(1) an encoder which transforms

the continuous message into a discrete one; (2) a dis-

crete channel or digital transmission network which con-

veys the transformed message to a receiver; and (3) a

decoder or receiver which transforms the discrete mes-

sage back into its continuous state. These transforma-

tions, however, are not achieved without incurring some

penalty upon the quality of the received continuous

message. This penalty generally takes the form of a

type of distortion termed quantization noise, which is

attributed in the encoding process to the dividing of a

continuous signal into a finite number of representative

levels. The quantization noise can be made arbitrarily

small at the expense of channel bandwidth. Obviously,

the challenge to be taken here is the optimization of

system performance; that is, the minimization of both

quantization noise and channel bandwidth. It is



necessary, in order to accomplish such an optimization,

to understand how the quantization noise is affected by

the characteristics of the signal and the parameters of

the encoding system.

One of the purposes of this dissertation is to

provide insight into the noise behavior and optimiza-

tion of linear DM by characterizing its performance by

relatively simple closed form approximate solutions.

The fidelity criterion used to define optimum perfor-

mance is that of minimum mean square error or noise

power. Linear DM is a simple type of predictive

quantizing system and is essentially a one digit dif-

ferential pulse code modulation system.
29 31,33

Such

systems are based primarily on an invention by Cutler 7

and de Jager, 
11
 who used one or more integrators to

perform the prediction function. Their invention is

based on transmitting the quantized difference between

successive sample values rather than the samples them-

selves. When the quantizer contains only two levels,

the system is reduced to its simplest form and is re-

ferred to as delta modulation, or simply DM. Both the

encoder and decoder make an estimate or prediction of

the signal's value based on the previously transmitted

signal. In linear DM, the value of the signal at each

2



sample time is predicted to be a particular linear

function of the past values of the quantized signal.

0'Neal³² has given a good description of linear DM

and was the first to compare the results of digital com-

puter simulation with those of analysis. Van De Weg 4¹

has provided an expression for granular noise power,

and Protonotarios³5 has described slope overload noise

in detail. In addition to the above, the literature

abounds with discussion, modification and application

of linear DM (e.g., see References 1, 2, ³, 10, 11, 1³,

16, 17, 18, 19, 20, 2³, 24, 25, ³0, ³4, ³6, ³7, and 44).

For problems concerning the performance and optimi-

zation of DM, it is convenient to have a model, involv-

ing only a few essential parameters, which will satis-

factorily characterize the noise performance of the DM

system. Present formulations of DM are complex and

unwieldy. In Section Three the description of linear

DM performance is simplified by employing useful ap-

proximations and observations of computer simulation

results. Using simple closed form expressions to

describe DM noise performance, we can gain insight into

the operation of linear DM, especially with an eye

toward characterizing adaptive systems, These simple

formulations do suggest adaptive systems as well as

their characterization.
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Unfortunately, the performance of linear DM is

s ensitive to changes in the mean power of the message

signal. As a result, optimum performance from the linear

DM system is limited to a very narrow range of message

signal mean power variation. This is indeed a severe

restriction for many signals of practical importance. It

will be shown that by incorporating an adaptive technique

into the DM system, the restriction is abated.

The second purpose of this dissertation is to intro-

duce and investigate an adaptive DM concept which appears

to provide a promising means for the binary encoding of

television and speech signals. In adaptive DM, the

value of the signal at each sample time is predicted to

be a nonlinear function of the past values of the

quantized signal. Introducing nonlinear prediction into

DM by forcing the system to respond adaptively to changes

in the slope of the input signal provides a useful means

of extending the range over which the delta system yields

its optimum performance. This would not be necessary if

the message signal ensemble were stationary. However,

ensembles of many communication signals are nonstationary.

These include speech, television, facsimile signals and

the like. It is, therefore, useful to consider a means

of incorporating adaptive techniques into the delta pro-

cess, enabling the system to encode nonstationary en-

sembles in an optimal way.
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In Section Four, an adaptive DM system which

seems promising for the encoding of television and

speech signals is presented. From the simple closed

form approximations of Section Three, the expected per-

formance of the adaptive system is found, and presented

in Section Five. Computer simulations are used to

verify the predictions of performance and aid in system

optimization. The amount of companding improvement

achieved by the adaptive system is found and presented

along with expressions relating to the optimum selec-

tion of linear and adaptive DM parameters.

The third and final purpose of this dissertation

is to quantitatively compare the performance of linear

and adaptive DM with that of PCM. Since encoding a

continuous message by DM may be much simpler and lower

cost than by pulse code modulation (PCM), there is con-

siderable interest in determining how the performance of

DM relates to that of PCM. In comparison with PCM, DM

has a number of important differences and several

advantages. Since DM overloads on slope, its optimum

performance is a function of the message signal spectrum.

Since PCM overloads on amplitude, its optimum perfor-

mance is a function of the message signal amplitude

probability density function. When companding is used

for nonstationary ensembles, the optimum performance
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range of PCM is extended, as it is in the adaptive DM

system. The fundamental differences in the overload

characteristics of DM and PCM require that the optimum

performance range of each be well defined for the

classes of message signals to be considered.

In Section Six, a performance comparison is made

between PCM and linear and adaptive DM. First, a

characterization of PCM granular and overload noise

powers is given for the following cases.

(1) Gaussian and exponential message signal

amplitude probability densities

(2) With and without logarithmic companding

(³) With and without message signal amplitude

limiting

Then the optimum performance of PCM with a television

signal is compared with that of adaptive DM. Next, a

comparison of the performances of adaptive DM and com-

panded PCM is made when the message signal is speech.

Finally, linear DM performance is compared to that of

PCM having uniform quantization for the case of a

broadband signal.

The computer simulations cited herein and described

in Appendix D were obtained using a FORTRAN program
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reported by O'Neal,
³² 

who used random numbers to repre-

sent sample values of the message signal. His program,

written for linear DM, was modified to incorporate the

parameters necessary for the adaptive case

The results of this work are applied mainly to

three cases of practical importance: television,

speech, and broadband message signals. The first two

will be approximated by a signal having an integrated

power spectrum and an exponential probability density

function. The integrated spectrum is defined as one

having an asymptote of negative six decibels per octave

of increasing frequency starting at w ³ and bandlimited

to some maximum frequency ωm. The suitability of the

integrated spectrum and exponential density for de-

scribing television and speech signals can be established

by examining the results of Kretzmer,²² O'Neal, ³³

Davenport, 9 and Fletcher.¹4 The broadband signal (e.g.,

frequency division multiplexed signals) will be ap-

proximated by one having a uniform or white spectrum

bandlimited to w and a Gaussian amplitude probability

density function. The results also can be applied

directly to other communication or stochastic signals

which have the spectrum and density characteristics

described above. The assumptions and restrictions used

in this work are that (1) error free transmission exists



in the digital channel, (2) the encoder sampling rate

and digital transmission channel bit rate are constant,

and (³) both the DM encoder and decoder employ a single

ideal integrator.

8
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2. LINEAR DM, A QUALITATIVE DISCUSSION

2.1 System Description and Performance 

The basic linear DM system consists merely of a

two level quantizer and a feedback path containing a

single integrator, as illustrated in Figure 2-1. A

sampler is included either in the quantizer or prior

to the subtractor. The quantizer produces at each

sampling instant a pulse of uniform duration and

amplitude k, the latter commonly referred to as the

step size. The pulse or step is of positive polarity

if the error signal or quantizer input is positive, and

of negative polarity if the error signal is negative.

The sequence of binary pulses produced by the quantizer

is transmitted via the digital channel to the decoder

where a replica of the original input signal is re-

constructed. The decoder consists of an integrator

identical to that in the encoder, and a low pass

filter having the same bandwidth as the input signal.

In the delta system, quantization noise manifests

itself in two forms. The first of these is granular

noise which results from the fact that the continuous

signal is forced to assume discrete values which are

multiples of the quantizer step size. Granular noise

can be viewed as being similar to PCM quantizing noise,

and as in PCM, is a monotonic function of step size
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(i.e., as the step size increases, granular noise

increases). The second form of DM quantization noise

is overload noise which is also a monotonic function

of step size, but instead decreases with increasing

step size. Typical waveforms of the DM system with

single integration are illustrated in Figure 2-1. The

quantization noise is illustrated at the bottom of

Figure 2-2. If the step size is not too large relative

to the standard deviation of the signal, the autocor-

relation of the granular portion of the quantization

noise becomes zero for time intervals which are large

compared to the sampling period.
11

For relatively

large step sizes, periodic patterns and tendencies

appear in granular noise waveforms. Figure 2-³ illus-

trates the characteristic periodic behavior with large

step sizes.

For small step sizes, overload noise predominates.

As the step size approaches zero, the difference be-

tween the output and input approaches the input itself.

Therefore, the overload noise power approaches the

signal power, while the granular noise power approaches

zero. This behavior is illustrated in Figure 2-4,

which portrays granular noise power N G, overload noise

power No, and their sum or total quantization noise

power N, as a function of the DM step size k, assuming
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a signal whose mean power, S. does not vary with time.

Figure 2-4 illustrates that optimum performance (i.e.,

minimum NQ ) occurs for only a small range of variation

of k. Alternatively, it could be stated, as will be

shown quantitatively in Section Three, that optimum

performance occurs for only one value of the signal

standard deviation, and that for other RMS values of

the signal the performance is degraded. Unfortunately,

this represents a serious limitation of linear DM, but

one which can be removed by recourse to adaptive

techniques, as will be discussed in Sections Four and

Five.

Because the DM quantizer in the encoder contains

only two levels, the digital transmission channel pulse

rate P is equal to the DM sampling rate f s . The

minimum bandwidth f
D 

required of the transmission

channel is then equal to one half the sampling rate.

The ratio of transmission channel bandwidth to message

signal bandwidth fm which shall be termed the bandwidth

expansion factor and denoted by B in this work, is then

simply one half of the ratio of sampling rate f to

signal bandwidth f
m
, or since,

P = f
s 

= 2f
D	

(2-1)
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and,

(2-2)

then,

(2-³)

2.2 Comparisons With PCM 

As in DM, the quantization noise in PCM manifests

itself into two forms. The first is the noise resulting

from the discrete quantization process. We shall refer

to this as granular noise so as to draw an analogy with

its DM counterpart. In the literature, however, this is

commonly referred to as quantizing noise, since the second

form of noise is usually ignored. This second form of

PCM quantization noise is caused by the limiting of the

message signal to the maximum and minimum levels of

the quantizer. We shall refer to this noise as over-

load noise. As opposed to DM overload noise which is

produced when the message signal slope exceeds the slope

capability of the DM quantizer, PCM overload noise is

produced when the message signal amplitude exceeds the

maximum level of the PCM quantizer. Exact analytical

expressions for both PCM granular and overload noise
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powers are given in Section Six as a function of the

bandwidth expansion factor and a defined quantity

called the "amplitude loading factor." It will be

shown later that the relationship between quantization

noise and amplitude loading factor produces results

similar in form to those illustrated in Figure 2-4.

DM and PCM are functionally different in a number

of ways. First, in a PCM system the signal is generally

sampled at a rate commonly known as the Nyquist rate

which is twice that of the highest frequency present in

the signal. In a DM system, by comparison, the sampling

rate is generally many times that of the Nyquist rate.

In a PCM system, the pulse rate is the sampling rate

multiplied by the number of digits of encoding. The

bandwidth expansion factor for PCM is then simply equal

to the number of digits of encoding.

The number of quantizing levels in a PCM system

is generally many times greater than two (e.g., in the

order of 128 levels, or seven digits, for voice signals),

whereas in DM it is only two levels. It should be

noted here that a feedback quantizing system with a

quantizer having more than two levels is generally

referred to as differential PCM, or DPCM. Although the

DPCM system has many of the characteristics of DM, it

requires much more terminal equipment.



In PCM the signal is converted into pulse ampli-

tude samples, which are then encoded into pulse words

or groups. As a result, information concerning the

Pulse groupings referred to as "framing" must be in-

serted into the binary pulse sequence. In DM, since

the quantizer consists of only two levels, the encoding

into binary form is done in a single operation. As a

result, no framing is required in DM. The consequence

resulting from the lack of required framing as well as

only two levels of quantizing is the outstanding

simplicity and economy of the DM system.

The PCM system encodes the signal itself whereas

the DM system, because of its feedback loop integrator,

encodes the derivative of the signal.
11

As a result,

if the signal amplitude is greater than the largest

representative level of the quantizer, the PCM system

is overloaded. With deterministic signals, this con-

dition can be prevented through simple design. With

stochastic signals, however, there will always be a

finite probability that overload will exist. The

optimum design in this case, then, is one that minimizes

the quantization noise power as a function of the mean

power of the signal.
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In the DM system, overload will not be a function

of the signal amplitude as in PCM, but instead will

occur when the slope or derivative of the signal exceeds

the slope capability of the DM system. Again, overload

cannot be prevented if the signal is stochastic, it can

only be minimized with respect to the mean power of the

signal. If, however, the stochastic Signal ensemble

is nonstationary, then there can be no optimum linear

DM system, and it will be shown that only an adaptive

system will suffice.

In the PCM system, performance optimization is

dependent on the amplitude probability density function

of the input signal, but is independent of the signal's

power spectrum. As a result, a PCM quantizer can be

optimum only with respect to one input signal probabil-

ity distribution, which of course requires that the

statistics of the ensemble be stationary. Thus, even

if the signal power remains constant, if the probability

density of the signal changes, the PCM system may be

no longer optimum. By contrast, DM performance will be

shown to be dependent on the signal power spectrum and,

for the densities considered in Sections Three and Five,

independent of the signal amplitude probability density

function. A summary of some comparisons between PCM and

DM is given in Table 2-1.



TABLE 2-1

Some Comparisons Between PCM and DM

Characteristic	PCM	Linear DM	Adaptive DM

1. Prediction	None	Linear	Nonlinear

2. Number of Quantization Levels Usually Many More Two	Two, But of

Than Two	 Variable Size

3, Sampling Rate	E 2 f
m	

f
s	

f
s

4. Signal Function Encoded 	Amplitude	Derivative	Derivative

5. Overloading Function	 Amplitude	Slope	Slope

6. Optimization is a Function	Signal Amplitude Power Spectrum Power Spectrum

of:	 Density

7. Range of Optimum Perfor-	Large With, But	Small	Very Large

mance With Nonstationary	Small Without,

Signals	 Companding
	 fs

8. Bandwidth Expansion	Number of Digits — (fs--2	f
m
/		(17L)

m

Factor, B, Equals

9. Framing Required	Yes	No	No
0



21

3. LINEAR DM, A PERFORMANCE CHARACTERIZATION 

AND OPTIMIZATION 

3.1 Slope Loading Factor Defined 

In order to avoid slope overload, the slope

capability of the DM system must be greater than the

slope of the input signal. Since the former is given

by the product of step size k and sampling rate f s ,

then in order that the system not be overloaded, the

following condition must be satisfied:

(3-1)

where , f'(t) 1 represents the magnitude of the input

signal derivative with respect to time. If we denote

the mean power of the derivative of the stationary

stochastic signal by D, then we shall define a term,

denoted by t. and called the slope loading factor, as

follows:

The slope loading factor given by Equation (3-2) repre-

sents the ratio of the slope capability of the system

to the effective value of the slope of the stationary

signal. It is, therefore, a dimensionless quantity and
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a measure of the degree by which the input is loading

the capability of the DM system. in terms of the one

sided power spectrum F(ω) of the signal, the mean power

of the signal derivative is given by

(3-3)

where ω
m 

= 2πfm
 
is the maximum angular frequency to

which the signal is bandlimited prior to encoding.

In Table 3-1, the values of F(w) and 2 are given

for the types of signals to be considered in this work.

For television and speech, the integrated power spectrum

as given in Table 1 will be used with values of ω3/ωm
D m

of 0.011 and 0.23 respectively. These values, which

will be used consistently herein are obtained from the

results of O'Neal
32 

and Fletcher.
14

The slope loading

factor is expressed in Table 3-1 in terms of the band-

width expansion factor, B, which for DM is given by

Equation (2-3).

3.2 Quantization Noise Power 

It is shown in Appendix B that granular noise

power NG as a function of 2 can be given with reasonable

accuracy by two asymptotes. The first of these has a



TABLE 3 - 1

Power Spectrum and Slope Loading Factor

For Uniform and Integrated Signal Spectra

2 3

Uniform Spectrum 1	Integrated Spectrum
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slope of six decibels per octave, that is granular

noise power increases by six decibels per octave

increase of A, and exists in the region A < 8. The

second asymptote has a slope of nine decibels per

octave, and exists in the region A > 8. The asymptotes

are

(3 -4)

and

(3-5)

For uniform and integrated spectra, these expressions

are given in Table 3-2, where for convenience the mean

signal power, S, and all impedances are assumed to be

unity. When S is not unity, it is of course simply

necessary to include it in the numerators of both F(ωm)

and N
G' 

and to include	in the denominator of A.

(i.e., divide k by S  , the standard deviation of the

signal). Noise power is of course expressed in watts.

In DM systems, granular noise predominates for

large values of A, and overload noise predominates for

small values of A. From the computer simulation results



TABLE 3-2 

Linear DM Results With Uniform And

Integrated Signal Spectra

From
Uniform Spectrum	Integrated Spectrum

Equation

R)



TABLE 3-2 (Cont) 

Linear DM Results With Uniform And

Integrated Signal Spectra

From
Equation	

Uniform Spectrum	Integrated Spectrum

Minimum NQ



A = ln 2B. (3- 6)
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given in Appendix D, it has been observed that minimum

quantization noise power occurs at a value of the slope

loading factor given approximately by

This relationship is illustrated in Figure 3-1 along

with points obtained by computer simulation for the

cases of uniform, television, and speech spectra. In

the computer simulation, both Gaussian and exponential

signal amplitude distributions were used with each of

the three spectra cited. It was found that the results

were substantially the same, that is neither the value

of minimum quantization noise power nor the points

illustrated in Figure	changed significantly when

the amplitude distribution of the signal was changed.

More will be said about this in Section Five.

Using Equation (3-6) and the fact that at its

minimum the derivative of quantization noise with re-

spect to slope loading factor must vanish, closed form

empirical expressions for overload noise power N o and

minimum quantization noise power N Q can be obtained.

The results from Appendix B are as follows:



64

28

0
H
U

z
0

(7)
z

X
Li

z

COMPUTER

 SIMULATION

POINTS

BROADBAND

TELEVISION

SPEECH

SLOPE LOADING FACTOR „AI

FIG. 3-1 RELATIONSHIP BETWEEN B AND  IN
LINEAR DM AT MINIMUM QUANTIZATION

NOISE.



2 9

(3 -7)

For uniform and integrated spectra, Equations (3-7) and

(3-8) are given in Table 3-2. The optimum performance

(i.e., maximum S/NQ) expressed in decibels is the ratio

of mean signal power to minimize NQ, or simply

(3-9)

and where S has been assumed unity for convenience, as

stated earlier. Throughout this work, signal-to-noise

power ratio computations will be accomplished using the

method shown by Equation (3-9).

Equations (3-2) through (3-9) provide a complete

noise performance characterization of the linear DM

system. Equation (3-8) indicates that the optimum delta

system is capable of trading noise improvement with

bandwidth expansion at a rate somewhat less than nine

decibels per octave increase of B. A factor to note

from Equation (3-8) is the strong dependence of maximum
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S/NQ on signal power spectrum. In the examples to

follow, it will be shown that this characteristic of

its Performance gives the DM system an advantage over

PCM for the class of signals having an integrated

spectrum.

3.3 Application to Television, Speech, and Broadband 

Signals 

The optimum performance (i.e., maximum S/NQ )for

uniform (e.g., broadband signal), television, and speech

spectra are given in Table 3-3 and illustrated in

Figure 3-2 as a function of the bandwidth expansion

factor, along with points obtained by computer

simulation.

The S/N
Q 
performance as a function of the slope

loading factor is illustrated in Figure 3-3 for the

uniform signal spectrum and Gaussian density (i.e.,

broadband signal) case at several values of B. For the

integrated spectrum case, the performance curves are

identical to those of Figure	the only change re-

quired being a shifting of the ordinate scale. It is

clear that this is so from Equations (3-4), (3-5), and

(3-7), since noise power at some specified value of t.

is proportional only to derivative power D. Similarly,

for a specified value of B, the minimum quantization
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noise power given by Equation (3-8) is proportional to

the derivative power. For example, to obtain the S/NQ

performance of television or speech, it is simply neces-

sary to add 16.9 dB or 4.5 dB respectively to the S/NQ

values that appear on the ordinate scale in Figure 3-3.

The slope loading factor is shown, therefore, to be a

normalizing variable for describing the S/NQ performance

of linear DM. The computer points shown in Figure 3 - 3
32

were first reported by O'Neal ; ³² his normalized step

size can be shown to be related to the slope loading

factor.

From Equations (3-8) and (3-9), the improvement in

maximum S/N
Q 
of the integrated spectrum (e.g., television

and speech signals) relative to the uniform spectrum

(e.g., broadband signal), expressed in decibels, is

given by

Maximum S/NQ Improvement

of Integrated Spectrum

Relative to Uniform

Spectrum (in decibels)

(3-10)
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Applied to the cases of television and speech, Equa-

tion (3-10) is given in Table 3-3.

For a large class of signals, the ratio (m3/)) is

much less than unity. Television and facsimile signals,

for example, are members of this class, Asa result, Equa-

tion (3-10) can be reduced to

Maximum S/N
Q
 Im provement

of Integrated Spectrum

Relative to Uniform

Spectrum (in decibels)

Equations (3-10) and (3-11) are illustrated in

Figure 3-4 along with points obtained by computer

simulation.

Before leaving the subject of linear DM, it may be

interesting to consider one digression, namely, exploring

the possibility that integrating the input signal could

perhaps improve DM performance. That this is in fact

not the case will be seen from the following example.

Given an input signal having a uniform spectrum, it is

desired to determine what performance can be expected

from DM if the signal is integrated prior to encoding

and differentiated after decoding. The rationale for
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such filtering might be that in slope limiting the

input signal, the DM system yields a lower value for

minimum noise than if the original uniform spectrum

were encoded. The falacy with such logic is that the

additional noise produced by the differentiation pro-

cess at the decoder output compensates for noise re-

duction through signal integration. The proof of this

statement is arrived at directly through the use of

the relationships for minimum quantization noise power

in the cases of uniform and integrated signal spectra.

If the original uniform spectrum signal is integrated

with a network having a transfer response such that the

power spectrum density at the output of the network

becomes that of the integrated spectrum; and if the DM

system step size is adjusted such that the quantization

noise power is minimized, and given by Equation (3-8),

then the minimum quantization noise power is less than

that which would have resulted had the original uniform

spectrum signal been encoded. The noise reduction can

be expressed by the ratio of the minimum quantization

noise obtained with an integrated spectrum to that

obtained with a uniform spectrum, or

Minimum NQ (Integrated Spectrum)

Minimum NQ (Uniform Spectrum)
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At the output of the DM decoder, a. differentiator

network (i.e., the inverse of that which integrated the

original uniform spectrum signal) processes both the

decoded signal and quantization noise. As a result,

the mean power of both is increased. The ratio of the

S/N at the differentiator output to the S/N at its input

is given by

(Differentiator
output 

(	or) input	)

Then, by combining Equations (3-12) and (3-13), the

ratio of the differentiator output maximum S/N
Q 

to the

maximum S/NQ realizable with a uniform signal spectrum

becomes

(Differentiator
Maximum 

S/NQ(	output 

(Uniform
Maximum S/N

Q Spectrum/
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Equation (3-1L) shows that at the differentiator output,

the DM performance approaches that of the case of the

uniform spectrum. Thus, no significant performance

improvement is gained through the use of an integration

performed on the input uniform spectrum signal. This

is not to say, however, that such networks are useless.

Their effect in the DM system is clearly one of changing

the spectrum characteristics of the quantization noise.

In the example above, the differentiator at the decoder

output has the effect of increasing the power spectrum

of the noise at high frequencies. For some applications,

such as television, this can be advantageous since the

sensitivity of the human eye to random noise decreases

with increasing frequency. In general, it can be stated

that although signal spectrum shaping prior to delta

encoding and complimentary reshaping after decoding can

accomplish a net effect of shaping the noise power

spectrum, it cannot produce for a uniform signal spectrum

a significant performance improvement.

3.4 Discussion of Results 

In this section, it has been shown that the

granular, overload, and minimum quantization noise

powers of linear DM can be described by simple closed

form solutions. As a result, it is possible to predict

with a simple expression the optimum performance



obtainable by DM at various values of the bandwidth

expansion factor. A defined quantity called the

slope loading factor has been shown to be a useful

parameter in characterizing DM performance. It has

been shown that minimum quantization noise power is

proportional to the mean power of the signal derivative.

As a result, S/NQ performance with an integrated

spectrum such as television or speech exceeds that of

a broadband (i.e., uniform spectrum) signal. Further-

more, it has been found that S/N Q performance with a

signal having a Gaussian density is approximately the

same as that obtained with a signal having an exponential

density.

It has been shown that the slope loading factor

is a normalizing variable when used to describe S/NQ

performance. That is, the S/N performance character-

istic curves for broadband, television, and speech

signals are identical in form, the only difference

between them being one of the magnitude of the ordinate

scale.

Unfortunately, in the linear DM system the quantiza-

tion noise is sensitive to small changes in the mean

power of the signal. As a result, the range of /). over

which S/NQ is near maximum is small. From Equation (3-2)
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it is clear that a change in signal power produces a

change in slope loading factor	If .6, is substantially

different in value from that given by Equation (3-6),

then the value of N will be greater than the minimum

value and the DM system is suboptimum. As an example,

for the case of B = 8 in Figure (3-3) if the quantiza-

tion noise power is to be held to less than twice its

minimum value (i.e., S/N Q	17 db), the slope loading

factor must be constrained such that 2 <	< 4. This

in turn requires that the effective value of the signal

must be constrained to a variation of less than approxi-

mately ±40 percent. This is indeed a severe restriction

for signals of practical importance such as television

and speech. Forcing the DPI system to respond adaptively

to changes in the input signal by changing the slope

loading factor with time, overcomes the restriction of

a narrow optimum performance range. This adaptation

of linear DM will be the subject of the next section.
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4. ADAPTIVE DM, A QUALITATIVE DISCUSSION 

It has been shown in Section Three that DM system

performance is a function of the slope loading and

bandwidth expansion factors. For any specified sampling

rate, the total quantization noise reaches a minimum at

a particular value of the slope loading factor. For

any sampling rate then, there exists some value of step

size k such that for a given signal spectrum, the ratio

of signal power to quantization noise power is a maxi-

mum. Implicit in the above statements, is the con-

straint that the signal mean power and spectrum density

are stationary with time. Unfortunately large and

important classes of stochastic communication signals

processed today are either nonstationary or at best

only short term stationary. Two examples of such signals

are television and speech.

In order to give the DM system the capability of

encoding nonstationary signals in an optimal way, the

restraint that exists in linear delta (i.e., that slope

loading factor is fixed) must be removed. That is, the

system should be permitted to become self-regulating

or adaptive so that optimum performance (i.e., maximum

S/N ) is achieved over a broad range of input signal

variation. If the signal is stationary, then the
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DM system is optimally loaded when the slope loading

factor is made to satisfy Equation (3-6). If it is

nonstationary, the DM system will be optimally loaded

if and only if the slope loading factor is changed in

accordance with the changing signal parameter. The

objective of the adaptive DM system discussed herein

is to maintain optimal loading and performance (i.e.,.

maximum S/NQ ) by controlling the value of the slope

loading factor. Since the sampling rate is assumed

constant for a given system, it is clear from Equa-

tion (3-2) that by controlling the step size, the

slope loading factor may be assigned any specified

value.

The problem is to decide how to measure the non-

stationary of the signal, and hence, the changing slope

loading factor. That is, what measurement should be

made and how should it be accomplished so that signal

variations can bring about a reassignment of the value

of k. Undoubtedly there are many approaches to this

problem. In this work, a solution that appears promis-

ing is presented. It involves monitoring the instanta-

neous derivative of the encoded signal, determining if

the condition specified by Equation (3-1) is satisfied,

and changing the step size if necessary in a discrete

manner to prevent slope overload.
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Essentially, there can be both a discrete and a

continuous method of adapting the system to changes in

the signal derivative. The former observes the binary

pulse sequence at the quantizer output and changes the

step size in finite increments. The latter observes

the continuous input signal and changes the step in a

continuous manner. The former method will be called

"discrete adaptive DM" and is illustrated in Figure 4-1.

The latter method will be called "continuous adaptive

DM" and is illustrated in Figure 4-2. In this work,

only the discrete adaptive system is quantitatively

discussed. Brown and Brolin
6 
have discussed a system

similar to the continuous adaptive DM system for speech

application.

In the discrete adaptive system, the switch con-

trol chooses, in effect, a gain K i by which to increase

the quantum step size. The choice made by the control

is dictated by a logical decision process based on

observations of the sequence of pulses leaving the

quantizer. For example, when slope overload occurs,

causing suboptimum performance, the quantizer output is

a series of pulses of the same polarity (i.e., a

series of plus one's or minus one's). In response to

this series of consecutive pulses, the switch control
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selects a gain K 1 greater than Ki-1, such that the new

larger step size is K 1 multiplied by the smallest step

size k, or simply K 1 k. If the pulse polarity remains

unchanged, the step size is incrementally increased to

K
1+1

k, K
i+2

k etc., until the largest value of K k is

reached. The step size incrementally decreases when

polarity reversals occur.	In the decoder, the same

pulse sequences are sensed by a switch control identical

to that in the encoder, and thus the step size changes

are made synchronously and identically. Since the step

size is changed at a rate equal to that of the sampling

rate, the discrete adaptive DM system may be viewed as

a linear DM into which instantaneous companding has been

introduced.

Figure 4-3 illustrates possible waveforms of the

discrete adaptive system. Note that from sampling

intervals 1 through 9 inclusive, there are never more

than two consecutive pulses of the same polarity; hence

no slope overload. But at the 10th interval, a pulse

of the same polarity as the previous two intervals

appears indicating the beginning of overload. Detecting

this condition, the control switches to the K2 position

making the new step size in the 10th interval equal to

K
2
k. Similarly, the 11th interval step size is in-

creased to K
3
k, where K

3 
> K

2' 
At the 12th interval,
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the polarity reverses and the step size decreases to

K
2
 k. Similarly, the polarity reverses again at the

-

13th interval and the smallest step size k is reached.

From the 14th on, the pulse sequence indicates no

slope overload. The dotted line illustrates the over-

load of a linear delta system.

Because the discrete adaptive system is able to

change its step size as a function of the pulse

sequence, it is thus capable of modifying its overload

noise performance. As a result, the range over which

it produces optimum performance is expanded, as shown

in Figure 4-4. The amount and character of this ex-

pansion will be part of the subject of the quantitative

discussion given in Section Five.

In the continuous adaptive system illustrated in

Figure 4-2, the control signal is the continuous deriva-

tive of the input signal. Because the control signal

must occupy some of the transmission channel frequency

space, it must of necessity require only a fraction of

the input signal bandwidth. As a result, the rate at

which the step size is varied is very much smaller than

the sampling rate. Thus the continuous adaptive DM

system can be considered as the equivalent of a linear

DM into which syllabic companding has been introduced.
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Several configurations similar to those

illustrated in Figures 4-1 and 4-2 appear in the

6,12,40,42,43	6
literature.	12	Brown and Brolln nave

Quantitatively discussed a continuous adaptive. DM

system for speech application. Winkler
42,43 

has given

a qualitative description of a special case similar to

that of discrete adaptive DM.

In Section Five, a quantitative account of the

performance characteristics of discrete adaptive DM

with television, speech, and broadband signals will be

given. In Section Six, a quantitative comparison of

the performances of linear DM, discrete adaptive DM,

and PCM will be made.
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5. DISCRETE ADAPTIVE DM 

5.1 Normalized Slope Loading Factor Defined 

Because the discrete adaptive DM system is able to

increase its step size in an instantaneous manner at

the sampling rate from the smallest value k to

K
2
k,...,K

n
k in sequential increments, slope overload

is not the controlling degradation until the derivative

of the signal f' (t) is greater than the maximum slope

capability of the system, that is when

(5-1 )

As a result, the maximum value of the slope loading

factor for adaptive DM is greater than that given by

Equation (3-2) for linear DM by the factor K
n
, and

is therefore

(5-2)

It is somewhat more convenient, for purposes of com-

parison with linear DM, to use a slope loading factor

definition consistent with that of Equation (3-2). We

therefore define what will be called the "normalized

slope loading factor" (s') for adaptive DM. It is

given by
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(5 -3)

where k° is the product of Kr and k. The normalized

slope loading factor thus has a value at each sampling

instant given by one member of the sequence

That is, when the instantaneous derivative of the signal

is and remains very small, the normalized slope loading

factor value becomes

and when the derivative is and remains very large, the

normalized slope loading factor value becomes

5.2 Quantization Noise Power 

It is shown in Appendix B that the asymptotic

bounds for discrete adaptive DPI overload noise power
1

N0 , granular noise power , N0, and minimum quantization

noise power, minimum N n , are given by
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Equation (5-4) applies in the region of slope

overload, that is the region defined by values of the

slope loading factor which are less than that value

representing the optimum value given by Equation (3-6),

or /1 1 < (in 2B). Equation (5-5) applies for values of

greater than that obtained when Equations (5-5) and

(5-7) are set equal, and less than 8K n . The former of

these bounds states, in effect, that granular noise

power must be equal to (or greater than) the minimum

total quantization noise power given. by Equation (5-7).

The latter bound contains the factor Kn as a. consequence

of slope loading factor normalization.

Because the maximum value of the slope loading

factor is given by Equation (5-2), and since Equa-

tions (3-2) and (5- 3 ) are equivalent except for a

change of variable, the asymptotic lower bound for

adaptive DM overload noise power is the same as that for

linear DM given by Equation (3-7) in which t).> is replaced

by

Since granular noise power has been decreased

/
relative to that of linear DM by the factor 1/K ²n as

shown in Equations (5-5) and (5-6), and since it is

subject to the constrafntimposed by Equation (5-7), then

the range of normalized slope loading factor over which
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Quantization noise power is minimum has been extended.

In other words, discrete adaptive DM does not produce

optimum performance at only one particular value of

the slope loading factor as is the case with linear DM

but extends the range of optimum performance from that

value given by Equation (³-6) to that value obtained

when granular noise power N
G

	8K fl)is set equal to

the minimum value of quantization noise power. As a

result, adaptive DM performs what may be considered a

companding operation, that is, it extends the useful

performance range of the linear DM system.

Companding in a quantizing system refers to the

process of signal compression and later expansion,

the former in the encoder and the latter in the

decoder.³9 The purpose of companding is to allow weak

signals (i.e., small signal power) to be encoded with

approximately the same quantizing noise as strong

signals (i.e., large signal power). In PCM, companding

can be obtained by using a nonuniform quantizer. In

the discrete adaptive DM system, companding is thus

achieved by changing the size of the quantum step in

sequential increments. A quantitative comparison of

adaptive DM companding with PCM logarithmic companding

will be given in Section Six.
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5.3 Selection of Final and Intermediate Gain Factors 

An important problem in discrete adaptive DM is

the selection of the final gain factor K. It is clear

from Equations (5-5), (5-6), (3-4), and (3-5), that the

amount of signal power variation that the adaptive

system tolerates before performance falls substantially

below that of maximum S/NQ has been increased by the

factor [K - 1. In the communication literature, 39 an
n

increase of tolerable signal power variation without

performance degradation has been referred to as com-

panding improvement or simply the amount of companding,

and is usually expressed in decibels. For discrete

adaptive DM, the approximate companding improvement C

expressed in decibels becomes

(5-8)

At K
n 

= 1, the special case of linear DM results and

optimum performance occurs at only one value of mean

signal power, or in other words one value of the slope

loading factor [i.e., that value given by Equation (3-6)1.

If the power of a given message signal varies from

some smallest value Si to some largest value S2, it is

a simple matter to select the appropriate values of
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step size k and multiplier Kn to achieve the desired

companding. From Equations (³-2) and (³-6), it is

clear that the step size should be

(5 - 9)

where D is the derivative power calculated on the basis

of unity mean signal power, and IS is the smallest

standard deviation of the signal. Combining Equations(5 - 9)

and (2-³), the adaptive DM encoder step size thus becomes

(5-10)

The gain multiplier K r is simply the ratio of the

standard deviations of the largest and smallest values

of signal power, or

(5- 11)

Another problem in discrete adaptive DM is the

selection of intermediate gain factors K
2
 ,K,,... K
0 

The choice of final gain factor Kn is dictated by the

amount of desired companding as discussed above. The

effect of intermediate gain factors on S/NQ performance
Q
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was investigated by computer simulation, and typical

results are illustrated in Figure 5-1, where K = 4

(i.e., the largest step size is four times that of the

smallest step). Three cases are illustrated. Case I

represents a two level (i.e., n = 2) adaptive system,

that is a sequence of two consecutive pulses of the

same sign causes the step size to increase from the

smallest value k to its largest value K 2k = 4k, with

no intermediate values. The performance of this method

falls considerably below the predicted asymptotes

illustrated. Case II represents exponential gain

factor increments, that is Ki=2i-¹, and is a three

level adaptive system (i.e., n = ³). The sequence

k,K2k,...,Knk becomes k,2k,4k. Although the results

of Case II are significantly better than those of

Case I, they still are somewhat less than expected.

Case III in Figure 5-1 represents linear gain

factor increments, that is K i	i, and is in this

instance a four level adaptive system (i.e., n = 4).

The results using linear increments show approximately

a three decibel increase over exponential increments

in companding improvement near maximum S/NQ, and are

closer to the asymptotes predicted by Equations (5-4)

through (5-7). Computer simulation results using



NORMALIZED SLOPE LOADING FACTOR,

FIG. 5-1 S/NQ PERFORMANCE OF DISCRETE ADAP-
TIVE DI,,, `,.11TH UNIFORM SIGNAL
SPECTRUM, B28 ,Kn=4, AND VARIOUS
COMPUTER SIMULATED VALUES OF Ki,
GAUSSIAN DISTRIBUTION.
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linear increments as in Case III will be given in the

applications to follow.

5.4 Application to Television, Speech, and Broadband 

Signals 

5.4.1 General 

In this section, the application of the results

of Sections 5.1, 5.2, and 5.³ to television, speech,

and broadband signals will be given along with several

numerical examples illustrating the performance of

adaptive DM as a function of the normalized slope loading

factor, using the gain multiplier K n as a system variable.

Table 5-1 summarizes the parameters that will be used to

illustrate the adaptive DM system performance. In the

illustrations to follow,	bandwidth expansion factor

values of four and eight will be used other values of

course can be substituted into the expressions given

in Table 5-1.

5.4.2 Television Signal 

Figures 5-2 and 5-3 illustrate television signal

performance with a value of eight for the bandwidth

expansion factor. Computer simulation points are

illustrated with linear gain factor increments, and

with both exponential and Gaussian signal densities

given for comparison. This comparison is an important
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NORMALIZED SLOPE LOADING FACTOR, s/

FIG. 5-2 S/NQ PERFORMANCE OF DISCRETE ADAPTIVE

DM, TELEVISION SIGNAL SPECTRUM, B=8.

b'



NORMALIZED SLOPE LOADING FACTOR

FIG. 5-3 S/NQ PERFORMANCE OF DISCRETE

ADAPTIVE DM, WITH TELEVISION

SIGNAL SPECTRUM, B= 8.
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one since the statistics of television signals are

rarely stationary, as the studies of 0'Neal³³ and

Kretzmer
22
 indicate. The computer results show that

the performance of adaptive DM with an exponential

signal density is essentially the same as that with a

Gaussian density.

The granular noise power asymptotes illustrated in

Figures 5-2 and 5-³ are given in Table 5-2. The

asymptote for overload noise power is given in Table 5-1;

that for maximum S/N
Q 

is determined from Equation (5-7)

as 37 decibels for the case B = 8.

The power of a video signal varies considerably from

line to line in a raster scanned field as well as from

picture to picture over long periods of time. Since one

would like to make K
n 

as large as possible to encompass

as many different picture types as possible, but since

equipment complexity increases as K n increases, a

reasonable compromise can be obtained by letting K r = 4.

This value of K
n 

represents the ratio of the standard

deviations of two video signals, the first obtained

from a picture which is half black and half white, and

the second obtained from the measurements of O'Neal*

For some applications (e.g., closed circuit television,

graphics display, etc.), other values of K may be more
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appropriate. Figures 5-2 and 5-3 illustrate values of

K
n of two and four. Other values can be obtained from

the expressions given in Table 5-1.

As an example of how the parametric optimization

of the adaptive DM system might be completed for the

television signal case, we shall use a value of four

for K
n, and assume an input termination at the encoder

of one ohm. The value of S
1 can be obtained from the

results of O' Neal³³ who, letting the peak-to-peak

composite signal voltage of a raster scanned picture

be unity, computed the rms video of three scenes to be

approximately 0.1 volts. Using Equation (5-10) and

Table 5-1, the step size in volts would then be

(5-12)

For the value of B illustrated (i.e., B = 8), the step

size becomes 9.0 millivolts. For entertainment tele-

vision having a bandwidth of 4.5x10 6 Hertz, the required

sampling rate is then 72x10 Hertz. In this example,

the adaptive DM system would yield a maximum S/N
Q 

of

36 decibels, and produce a companding improvement of

12 decibels. Had the linear DM system been used for a

signal whose rms value varies over the range of four

to one, a decrease of at least nine, and possibly as much
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as thirteen decibels from maximum S/NQ would have been

obtained. Thus, the performance advantage of adaptive

DM is obvious.

5.4.³ Speech Signal 

Figures 5-4 and 5-5 illustrate speech signal per-

formance with bandwidth expansion factor values of four

and eight respectively. Computer simulation points are

illustrated with both exponential and Gaussian signal

densities given for comparison. Again the computer re-

sults show that the performances with both densities

are essentially the same. Table 5-³ gives the asymptotes

illustrated. The overload noise power asymptote is

given in Table 5-1.

The mean power of speech varies considerably with

time as well as with individual characteristics (e.g.,

age, sex, inflections, etc.). A detailed treatment of

such considerations can be found in the work of Fletcher.
14

At best, a companded system designed to process speech is

a compromise between practical and theoretical considera-

tions. In one widely used PCM system, for both theoreti-

cal ³9 .and practical²6 reasons a compandor has been

found useful for speech which employs a logarithmic

nonuniform quantizer. In Section Six, a quantitative

comparison will be made of this PCM system with that of
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FIG. 5-4 S/NQ PERFORMANCE OF DISCRETE
ADAPTIVE DM, WITH SPEECH SIGNAL
SPECTRUM , B =8.
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adaptive DM. It will suffice to say at this point that

the PCM system yields a companding improvement which

appears to be about the same as that of the adaptive

DM system having a final gain factor K r value of eight

as illustrated in Figure 5-5. Although in the adaptive

DM system, it is only necessary to increase the value of

K
n 

to achieve a greater companding improvement, it is

in practice very difficult to increase the companding

improvement of PCM for reasons discussed by Mann, et al. ²6

As a result, it appears that for speech application,

adaptive DM may have some advantages not presently en-

joyed by PCM. More will be said about comparisons with

PCM in Section Six.

As an example of the optimum selection of parameter

values of adaptive DM for speech application, a value

of eight for Kn will be assumed. Let it be required

that the quantization noise power be less than the

signal power by approximately ²5 decibels. From Equa-

tion(5-7) or by use of Figure 3-², we find that a band-

width expansion factor value of eight is needed. If we

assume that S2² is unity in Equation (5-11), then the

value of step size from Equation (5-10), letting the

input termination at the encoder be one ohm, becomes

0.047 volts.
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5.4.4 Broadband Signal 

Figures 5-6 and 5-7 illustrate broadband signal

(i.e., uniform spectrum) performance, the former for

K
n 

= 1,2,4,8 and the latter for K
u 
= 1,16,³2,64. In

general, computer results for the spectra considered

show again that both Gaussian and exponential signal

amplitude distributions yield substantially the same

performance. For large values of K n (i.e., Kn > 16),

the results indicate that S/NQ performance falls below

that predicted by Equations (5-4) and (5-7), especially

in the region 2 < s' < 8, as shown in Figure 5-7. The

companding improvement, however, for large K n is not

greatly decreased. For example, when K n = 64 as in

Figure 5-7, the companding improvement realized such

that S/NQ remains within three decibels of maximum

s/NQ, as shown by computer results, is approximately

32 decibels. This result differs from that predicted

by Equation (5-8) by four decibels.

The granular noise power asymptotes illustrated

in Figure 5-6 and 5-7 are given in Table 5-4. The over-

load noise power asymptote is given in Table 5-1. The

maximum S/NQ asymptote is obtained from Equation (5-7),

and is 20 decibels for a bandwidth expansion factor

value of eight.
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NORMALIZED SLOPE LOADING FACTOR,

FIG. 5-6 S/NQ PERFORMANCE OF DISCRETE ADAP

TIVE DA, WITH UNIFORM SIGNAL

SPECTRUM B=8.
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NORMALIZED SLOPE LOADING FACTOR

FIG.5-7 S/NQ PERFORMANCE OF DISCRETE

ADAPTIVE DM, WITH UNIFORM SIGNAL

SPECTRUM , B= 8.
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5.5 Discussion of Results 

In this section, it has been shown that the

discrete adaptive system provides DM with a companding

capability. Large values of companding improvement are

possible. A comparison of adaptive DM companding with

that of companded PCM will be made in the next section.

Computer simulation results have verified that the

maximum S/N
Q 
performance of adaptive DM remains es-

sentially the same as that of linear DM. The use of

linear rather than exponential increments for the inter-

mediate gain factors K2,K
3) ...,K1-1 yields a performance

substantially that of the predicted asymptotes. In all

cases studied, the computer simulation results using a

Gaussian signal density were essentially the same as

those using an exponential density. The companding

improvement afforded by the adaptive system is deter-

mined by the final gain factor K n .

Because of the nonstationary nature of both tele-

vision and speech signals, adaptive DM appears better

suited than linear DM to such signals. For television,

small values of the final gain factor (i.e., Kn ,--=-- 4)

should suffice; for speech, larger values would be

recommended. More will be said about television and

speech in the next section.
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6. COMPARISONS WITH PCM

6.1 General

Quantization in PCM is a memoryless operation of

converting the continuous message signal into a dis-

crete signal that assumes only a finite number of

levels. As in DM, the quantization noise in PCM mani-

fests itself into two forms. The first is that result-

ing from the discrete quantization process, and will be

called granular noise so as to draw an analogy with its

DM counterpart. In the literature,
4,³9 

however, this

is commonly known as quantizing noise, since the second

form of noise is usually ignored. This second form of

PCM quantization noise is caused by the limiting of

the message signal to the maximum and minimum levels of

the quantizer. This noise is similar to that produced

by a linear device with saturation (i.e., an ideal

limiter), and will be called overload noise. As opposed

to DM overload noise, which is produced when the mes-

sage signal slope exceeds the slope capability of the

DM quantizer, PCM overload noise is produced when the

message signal amplitude exceeds the maximum level of

the PCM quantizer. Exact analytical expressions for

both PCM granular and overload noise powers are de-

rived in Appendix C as a function of the bandwidth
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expansion factor (which for ?CM equals the number of

digits of encoding), and a defined quantity called

herein the "amplitude loading factor." The analogy of

the amplitude loading factor with the slope loading

factor of DM will become obvious.

When the number of quantizing levels is sufficiently

large (i.e., when the PCM quantum step size is small

compared to the standard deviation of the signal), PCM

granular and overload noises are uncorrelated and their

powers are additive. The sum will be referred to as

the quantization noise power. It will be assumed that

(1) the message signal is stochastic with zero mean,

unit standard deviation, and bandlimited to ωmm; (2) the

signal is sampled at the Nyquist rate (i.e., the sampling

rate ω
s 

is twice ωm ); (³) errorless transmission exists

in the digital channel.

In a PCM system, the quantizer levels or steps

need not be uniformly spaced. There are two different

reasons why a nonuniform quantizer may improve the

performance of the PCM system. The first is that if

the message signal statistics are both well known and

stationary, then the quantizer design may be optimized

for a given amplitude density by spacing the levels

such that the mean square error (i.e., granular noise
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power) is minimized. Max
27
 determined for a Gaussian

distribution the optimum level spacing and computed

the error. The results, however, are not dramatic,

the improvement amounting to less than three decibels.

Furthermore, changes in either the amplitude density

or the mean value of the signal produce larger changes

in the noise power than those of a uniform quantizer.

The second reason for desiring a nonuniform quantizer

is to achieve companding for nonstationary signals.

Speech is a good example of a signal for which PCM

companding has been usefully employed. Unfortunately,

the nonuniform quantizing characteristic required for

companding may not be similar to that of the nonuniform

optimum quantizer characteristic discussed by Max.
27

As a result, a noise penalty may be paid if companding

is used.

Smith39 has described a logarithmic nonuniform

quantizer which provides companding and has been found

desirable when the message signal is speech. Using

his result for granular noise in PCM with logarithmic

companding, the optimum performance of PCM will be

determined and compared with that of a uniform quantizer.

Then, both of these will be compared with that of linear

and adaptive DM.
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6.2 Quantization Noise Power of PCM 

6.2.1 Quantization Noise Power With Uniform 

Quantizer 

Given that the PCM quantizer sorts the input into

a finite number of ranges and produces uniformly spaced

output of representative levels whose upper and lower

saturation levels are a times the standard deviation of the

signal, then it is shown in Appendix C that the granular

noise power NG and overload noise power No are given

by

(6- 1)

(6-2)

where p(x) represents the message signal amplitude

probability density function, and B is again the band-

width expansion factor of the transmission channel.

The quantity a will be called the amplitude loading

factor for PCM. It is analogous to the slope loading

factor of linear DM since it represents the ratio of

the quantizer maximum encoding level to the standard

deviation of the signal. In general, as the amplitude

loading factor increases in value, overload noise power

decreases, and granular noise power increases. This
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is so since both the level at which saturation occurs

and the size of the quantum step (i.e., spacing be-

tween levels) increases as a increases.

Table 6-1 summarizes the results from Equa-

tions (6-1) and (6-2) for message signals having

Gaussian and exponential amplitude probability density

functions. The results in terms of signal to quantiza-

tion noise power ratio in decibels as a function of the

amplitude loading factor is given for the Gaussian case

in Figure 6-1 and the exponential case in Figure 6-2.

The form and shape of the characteristic curves illus-

trated are shown to be similar to those of DM in

Figure ³-3. The difference basically is that whereas

DM performance is limited by slope overload; PCM per-

formance is limited by amplitude overload. The dashed

lines in Figures 6-1 and 6-2 illustrate the asymptotic

bounds of overload noise power.

Figures 6-1 and 6-2 show that the optimum perfor-

mance of PCM with uniform quantization is greater for

a message signal having a Gaussian amplitude probability

density than it is for one having an exponential density.

These figures also show that PCM realizes its optimum

performance at only one value of the amplitude loading

factor. Thus, if the standard deviation of the signal
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AMPLITUDE LOADING FACTOR

FIG. 6-I S/NQ PERFORMANCE OF PCM WITH

GAUSSIAN SIGNAL DENSITY AND

UNIFORM QUANTIZER
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AMPLITUDE LOADING FACTOR,

FIG. 6-2 S/NQ PERFORMANCE OF PCM WITH

EXPONENTIAL SIGNAL DENSITY AND

UNIFORM QUANTIZER.
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changes, the performance of PCM is affected. In

Section Three, it was found that the performance of

linear DM was also sensitive to changes in the mean

power of the signal. Adaptive DM, however, was able

to provide the companding necessary for nonstationary

ensembles. It will be shown next that the companding

in PCM provided by a logarithmic quantizer does in

fact extend the range of optimum performance, but by

differing amounts for Gaussian and exponential signal

densities.

6.2.2 Quantization Noise Power With Logarithmic 

Companding 

If the PCM system employs the logarithmic com-

panding reported by Smith, ³9 then the granular noise

power N
GC 

with such companding has been shown to be

given by

(6-³)

where q, a dimensionless quantity called the compres-

sion parameter, determines the companding improvement,

and the quantity A is defined as

(6-4)
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Table 6-2 summarizes the results of Equations (6-3)

and (6-4) applied to the cases of Gaussian and ex-

ponential densities. When the PCM system contains no

companding (i.e., 4 = 0), Equation (6-³) reduces to

that of Equation (6-1). This corresponds to direct

uniform quantization of the input signal. Overload

noise power as given by Equation (6-2) is of course

unchanged regardless of whether uniform or nonuniform

quantization is employed.

Figures 6-³ and 6-4 illustrate the results given

in Table 6-2 for the cases of bandwidth expansion

factor values of 4, 6, 8, and 10 (i.e., 4, 6, 8, and

10 digits of encoding respectively) and a value of

100 for w. This particular value of 4 is chosen be-

cause it represents the largest value that has been

found practicable. For PCM, a higher degree of com-

pression (i.e., 4 > 100) is in practice very difficult

to achieve for reasons explained by Mann, et al,
26

although Smith ³9 had recommended for speech,values of

100 < 4 < 1000. From Figures 6-2 and 6-4, it is shown

that such companding improves the optimum performance

(i.e., maximum S/NQ ) when the signal has an exponential

distribution for values of the bandwidth expansion

factor greater than four. This is caused by the match-

ing of the quantizer logarithmic characteristic to the
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AMPLITUDE LOADING FACTOR

FIG. 6-3 S/ NQ PERFORMANCE OF PCM WITH

LOGARITHMIC COMPANDING µ=100;

GAUSSIAN SIGNAL DENSITY.
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AMPLITUDE LOADING FACTOR

FIG. 6-4 S/NQ PERFORMANCE OF PCM WITH

LOGARITHMIC COMPANDING, p. =100;

EXPONENTIAL SIGNAL DENSITY.
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signal amplitude exponential probability density, thus

reducing the minimum mean square error.

For the Gaussian case shown in Figures 6-1 and

6-3, however, it is shown that optimum performance

for B < 10 is degraded when the quantizer uses a

logarithmic companding characteristic. Thus a per-

formance penalty must be paid if such companding is

used.

Figures 6-³ and 6-4 show that the optimum per-

formance with companding is approximately the same for

both Gaussian and exponential densities. The companding

improvement, however, is greater for a Gaussian signal

density than it is for an exponential signal density.

6.2.³ Quantization Noise Power With Amplitude Limiting 

In many practical applications, the message signal

arriving at the encoder terminals has been limited or

saturated in amplitude by one or more physical devices.

Such saturation will be referred to herein as amplitude

limiting. The amplitude probability density will be

assumed zero beyond some value p multiplied by the

signal standard deviation. With such peak limiting of

the signal, Equation (6-2) is modified simply and

becomes
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(6-5)

Equation (6-1) describes the granular noise power,

which remains unchanged. If a > p, then Equation (6-5)

vanishes since by definition overload does not exist,

and the granular noise power becomes the only source

of degradation.

For the case of a signal having a Gaussian ampli-

tude probability density, Equation (6-5) becomes

(6-6)

For the exponential signal density case, Equa-

tion (6-5) becomes

(6-7 )



Figures 6-5 and 6-6 illustrate the case of p = 4

and a uniform quantizer for Gaussian and exponential

densities respectively. The effect of a p > 4 on PCM

performance for the Gaussian case is small for any

number of digits less than ten. For the exponential

case, however, the effect on performance is more sub-

stantial since the overload noise power is significantly

reduced. The effect on performance can be seen by com-

paring Figure 6-6 with 6-2, and Figure 6-5 with 6-1

for exponential and Gaussian densities respectively.

The dashed lines in Figures 6-5 and 6-6 illustrate the

asymptotic bounds of overload noise power.

Because overload noise power is reduced in the

presence of signal amplitude limiting, PCM optimum

performance is improved. The improvement can be ob-

served by comparing Figures 6-1, 6-2, 6-5, and 6-6.

Amplitude limiting in PCM can thus be viewed as the

counterpart of slope limiting of DM. That is, the

effect in both systems is one of reducing the overload

noise power.



AMPLITUDE LOADING FACTOR,

FIG. 6-5 S/NQ PERFORMANCE OF PCM WITH AMP-

LITUDE LIMITING, 13=4; GAUSSIAN

SIGNAL DENSITY; UNIFORM QUANTIZER
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FIG. 6-6 S/NQ PERFORMANCE OF PCM WITH

AMPLITUDE LIMITING 1 (3 =4 ;

EXPONENTIAL SIGNAL DENSITY;
UNIFORM QUANTIZER.
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6.³ Application to Television, Speech, and Broadband 

Signals 

6.³.1 Television Signal 

For a television signal, DM provides a greater

maximum S/N
Q 
than PCM .for values of B less than eight

(i.e., eight digits of PCM encoding). For entertainment

television, approximately six or seven digits of PCM en-

coding has been found to produce pictures of good

quality.
15

Although the S/N performance is not the

only important criterion in characterizing picture

quality, it provides a sound basis upon which to objec-

tively compare and optimize promising encoding systems.

A final comparison rests of course with a subjective

test. Because of the nonstationary nature of television

signals, adaptive DM and companded PCM appear better

suited to such signals than linear DM and PCM with

uniform quantizing.

The optimum performance of DM and PCM with uniform

quantizing are illustrated in Figure 6-7 for the tele-

vision signal case characterized by the integrated power

spectrum given in Tables 3-2 and	and the exponential

amplitude probability density given in Table 6-1. Adap-

tive DM produces the same optimum performance as linear

DM, which was illustrated in Figures 5-2 and 5-³. Al-

though PCM with nonuniform quantizing should produce



PCM WITH
UN I FORM
QUANTIZING
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BANDWIDTH EXPANSION FACTOR,

FIG. 6-7 COMPARISON OF DM AND PCM

OPTIMUM PERFORMANCES AS A

FUNCTION OF THE BANDWIDTH

EXPANSION FACTOR, FOR A

TELEVISION SIGNAL .
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encoded television pictures of a quality superior to

that of uniform quantizing, neither the degree of com-

pression nor the optimum quantizer characteristic for

video signals have been reported. A study of such

optimization should include the results of subjective

tests. This conclusion of course also applies to

adaptive DM. The next task required toward the appli-

cation of adaptive DM to television signals should be

that of organizing and conducting subjective tests.

These tests could determine, for example, the minimum

value of the adaptive DM final gain factor as well as

the optimum selection of intermediate gain factors.

Using a selected ensemble of pictures, the subjective

tests could also provide a measure of the relative

acceptability of encoded pictures as a function of the

bandwidth expansion factor.

Figure 6-8 illustrates the performance of linear DM,

adaptive DM(Kn = 4), and PCM with an amplitude limiting

factor of ten. (i.e.,	1O), and a value of eight for

the bandwidth expansion factor. The value of ten for 13

was found by O'Neal³³ to represent a video signal based

on measurements of three different scenes. The per-

formance asymptotes of linear DM (dashed line) and

adaptive DM are obtained from the results of Sections 3.³

and 5.4.2 respectively. The abscissa values of



I COMPUTER POINTS

LINEAR DM 

ADAPTIVE  DM,Ki=i

INPUT RELATIVE TO FULL LOAD I!! DECIBLES

FIG.6-8 S/NQ PERFORMANCE OF LINEAR DM, ADAPTIVE DM,

AND PCM WITH UNIFORM QUANTIZER, ALL WITH AMPLITUDE

LIFTING AT 13=10, FOR TELEVISION SIGNAL, B=8,

0
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Figure 6-8 are obtained by letting zero decibels corre-

spond to that value of the slope loading and amplitude

loading factors at which optimum performance is obtained.

For DM, the slope loading factor at optimum performance

is given by Equation (³-6) of Section ³.2, and, for B = 8,

has the value s = 2.77. The abscissa is related to the

normalized slope loading factor by the expression

where ln 2B is equal to 2.77 for B	8. For PCM, the

abscissa is related to the amplitude loading factor by

the expression

where the quantity 7.O represents the value of amplitude

loading factor at which maximum S/N
Q 

is achieved by PCM

at B = 8 and Is = 1O.

6.3.2 Speech Signal 

Companded PCM using the nonuniform quantizer reported

by Smith³9 can now be compared with the discrete adaptive

DM discussed in Section 5.4..3. McDonald ²8 computer

simulated the case of a speech message signal, and a

four digit nonuniform quantizer having the logarithmic
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characteristic reported by Smith.	His results are

illustrated in Figure 6-9 along with that for comparison

of the discrete adaptive DM system having the same band-

width expansion factor (i.e., for four digit PCM, B = 4),

and a K
n of eight. • This particular value of Kn 

was

chosen because it yields approximately the same amount

of companding as the logarithmic quantizer of Smith ³9

with 4 = 10O. The abscissa of Figure 6-9 corresponds

to that given by McDonald,
28 

and for the case of adaptive

DM is related to the normalized slope loading factor by

the expression given by Equation (6-8). The point zero

decibels on the abscissa of Figure 6-9 corresponds to a

value of 2.08 for the normalized slope loading factor

at B = 4.

Figure 6-1O illustrates the results given in

Tables 6-1 and 6-2 for the PCM system with a uniform

quantizer (i.e., 4 = 0) and the logarithmic nonuniform

quantizer (i.e., 4 = 10O), together with the results

from McDonald
28 

illustrated by the dashed line, and

adaptive DM performance points obtained by computer

simulation. The zero decibel point of the abscissa of

Figure 6-9 corresponds to the value a = 4 on the abscissa

of Figure 6-10.

For PCM, a higher degree of companding than that

illustrated in Figures 6-9 and 6-1O (i.e., 4 > 1OO) is in



FOUR DIGIT COMPANDED

PCM, μ= 100, FROM

Mc DONALD²8 	

INPUT RELATIVE TO FULL LOAD IN DECIBELS

FIG. 6-9 COMPARISON OF COMPANDED PCM

AND DISCRETE ADAPTIVE DM ;

SPEECH SIGNAL, B.-, 4; POINTS
FROM ADAPTIVE DM COMPUTER

SIMULATION Ki=



AMPLITUDE LOADING FACTOR, C

FIG. 6— 10 S / No PERFORMANCE OF PC M WITH
LOGARITHMIC COMPANDING, =100

EXPONENTIAL SIGNAL DENSITY, B=4;

POINTS FROM ADAPTIVE DM COMPUTER

SIMULATION, K i =i	K ry: 8.

1O4
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practice very difficult to achieve for reasons explained

by Mann, et al.
P6

For discrete adaptive DM, on the other

hand, there appears to be no difficulty for either theo-

retical or practical reasons in extending the companding

improvement to values much larger than that illustrated

in Figures 6-9 and 6-1O. Whether the additional corn-

panding capability that discrete adaptive DM offers

could in fact improve speech communication is not known

at this time. Because of the subjective nature of speech

communication, further tests would be required before

more conclusions regarding the possible benefits of

discrete adaptive DM over PCM could be reached.

The effect of amplitude limiting on PCM performance

is discussed in 6.2.³; the effect on DM performance is

small as shown by the computer simulation results

illustrated in Figure 6-10. For example, for values of

p > 2, the maximum S/N
Q 

is increased with amplitude

limiting by approximately one decibel for linear and

adaptive DM when the signal is speech and the bandwidth

expansion factor has a value of eight.

6.3.³ Broadband Signal 

For broadband signals characterized by the uniform

spectrum cited in Tables 3--1 and ³-2, and the Gaussian

density in Table 6-1, it is clear that PCM provides
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superior S/NQ performance to that of DM. Figure 6-11

illustrates the optimum performance of PCM and DM for

a broadband signal as a function of the bandwidth expan-

sion factor

Figure 6-12 illustrates the performance of companded

PCM and discrete adaptive DM, the former with a band-

width expansion factor value of six, and the latter with

a value of sixteen. The different values of B were

selected so that the maximum S/NQ produced by both systems

would be approximately the same. The performance asymp-

totes of adaptive DM were obtained from Equations (5-4),

(5-5), (5-6), and (5-7) and from Table 5-1; those for

companded PCM from Equations (6-³) and (6-4) and from

Table 6-2. Although the DM system illustrated in

Figure 6-12 requires a greater transmission bandwidth,

it is shown capable of achieving a higher degree of

compression than the PCM system. This particular per-

formance advantage of adaptive PM may be desirable for

certain applications.
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7. CONCLUSIONS

The performances and optimizations of linear DM,

adaptive DM, and PCM have been presented together with

the results of computer simulations. The three important

cases of television, speech, and broadband signals are

treated in detail.

The results presented can be grouped into the

following three categories. First, linear DM granular,

overload, and minimum quantization noise powers are

described by simple closed form solutions. From these

expressions, and from computer simulations, the following

have been found for linear DM.

(1) It is possible to predict with a simple expres-

sion the optimum performance obtainable from

DM at various bandwidth expansion factor values.

(2) Minimum quantization noise power is proportional

to the mean power of the signal derivative; as

a result, S/N
Q 

performance with an integrated

spectrum such as television or speech exceeds

that with a uniform spectrum such as a broad-

band signal.

(³) A defined quantity called the slope loading

factor is a useful parameter in characterizing

DM performance. When used to describe S/NQ
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performance, the slope loading factor becomes

a normalizing variable. The value of slope

loading factor at which optimum performance

occurs is dependent only on the bandwidth

expansion factor.

(4) The S/N Q performance with a Gaussian signal

amplitude probability density is approxi-

mately the same as that with an exponential

density.

(5) If the mean power of the signal changes by a

relatively small amount, S/N
Q 

performance

decreases; as a result, for signals such as

speech and television., consisting of non-

stationary message ensembles, companding is

desirable.

Second, an adaptive DM system which seems promising

for television and speech is evaluated. Quantization

noise power asymptotes are presented which describe the

expected performance of the adaptive system. From these

results, and from those of computer simulations, the

following findings were made.

(1) The adaptive system provides DM with a com-

panding capability.

(2) The maximum S/N Q performance of adaptive DM

remains approximately the same as that of

linear DM.
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(3) The final gain factor Kn determines for

adaptive DM the amount of companding improve-

ment. Large values of companding improvement

are possible.

(4) The intermediate gain factors K2 , ..,K
'	n-1

determine how well the companded S/N
Q 
perfor-

mance meets the predicted asymptotes. The

use of linear rather than exponential incre-

ments for the intermediate gain factors yields

a performance substantially that of the

asymptotes presented.

(5) The S/N
Q 
performance of adaptive DM is the

same for both Gaussian and exponential signal

densities.

(6) Because of the nonstationary nature of tele-

vision and speech signals, adaptive DM appears

better suited than linear DM to such signals.

Third, the performance of PCM with Gaussian and

exponential signal densities is presented, and a compari-

son is made between PCM and linear and adaptive DM for

television, speech, and broadband signals, with the

following conclusions being reached.

(1) The characteristic form of the S/N Q performance

relationships of PCM with amplitude loading

factor is similar to that of DM with slope
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loading factor as the independent variable.

For PCM with uniform quantization, a signal

with Gaussian density yields a greater maximum

S/NQ performance than one with exponential

density.

(2) When logarithmic companding is introduced in

the PCM system, the optimum performance is

approximately the same for both Gaussian and

exponential densities. The companding improve-

ment, however, is greater for a signal having

a Gaussian density than it is for one having

an exponential density.

(3) When the message signal is amplitude limited,

the effect on PCM performance is one of de-

creasing the amplitude overload noise power.

As a result, amplitude limiting in PCM is

the counterpart of slope limiting in DM.

(4) For a television signal, DM provides a greater

maximum S/NQ performance than PCM for values

of the bandwidth expansion factor less than

eight. Alternatively, it could be stated

that for the same S/N
Q 
performance, DM offers

a bit rate or channel bandwidth reduction

capability in comparison with PCM in the

region B < 8.
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(5) For a. speech signal with a bandwidth expansion

factor value of four, the performance of

adaptive DM, with a final gain factor value of

eight using linear increments for the inter-

mediate gain factors, is approximately the

same as that of companded PCM which uses a

logarithmic quantizer with L. = 1OO.

(6) Adaptive DM appears capable of realizing a

larger companding improvement than PCM.

(7) For a broadband signal, the performance of

PCM is superior to that of DM.

(8) Because of the complex nature of television

and speech communication, subjective tests

are required before further conclusions

regarding the performance advantages of dis -

crete adaptive DM can be reached.
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8. RECOMMENDATIONS 

In the final analysis, the merit of a communication

system is determined by the effect of its distortions on

the perception characteristics of the ear or eye. The

mean square error or signal-to-noise power ratio criterion

applied to a communication system is often helpful in

making reasonable parametric choices and quantitative

system evaluations, but with few exceptions the final

fidelity test must involve listening or viewing the re-

ceived signal. It is hoped that this investigation has

provided the insight necessary to make reasonable judg-

ments regarding the performance and optimization of

linear DM, adaptive DM, and PCM for television and speech

signals. But it is not claimed that the conclusions

herein can be substituted for the results of definitive

subjective tests. Thus, the first recommendation for

future study is that of experimentally investigating

and subjectively evaluating the effect of linear and

adaptive DM quantizing distortions on speech and tele-

vision communication.

It is clear that the study of adaptive systems for

television and speech communication is in an early stage

of development. One need only survey the literature to

appreciate the sparsity of information available on the
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subject. A good deal of additional work remains to be

done with DM and PCM systems. For example, in Sec-

tion Four herein, a system referred to as continuous

adaptive DM and illustrated in Figure 472 appears to

have the potential of adapting to the statistics of the

message signal. Brown and Brolin
6 
have discussed a

system similar to continuous adaptive DM for speech ap-

plication. The system appears promising enough to

warrant further investigation, particularly with respect

to television signals.

There are, of course, a number of other forms of

adaptive DM. For example, instead of controlling step

size, one might choose to adaptively control the

sampling rate, or perhaps the number of quantizing

levels, or even the feedback network itself. The opti-

mization of such systems, or even their effect on system

performance is at present unknown in communication

science. In general, it may be said that the study of

the potential and performance of adaptive feedback

quantizing systems for television and speech communica-

tion is a vast area providing considerable opportunity

for exploration and research. It is obviously not

expected that any one research effort would answer all

questions, but it is believed that the investigation of

such systems should continue, that original contribution
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to engineering science is possible, and that future

graduate level research in this subject area will re-

main fertile for a long time.
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APPENDIX A 

LIST OF SYMBOLS AND ABBREVIATIONS 

SYMBOL OR	 INTRODUCED
ABBREVIATION MEANING	IN SECTION

	

a	Amplitude loading factor

of PCM

Amplitude limiting factor

	B	Bandwidth expansion factor

	C	Companding improvement of

adaptive DM

	D	Mean power of signal

derivative

	

DM	Delta modulation

DPCM	Differential pulse code

modulation

	

E.	Total quantization error

sequence in computer

simulation of DM

f(t)	Instantaneous value of

input message signal

f'(t)

	

	Instantaneous derivative

of input message signal

	

f
D	

Digital transmission channel

bandwidth

6.2.2

6.2.3

2.1

5.³

3.1

1

1

Appendix D

Appendix B

³.1

2.1
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LIST OF SYMBOLS AND ABBREVIATIONS (Pont) 

SYMBOL OR	 INTRODUCED
ABBREVIATION	MEANING	IN SECTION

Message signal bandwidth

	

f
N	

Equivalent noise bandwidth

of DM error power

	

f
s	

Sampling rate

	F(ω)	One-sided power spectrum

of input message signal

	

g(t)	Instantaneous value of

output message signal

Input sequence of samples

in computer simulation

of DM

	

J	Number of input samples

in computer simulation

of DM

	

k	DM quantizer step size

	

k'	Normalized step size of

adaptive DM

	

K.	Intermediate gain factor

of adaptive DM

	

K
m	

Final gain factor of

adaptive DM

2.1

Appendix B

2.1

3.1

Appendix B

Appendix D

Appendix D

2.1

5.1

4

4
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LIST OF SYMBOLS AND ABBREVIATIONS (Cont) 

SYMBOL OR	 INTRODUCED
ABBREVIATION	MEANING	IN SECTION

. Compression parameter of

PCM 6.2.2

n.	Filtered noise sequence

in DM computer simulation	Appendix D

n (t)	Instantaneous value of

noise or error	Appendix B

N
G	

Granular noise power	2.1

N
GC	

PCM granular noise power

with companding 6.2.2

N
O	

Overload noise power	2.1

N
OA	

PCM overload noise power

with amplitude limiting	6.2.³

Quantization noise power	2.1

p(x)	Probability density func-

tion of input signal	6.2.1

p(n)	Probability density function

of granular noise	Appendix B

P	Binary transmission chan-

nel pulse rate	2.1

PCM	Pulse code modulation	1

Q	Number of PCM quantizing

levels	 Appendix C
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LIST OF SYMBOLS AND ABBREVIATIONS (Cont) 

SYMBOL OR	 INTRODUCED
ABBREVIATION	MEANING	IN SECTION

.	Quantizer output sequence

in DM computer simulation	Appendix D

Slope loading factor of

linear DM	 3.1

Normalized slope loading

factor of adaptive DM	5.1

S	Mean signal power	2.1

Si
	Sequence consisting of sum

of all previous values

ofin DM computer
Qj-1

simulation	Appendix D

	

S/N
G	

Signal to granular noise

power ratio	Appendix B

	

S/N
O
	Signal to overload noise

power ratio	Appendix B

	

S/NQ	Signal to quantization

noise power ratio	3.2

Angular frequency	3.1

	

w³	Corner (i.e., ³ decibel)

frequency of integrated

spectrum	 1
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LT ST OF SYMBOLS AND ABBREVIATIONS (Cant)

SYMBOL OR	 INTRODUCED
ABBREVIATION	MEANING	IN SECTION

ωm	Message signal maximum

angular frequency	1

Error signal noise

equivalent bandwidth	Appendix B
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APPENDIX B 

DM QUANTIZATION NOISE POWER DERIVATIONS 

Granular noise in DM is similar to that of PCM.

Bennett and Bruce5 have shown for PCM that both the

spectrum and amplitude probability density function of

the error are uniformly distributed. The error or

noise n(t) is defined by the difference between the DM

input signal f(t) and output signal g(t) or

(B1)

In the granular noise region (i.e., no slope overload),

the noise signal varies with time, resembling a series

of straight lines of varying slopes extending over an

interval between minus and plus k, the quantum step

size, as illustrated in Figure 2-2 of Section 2.1. The

probability density function p(n) of granular noise can

therefore be approximated by

(B2)

This function is illustrated in Figure Bl. The granular

noise power N
G 

can then be obtained by calculating the

mean square error of a signal uniformly distributed be-

tween minus and plus the DM step size k, and then letting
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the noise power in the bandwidth of the signal

(O	ω
m
) be proportional to the ratio of signal band-

width to total error power bandwidth. Since the vari-

ance of the noise of uniform density p(n) is	k2 ,thenthen

the granular noise power NG within the signal bandwidth

ω
m 

is given by

(B3)

where ωN
 
represents the rectangular noise equivalent

bandwidth of the error power, as illustrated in

Figure Bl.

In Section Three, a quantity called the DM slope

loading factor was defined as

(134 )

where D represents the mean power of the signal

derivative.

When the value of A is not large (e.g., A < 8), the

value of 
CON
 can be given approximately by CO s . When the

value of A is large (e.g., A > 8, from either large step

size or small slope), periodic patterns as mentioned in

Section Two and illustrated in Figure 2-³ appear in the
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error waveform. These patterns tend to reduce the

equivalent total error power bandwidth ωN
 
in proportion

to the step size approximately as follows,

(B5)

where c is a constant of proportionality which can be

determined empirically. This expression is equivalent

to the statement that the period of a pattern is equal

to the step size divided by the effective value of the

input signal slope. Combining Equations (B4) and (B5)

yields,

(136)

Solving Equation (B4) for k, and substituting it

into Equation (B3), we obtain after some manipulation

the following expression for granular noise power,

(B7 )

where the bandwidth expansion factor B is given in

Section 2.1 by Equation (2-³). Substituting for ωN

in Equation (B7) the values given above in the two

regions /J. < 8 and 2 > 8, we obtain
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(B8 )

and

(139)

Since at the value /1 = 8, Equation (B8) and (B9) must

be equal, we find that c = 16 1T, so that

(B10)

For example, for a telvision spectrum, Equations (B8)

and(B 1O) become

(B11)

(B12)

The corresponding signal-to-noise power ratios expressed

in decibels become

(B1³)

(1314)
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A closed form expression for overload noise power

NO which is sufficiently accurate when the signal-to-

noise power ratio is not too small can be derived quite

simply with the aid of an empirical observation made

from computer simulation results. It is observed that

S/N
Q 
has a maximum value for each and every B at some

value of the slope loading factor /J.. The relationship

between B and 6. at maximum S/N Q is illustrated in

Figure ³-1. From the computer derived results, the

relationship between the bandwidth expansion factor B

and slope loading factor	at the maximum signal to

quantization noise ratio can be given with reasonable

accuracy as

(B15)

Since the quantization noise power NQ consists of the

sum of granular N G and overload NO noise powers, and

since at its minimum the derivative of quantization

noise with respect to the slope loading factor must

vanish, then for any given fixed value of the bandwidth

expansion factor B, the quantization noise considered

as a function of	only is a minimum when Equation (B15)

is satisfied. In other words, since

(B16)
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and

(B17)

(B18)

then for each value of B, at minimum N Q (i.e., maximum

S/NQ) we have

(B19)

and, therefore,

(B20)

Since N
O
 does not depend on the choice of B, and N

G 
is

given by Equation (B8) in the region of minimum N 0, then

the overload noise power becomes

(B21)

or,
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(B22)

Thus, overload noise power is characterized as a

function of the slope loading factor for a given signal

power spectral density. As a. numerical example, con-

sider the case of a uniform signal spectrum. The over-

load noise power becomes

(B23)

The signal to overload noise power ratio expressed in

decibels is then,

(B24)

Equation (B24) is illustrated in Figure B2 along with

points obtained by computer simulation for B = 8,

Gaussian signal density. The departure of computer de-

rived results from that of Equation (B24) for values of

s greater than 1.6 is caused by the influence of granular

noise in this region of larger quantum step sizes.

Figure ³-³ illustrates the composite effect of overload

and granular noise powers.



.0	 1.0

SLOPE LOADING FACTOR ,

FIG. B2 S/No PERFORMANCE OF LINEAR DM

WITH UNIFORM SIGNAL SPECTRUM;

CURVE OBTAINED FROM EQUATION (B20),

POINTS FROM COMPUTER SIMULATION,

B=8 , GAUSSIAN SIGNAL DENSITY.
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Ac optimum performance, the DM system produces its

minimum total quantization noise	. Since this total
Q

noise is the sum of granular N G and overload No noise

powers, and since peak performance occurs in cases of

practical importance at values of the slope loading

factor which are less than eight, then Equations (B8),

(B15), and (B22) may be combined to yield the minimum

total quantization noise N
Q 
as a function of the band-

width expansion factor B. The result can be summarized

as follows.

(B25)

where,

(B26)

(B27)

Substitution of Equations (B26) and (B27) into (B25)

yields

(1328)



132

In the discrete adaptive DM system, since the

instantaneous value of the step size varies from a

minimum value k to the maximum K
n
k, the instantaneous

value of the slope loading factor will vary from a

minimum value of	/1' to a maximum of /_1'. The granular

noise power NG, therefore, can be no less than that given

by Equations (B8) and (B1O) into which is substituted

the minimum value of the slope loading factor for adaptive

DM in place of the slope loading factor for linear DM.

The asymptotic bounds for discrete adaptive DM minimum

granular noise are therefore given by the following.

(B30)

(B31)

Because the maximum value of the normalized slope loading

factor is given by k's, the asymptotic lower bound for

discrete adaptive DM overload noise power is the same as

that for linear DM given	by Equation (B22) in which the

slope loading factor	is replaced by the normalized slope

loading factor /J, 1 . The minimum value of total quantiza-

tion noise for the DM system has been given by Equation (B28).
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The minimum quantation noise asymptote extends over

the range of normalized slope loading factor	beginning

at the value determined by equating N0 and minimum N
Q

given by Equations (B22) and (B28), and extending to the

value determined by equating minimum N Q and NG(s). < 8 Kn )

given by Equations (B28) and (B3O) respectively. The

former is given approximately by Equation (B15); the

latter is given by

(B³2)

As a numerical example, consider the case of a

uniform signal spectrum with K 0 = 8, B = 8. The

asymptotic bounds of granular, overload, and minimum

quantization noise powers corresponding to Equa-

tions (B³0), (B31), (B23), and (B28) respectively, are

given in Table Bl. These results are illustrated in

Figure J3³ in terms of signal-to-noise power ratio ex-

pressed in decibels, along with results obtained by

computer simulation.



TABLE Bl 

Discrete Adaptive DM Performance With a

Uniform Signal Spectrum (Km = 8,B = 8)

Performance 1	From Result
Parameter I Equation

1³4



NORMALI ZED SLOPE LOADING FACTOR ,

FIG B3	S/NQ PERFORMANCE OF DISCRETE

ADAPTIVE D(.1, WITH UNIFORM SIGNAL

SPECTRUM B8, K8;8 ; ASYMPTOTES

OBTAINED FROM TABLE 81, POINTS

FROM COMPUTER

GAUSSIAN DENSITY, K ; = i

13 5
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APPENDIX C 

PCM QUANTIZATION NOISE POWER DERIVATIONS 

The expression for granular noise power can be

obtained from the work of Bennett, 4 who showed that

(Cl)

where k is the size of a quantum step, assuming that the

steps are of equal size (i.e., uniform quantizer).

Given that the magnitude of the largest level is a times

the root mean square value of the signal, and the quantizer

produces a finite number of levels Q, the step size

becomes

(2)

where again for convenience, the mean signal power, S,

is assumed unity. Since the bandwidth expansion factor B

is equal in PCM to the number of digits of encoding, then

(3)

and the granular noise power becomes

(C )



(c6)

(c7)

1³7

An expression for the overload noise power, that

is, the noise caused by limiting the signal to the

largest quantum level a, can be obtained by writing the

mean square value of the difference between the output

of an ideal limiter and its input. Given an input sig-

nal with amplitude probability density function p(x),

a mean of zero and a unit variance, the mean square

difference (i.e., overload noise power) was first re-

ported by Shtein³8 as

(c5)

For the Gaussian density case, since

then,

1 . 2
(x-α)2e-½x dx

or,,

co	03	 co
:1

7----
NO = —v i	

0 1, ²--x
xc_ e 2 dx - ²a f 	xe ---½x

2

v	+ 2/π
 a²	-½x²e 2 dx

a	
, a	, a

(c8)
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The first integra l can be evaluated by parts. The

result of calculating the integrals gives the following

expression.

(C9)

For the exponential density case, since

(C10)

then,

)

This integral is evaluated easily and becomes

(C12)

If the PCM system employs the logarithmic companding

reported by Smith, ³9 then the granular noise power N GC

was shown by Smith to be given by

(C1³)
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where the quantity A is defined by Smith as

(c14)

For the Gaussian density, the quantity A becomes

(C15)

and the granular noise power is then

(c16)

In many applications, it is commonly found that α > ³,

in which case, then, Equation (C16) can be given approxi-

mately by

(C17)

For the exponential density case, the quantity A

becomes

(018)



and the granular noise power is then

140

(C19)

Again, if a > ³, then Equation (C19) can be given

approximately by

(C²O)
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APPENDIX D 

COMPUTER SIMULATION OF LINEAR 

AND ADAPTIVE DM 

The computer simulations of linear and adaptive

DM were accomplished using a Monte Carlo method reported

by O'Neal. 32 Deploying a FORTRAN program, he simulated

linear DM, and used independent random numbers with a

Gaussian distribution to simulate a flat bandlimited

(i.e., uniform power spectrum) input signal. In this

appendix, the method used by O'Neal is reviewed, the

modifications necessary to simulate discrete adaptive

DM are discussed, and the numerical results of all

computer simulations are presented. The following were

simulated as part of this investigation:

(1) Linear DM with variable step size and band-

width expansion factor.

(2) Discrete adaptive DM with variable step size,

intermediate gain factors, final gain factor,

and bandwidth expansion factor.

(3) Message signals having Gaussian and exponen-

tial amplitude probability densities, with

variable amplitude limiting.

(4) Message signals having uniform and integrated

power spectra.
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Figure D1 illustrates the block diagram simulated

on the computer for the case of linear DM with single

ideal integration. It is not necessary to simulate the

DM system decoder since the logic in the encoder feed-

back path is identical to that of the decoder. The

adder and delay element in the feedback path form an

accumulator (i.e., the integrator illustrated in

Figure ²-1). The delay time is simply that of one

sample.

A message signal having a uniform power spectrum

and a bandwidth of one half the sampling rate is easily

simulated by using independent random numbers. This

of course yields a value of unity for the bandwidth

expansion factor, B. To obtain different values of

the bandwidth expansion factor, it is simply necessary

to filter the random samples with a digital low-pass

filter whose cutoff frequency is the fraction 1/²B of

the sampling rate. O'Nea1³² used a nonrecursive

digital filter which obtained its low-pass characteristic

by convoluting the input signal samples with a sequence

of numbers representing the digital filter impulse

response. Digital filtering techniques of this type

have been reported by Kaiser.
²³ A message signal having

an integrated power spectrum. is easily simulated by

passing the random samples through a digital simulation



Q jMESSAGE
SIGNAL
INPUT,

I

TWO LEVEL, -±k,

QUANTIZER

I DELAY

U

QUANTIZATION
NOISE OUTPUT

n i

FIG. DI BLOCK DIAGRAM OF LINEAR
DM COMPUTER SIMULATION.



144

of a low-pass resistance capacitance network.
3²

The

input sequence of random samples is obtained from pub-

lished tables, such as those of the RAND Corporation. ³6

The program required to accomplish the functions

of linear DM operation is simple. Given the input

sequenceofnumbers Ij.with j = 1,2,³,...,J where the

amplitude density and power spectrum of this sequence

are those stated above, then the quantizer output Q. in

the interval j has a magnitude given by the step size k,

and a sign given by the difference (I j-Sj-1) or

(Dl)

where S	is the summation of all previous values ofj-1

Q. ,. or

(D²)

The method by which these operations are accomplished

is illustrated in Figure Dl. The total quantization

noise or error E, in the interval j is simply

( D³ )

To obtain the quantization noise power N	it is neces-

sary to filter the sequence Ej into the sequence nj,
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and then average the sum of the squares of the sequence n,

over the number of samples used, or

(D4)

The number of samples, J, used to represent the

signal in the examples presented earlier for linear

and adaptive DM is 5O00. Although as few as 5OO samples

produced results which differed from those presented by

less than 1.5 decibels, in all simulations given in this

work 5OOO samples were used. Figure D2 illustrates the

effect on S/N
Q 
by the use of either 50O, 1OO0, ²OOO, 4OOO,

or 5OOO samples for the case of a message signal having

a uniform spectrum and Gaussian signal density, with a

bandwidth expansion factor value of eight. The case of

50OO samples is represented in Figure D² by dashed lines

for the three values of the slope loading factor illus-

trated (i.e.,	= O.55, 2.², and 8.8). The results of

using 50O0 samples for a broadband signal were illus-

trated in Figure ³-³ of Section ³.³. The results illus-

trated in Figure D² show that the variation of S/N Q

with number of input samples is small. Table Dl presents

the numerical results of S/N Q expressed in decibels from



NUMBER OF INPUT SAMPLES,

FIG. D2 S/NQ PERFORMANCE OF LINEAR DM FROM

COMPUTER SIMULATION RESULTS ;
UN I FOF-■, SPECTRUM, GAUSS IA N DENSITY,

8 .



TABLE D1

Computer Simulation Results for Linear DM,

Gaussian Signal Density, Uniform Signal Spectrum,

B = 8, with Several Input Sample Sizes.

Number

of Input

Samples

S/NQ in Decibels for Following Step Sizes
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computer simulating linear DM with a signal having a

Gaussian density, unit variance, uniform spectrum, and

a bandwidth expansion factor value of eight. The

tabulations of S/N are given in Table D1 for step

sizes of O.O9O, 0.125, O.18, 0.²5, O.³6, O.5O, 0.7²,

1.O, 1.4, and ².0. The slope loading factor correspond-

ing to each of these step sizes can be calculated from

the results given in Table ³-³ of Section ³.³.

The S/NQ results from computer simulations of

linear DM at various step sizes for television, speech,

and broadband signals are given in Tables D² through D5

inclusive. In all cases, the number of input samples

is 50OO. The slope loading factors corresponding to

each of the step sizes given can be calculated from

the results of Table	of Section ³.³.

Figure D³ illustrates the block diagram of dis-

crete adaptive DM computer simulation. The accumulator

is the same as that of linear DM. The sequence of

two consecutive quantizer outputs of the same sign are

sensed by the comparator, which in turn activates gain

factor increments Ki (i.e., 1 < i < n).

The modification of the linear DM program required

to include the gain factor increments is simple.



MESSAGE
SIGNAL
INPUT
Ii

TWO LEVEL ±k ,
QUANT I ZER

DELAY I

GAIN
FACTOR

K
COMPARATOR

DELAY

FILTER

QUANT I Z ATI ON
NOISE OUTPUT

n

FIG. D3 BLOCK DIAGRAM OF DISCRETE

ADAPTIVE DM COMPUTER

SIMULATION.
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Equations (D1), (M), and (D4) remain the same. Equa-

tion (D²) is changed to read

(D5)

where the quantity R. has the same sign as that of Q.
J	 J

 K 1 ,

or

(D6)

The gain factor Ki is obtained from an IF statement

which reads, in effect, that if the signs of Q.	and
J-1

Qj are alike, increase Ki to K.	; if unalike, decrease if

K- to K
I-1*

The S/NQ results from computer simulations of dis-

crete adaptive DM at various step sizes and gain factors

for television, speech, and broadband signals are given

in Tables D6 through D10. In all cases, the number of

input samples is 50OO. The normalized slope loading

factor corresponding to each of the step sizes given

can be calculated from the results of Table 5-1 of

Section 5.4.
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