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Multi-input, multi-output (MIMO) communications systemshave attracted considerable at-
tention over the past decade, mostly for single-user, point-to-point scenarios. The multiple-
user MIMO case has attracted less attention, and most of the research on this problem has
focused on uplink communications. Only recently has the multi-user MIMO downlink been
addressed, beginning with information-theoretic capacity results [1–5], and followed by prac-
tical implementations, including those based on linear techniques [6, 7] and non-linear pre-
coding [8–11]. In this chapter we review these techniques and discuss some important open
problems.
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1.1 Introduction

1.1.1 Problem Overview

The termmulti-user MIMO downlink typically refers to situations where a multi-antenna
transmitter (e.g., a basestation) simultaneously communicates with severalco-channel users.
In the communications and information theory literature, this scenario is referred to as the
MIMO broadcast channel. We will also use the termspatial multiplexing to describe this
problem, although we note that this term is also used in connection with point-to-point MIMO
links when multiple independent data streams are transmitted to a single user (e.g., as in ver-
tical Bell-Labs space-time (V-BLAST) techniques [12, 13]). The users in a multi-user MIMO
network may have a single antenna, and hence no ability for spatial discrimination, or they
may have multiple antennas and the ability to perform some type of interference suppres-
sion. This is to be contrasted with the MIMO uplink problem, where a multiple antenna
receiver must separate the signals arriving from several different users. This scenario is often
referred to as the MIMO multiple access channel (MAC) or Space-Division Multiple Access
(SDMA). In this paper, we focus on the multi-user MIMO downlink or broadcast channel.
Although less frequently addressed in the literature, there is still a considerable body of work
on the topic that is too extensive to adequately cover in thischapter. As discussed below, we
will focus on two classes of approaches to this problem: linear beamforming techniques and
non-linear precoding.

Single-user MIMO systems have generated considerable excitement in the wireless com-
munications literature due to their potential for significant gains in capacity over single-
antenna links. Of particular note is that these gains are often independent of whether or
not channel state information (CSI) is available at the transmitter. The situation is consid-
erably different in the multi-user case, where interference must be taken into account and
balanced against the need for high throughput. A transmission scheme that maximizes the
capacity for one user in the network might result in unacceptably high interference for the
other users, rendering their links useless. If high throughput is the goal, a better approach
might be to maximize thesum capacity of the network, or the maximum sum transmission
rate, where the inter-user interference is taken into consideration. Transmit CSI is the key to
achieving such a goal. While in principle the receivers themselves could perform some inter-
ference cancellation via multi-user detection, for example, the desire to keep costs low and
preserve battery life for the end user in cellular networks usually leads to simpler receiver
architectures.

Maximizing the sum capacity of a multi-user downlink channel does not always lead to
a desirable solution. For example, if one of the users has a channel with considerably higher
SNR than the others, the sum capacity solution might come at the expense of the weaker
users who will receive little or no throughput. An alternative in such cases is to attempt to
guarantee that each user achieves some minimum acceptable Quality of Service (QoS),e.g.,
measured in terms of signal-to-interference-plus-noise ratio (SINR) or bit-error rate (BER).
The problem of meeting QoS constraints with minimum transmit power is often referred
to as the downlinkpower control or interference-balancing problem. As with sum capacity
maximization, channel knowledge at the transmitter is crucial to finding a solution.

Channel state information is most often obtained by means ofuplink training data, as in
a time-division duplex system, or via feedback from the users, as in the frequency-division
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duplex case. Each approach has its advantages and disadvantages in terms of throughput
penalty and latency. CSI can be in the form of deterministic channel estimates, or it can be
described in probabilistic terms (e.g., channel mean and covariance). While we will focus on
the deterministic case in this chapter, statistical CSI maybe directly applied in most cases.
For an excellent and comprehensive treatment of the issues involved with different types of
CSI, see [14].

1.1.2 Literature Survey

Algorithms for multi-user MIMO downlink processing can be classified according to a num-
ber of criteria: whether they attempt to approach the sum capacity bound, eliminate inter-user
interference or achieve minimum QoS constraints, whether the users have single or multiple
antennas, whether or not multiple data streams are transmitted to each user,etc.. We begin
with the case that has received the most attention: users with single-antenna receivers. The
most direct approach in this case is referred to aschannel inversion [15, 16], which amounts
to using a set of transmit beamformers that “pre-inverts” the channel and ideally removes
all inter-user interference at the receivers. One can thinkof this approach as zero-forcing
transmit beamforming. As with zero-forcing receive beamformers, problems arise when the
channel is nearly rank deficient, although we will see it is not noise amplification that occurs,
but rather signal attenuation. Minimum mean-squared error(MMSE) or regularized transmit
beamforming can be used as an alternative to reduce sensitivity to low-rank channels; dramat-
ically improved performance is obtained [6, 17]. Although the gain of regularized channel
inversion is significant, there is still a considerable gap between its performance and the ca-
pacity bound. Algorithms from the class of so-called “dirtypaper” coding techniques have
recently been shown to more closely approach the sum capacity for the multi-user channel,
and in some cases achieve it [3, 4, 18–20]. We will describe one such technique, referred to
asvector modulo precoding [8, 17, 21, 22], that can be framed as an extension of the channel
inversion algorithms described earlier.

The algorithms mentioned above attempt to maximize the overall throughput of the net-
work for a fixed transmit power, under the constraint of zero (or nearly zero) interference.
On the other hand, power control or interference-balancingalgorithms relax the zero inter-
ference constraint and minimize the total transmitted power subject to meeting given QoS
constraints. Iterative methods have been found that are guaranteed to find the optimal solu-
tion to this problem, assuming a solution exists [23, 24]. The problem can also be posed as a
semidefinite optimization with convex constraints, and solved using more efficient numerical
procedures [25].

To this point, the research cited has assumed that each user possesses only one receive
antenna. These algorithms can be trivially extended to multiple antenna receivers by viewing
each as a separate “user,” provided that the total number of receive antennas for all users is no
greater than the number of transmit antennas. While this allows for extremely simple receiver
architectures, it ignores the ability of the receivers to perform spatial discrimination of their
own, and is only practical for networks with a small number ofco-channel users. The result
can be either (1) a significant gap between the achievable throughput of these techniques
and the capacity of the system in cases where the receivers can obtain CSI, or (2) dramatic
increase in required transmit power to achieve a desired QoS, especially in situations where
the channels to adjacent receive antennas are not uncorrelated.
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Instead of completely diagonalizing the channel as some of the techniques above attempt
to do, one could find an optimalblock-diagonalization when the users have multiple antennas.
Such an approach removes inter-user interference, but leaves the receiver responsible for
separating the multiple data streams sent to it [7, 26–31]. This approach still has the drawback
of requiring more transmit antennas than the total number ofreceive antennas among all the
users. As a means of relaxing this constraint, suppose that each user employs a beamformer
or beamformers of its own to receive the data stream(s) destined for it. If the transmitter knew
what those beamformers were in advance, then it could consider theeffective channel to each
user to be the combination of the propagation channel for that user and the beamformers
that user employs. As long as the total number of data streamsto all users does not exceed
the number of transmit antennas, then any of the algorithms discussed above could be used.
The problem of course is that the optimal receive beamformers depend on the choice of the
transmit beamformers, and vice versa. Iterative techniques have been proposed in which the
transmitter postulates a set of receive beamformers, designs a corresponding set of transmit
weights, updates the receive beamformers accordingly, andso on [7, 31–37].

1.1.3 Chapter Organization

In the next section, we describe the mathematical model we will assume for our discussion
of the multi-user MIMO downlink, and establish a common notation. Section 1.3 describes
algorithms for the case where each user has only a single receive antenna and presents some
simulation results illustrating their performance. Section 1.4 does the same for cases involv-
ing multiple antennas per user. We finally summarize and review open problems in the area
in Section 1.5, including references to related work that wedid not address in this chapter.

1.2 Background and Notation

We will consider a standard scenario involving a basestation that simultaneously transmits
data toK users, whose channels have been determined earlier either through the use of
uplink training data (as in a time-division duplex system) or via a feedback channel (as in
a frequency-division duplex system). The basestation is assumed to havenT antennas, user
j hasnRj

antennas, and the total number of receive antennas isnR =
∑K

j=1 nRj
. In a flat-

fading propagation environment, the channel between the base and userj is described by the
nRj

× nT matrixHj , whose rows we denote byh∗
ij as follows:

H∗
j = [ h1j · · · hnRj

j ] .

The symbol(·)∗ is used to denote the complex conjugate (Hermitian) transpose. In Sec-
tion 1.3, we will focus on cases wherenRj

= 1, in which case we will simply denote the
channel asHj = h∗

j . We will follow the convention of denoting matrices by capital boldface
letters, vectors in lowercase boldface, and scalars as either upper or lowercase letters without
boldface.

The basestation may desire to send data at different rates toeach of theK active users.
This can be accomplished by an appropriate choice of the symbol constellation for each user,
or by changing the number of independent data streams that are simultaneously sent to each
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user. We will letmj denote the number of data streams transmitted to userj. Suitable val-
ues form1, · · · ,mK will not only depend on the desired data rate for userj, but also on
the available transmit power, the achievable SINR, and the number of transmit and receive
antennas. We will see that, typically,mj ≤ nRj

without some type of additional coding
or multiplexing, and that

∑

mk ≤ nT . We will assume thatmj has been determined be-
forehand, recognizing the fact that this resource allocation step is critical if optimal system
performance is required. Thus, at symbol timet, the transmitter desires to send themj × 1
vector of symbolsdj(t) to userj. The signal destined for userj that is actually broadcast
from the transmit antennas at timet is denoted by thenT × 1 vectorsj(t). In many cases,
the transmitted signal is a linear function of the symbols,i.e., sj(t) = Bjdj(t), where the
columns ofBj , denotedBj = [b1j · · ·bmjj ], correspond to the transmit beamformers for
each symbol. In cases wheremj = 1, we will simply write Bj = bj , dj(t) = dj(t), and
sj(t) = bjdj(t). We will also consider algorithms that employ a nonlinear mapping of the
symbols to the transmitted data:sj(t) = fj (dj(t)).

Userj not only receives its desired signal through the channelHj , but also contributions
from the signals destined for other users:

xj(t) =
K

∑

k=1

Hjsk(t) + ej(t) , (1.1)

whereej(t) is assumed to represent spatially white noise and interference with covariance
E{ej(t)e

∗
j (t)} = I. If linear beamforming is used on the transmit side, then stacking the data

together from all of the receivers leads to the following compact expression:

x(t) =







x1(t)
...

xK(t)






=







H1

...
HK






[B1 · · ·BK ]







d1(t)
...

dK(t)






+







e1(t)
...

eK(t)






(1.2)

= HBd(t) + e(t) , (1.3)

where the definitions ofx(t),H,B,d(t) ande(t) should be obvious from context. For the
sake of simplicity, in what follows we will drop the explicitdependence of the above equa-
tions on time. In some figures we will use the notation{nR1

, . . . , nRK
}×nT to describe the

configuration of the antennas. Thus a{1, 1, 1, 1}× 4 system hasK = 4 users, each with one
antenna, and a base station with4 antennas, while{1, 1, 2, 2} × 4 describes the same case,
with the exception that two of the users have two antennas.

1.2.1 Capacity

A fundamental tool for characterizing any communication channel is capacity. In a single-
user channel, capacity is the maximum amount of informationthat can be transmitted as
a function of available bandwidth given a constraint on transmitted power. In single-user
MIMO channels, it is common to assume that there is a constraint on the total power broad-
cast by all transmit antennas. For the multi-user MIMO channel, the problem is somewhat
more complex. Given a constraint on the total transmitted power, it is possible to allocate
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Figure 1.1: An illustration of a multi-user capacity region. The sum capacity may penalize
certain users, depending on the shape of the capacity region.

varying fractions of that power to different users in the network, so a single power constraint
can yield many different information rates. The result is a “capacity region” like that illus-
trated in Figure 1.1 for a two-user channel. The maximum capacity for user 1 is achieved
when 100% of the power is allocated to user 1; for user 2 the maximum capacity is also
obtained when it has all the power. For every possible power distribution in between, there
is an achievable information rate, which results in the capacity regions depicted in the illus-
tration. Two regions are shown in Figure 1.1, the bigger one for the case where both users
have roughly the same maximum capacity, and the other for a case where they are different
(due, for example, to user 2’s channel being attenuated relative to user 1). ForK users, the
capacity region is characterized by aK-dimensional volume.

The maximum achievable throughput of the entire system is characterized by the point on
the curve that maximizes the sum of all of the users’ information rates, and is referred to as
thesum capacity of the channel. This point is illustrated in Figure 1.1 by asterisks. Achieving
the sum capacity point may not necessarily be the goal of a system designer. One example
where this may be the case is when the “near-far” problem occurs, where one user has a
strongly attenuated channel compared to other users. As depicted in Figure 1.1, obtaining the
sum capacity in such a situation would come at the expense of the user with the attenuated
channel.

The sum capacity for a system described by (1.1) has been formulated using the dirty
paper coding (DPC) framework (see, for example, [3, 4, 18–20] and [38–41]) for the case of
Gaussian noise. The capacity is defined in terms of the achievable rate for each user given
the set of covariance matrices for each transmitted data vector Sk = E{sks

∗
k}:

Rk =
log

∣

∣

∣
I + Hk

(

∑k
j=1 Sk

)

H∗
k

∣

∣

∣

log
∣

∣

∣
I + Hk

(

∑k−1
j=1 Sk

)

H∗
k

∣

∣

∣

, (1.4)
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assuming that the data for each user is uncorrelated with theothers. The sum capacity is then

CS = max
Sk≥0;

P tr(Sk)≤ρ

K
∑

k=1

Rk , (1.5)

whereρ is the upper bound on the total transmit power. The input distributions are arbitrary,
though the sum capacity can be achieved with Gaussian signals [18, 19]. The capacity re-
gion CR of a given multi-user MIMO system is defined to be the set of allachievable rates
{R1, · · · , RK} given the power constraint. In general, determiningCR is an unsolved prob-
lem, but a solution for the Gaussian case has been reported in[5] building on work in [42].

In the case of users with single receive antennas (nRj
= 1 for all j) the sum capacity

expression is much simpler:

CS = max
D∈A

log |I + HDH∗| , (1.6)

whereA is the set of allK × K non-negative diagonal matricesD with tr(D) ≤ ρ. This
equation looks much like the capacity of a point-to-point MIMO system withM transmit
antennas andK receive antennas, where only the receiver has knowledge of the channel:
log |I + (ρ/nT )HH∗|. This comparison makes it easy to see that multi-user sum capacity
grows linearly withmin(M,K) under the same conditions as for the single-user case.

1.2.2 Dirty-Paper Coding

As mentioned above, capacity results for the multi-user problem have been achieved using
the notion ofdirty-paper coding, which originates in a 1983 paper [43] by M. H. M. Costa.
He studies a channel with Gaussian noise and interference that is known to the transmitter,
and makes an analogy to the problem of writing on dirty paper.To describe this idea, let

y = s + i + w , (1.7)

wheres is the signal used to transmit a codewordd, i is interference with powerQ known
deterministically at the transmitter, but unknown to the receiver,w ∼ CN (0, N) is Gaussian
noise, and the received data isy. Costa presented the encouraging result that the capacity
of this system is the same as if there were no interference present. If the signal has power
constraint|s|2 ≤ ρ, then the capacity of this system is

C = log
(

1 +
ρ

N

)

(1.8)

regardless of whatQ is. To extend the dirty-paper analogy, the “capacity” of dirty paper is
the same as for a sheet without this known “dirt.”

This result has been applied to a variety of systems: using what is nominally “analog”
spectrum for both analog and digital signals [44], information-embedding applications [45],
and in finding the capacity of the MIMO broadcast channel [1–5]. These theoretical results
have motivated progress in the development of practical algorithms [46–48] that approach
the capacity bound (1.8).
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To illustrate dirty-paper principles, we describe a simpletechnique based on the use of a
simple modulo operator. Although this method is very simple, it performs within a few dB of
capacity. We define the modulo functionf as

fτ (y) = y −
⌊y + τ/2

τ

⌋

τ . (1.9)

The signals is created using information about the interferencei and the codewordu, as
follows:

s = fτ (u − i) = u − i − τk , (1.10)

wherek is any integer. The modulo function reduces the power of the transmitted signal from
what it would be if the simple method ofs = u− i were used. Applying the modulo function
to the received data (1.7) gives

fτ (y) = fτ (s + i + w) = fτ (u − i − τk + i + w)

= fτ (u + w) .

The interference has been canceled; there remains only a penalty from applying the modulo
function tou + w which may lie outside the interval(−τ/2, τ/2), and resulting infτ (u +
w) 6= u + w. In a practical systemτ would be a function of the codeword constellation,
chosen for example as described in Section 1.3.3.

To completely overcome this shaping loss, coding must occurovern consecutive samples
and the modulo operation is applied with respect to a “good”n-dimensional lattice, rather
than with respect to an interval. Finally, asn → ∞ the shaping error disappears and capacity
is achieved (See [39] for more information, including how tohandle low SNR situations and
to find a discussion on what a “good” lattice is). The shaping loss is1.56 dB when using the
simple cubical lattice defined by (1.9) as compared with an infinite-dimensional lattice on a
scalar Gaussian interference channel. In Section 1.3.3 we use these DPC ideas to describe
and analyze a coding technique for the MIMO downlink channel.

1.2.3 Discussion

We have assumed a data model with a flat-fading or narrow-bandchannel. However, in many
current and next-generation wireless communications applications, this assumption does not
hold. Wideband or frequency selective fading channels suffer from inter-symbol interfer-
ence and a fading characteristic that varies significantly across the frequency band. There are
several ways to apply the matrix channel model to this case. In channels where the use of or-
thogonal frequency division multiplexing (OFDM) is considered, it is possible to implement
MIMO processing algorithms separately for each frequency bin, where the channel fading
characteristic can be considered to be narrow-band. In whatfollows, we assume a narrow-
band channel model, but note that our discussion can be applied to the wideband case using
either OFDM or other common techniques for frequency-selective channels.

One additional property of radio propagation channels thatmust also be considered in the
multi-user MIMO context is how they vary with time, particularly for applications that as-
sume mobility of one or both ends of the wireless link. Two likely applications for multi-user
MIMO transmission are wireless local area networks (LANs) and cellular telephony. Wire-
less LANs are a natural fit for MIMO technology because the rich multipath environment in
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the places where they are usually deployed (indoors, office or college campuses, etc.) is an
important criterion for achieving high capacity. In this type of channel, user mobility is likely
to be very slow, and the channel can be viewed as being quasi-static. Cellular telephone
applications are more challenging due to higher user mobility, and the small size and cost
constraints of manufacturing mobile devices make the use ofmultiple antennas problematic.
While time-varying channel models have been considered in analyzing simple MIMO sys-
tems [49–51], most applications assume quasi-static fading. Further research on techniques
for obtaining and tracking channel state information is needed for highly mobile scenarios.
Recent research suggests that the prediction horizon for MIMO systems may be much longer
than in the SISO case (which has usually proven to be too shortto be useful), since multiple
antennas reveal more information about the physical structure of the channel [52].

Perhaps the most critical assumption common to all of the recent multi-user MIMO re-
search is the availability of CSI at the transmitter. While single-user MIMO systems benefit
from having CSI at the transmitter only whennT > nR or at low SNR, a base station trans-
mitting to multiple co-channel users will almost always benefit from CSI. This is because
the CSI is not only useful in achieving high SNR at the desiredreceiver, but also in reducing
the interference produced at other points in the network by the desired user’s signal. The
most common method for obtaining CSI at the transmitter is through the use of training or
pilot data in the uplink (e.g., for time-division duplex systems) or via feedback of the re-
ceiver’s channel estimate found using downlink training data (e.g., for frequency-division
duplex transmission). In either case, obtaining CSI at the transmitter is a very challenging
and costly problem, but appears justifiable for multi-user channels.

1.3 Single Antenna Receivers

We begin our discussion of multi-user MIMO downlink algorithms with the case most com-
monly treated in the research literature, namely situations involving users with only one re-
ceive antenna:nRj

= 1. With only one antenna, the receiver is unable to perform anyspatial
interference suppression of its own, and the transmitter isresponsible for precoding the data
in such a way that the interference seen by each user is tolerable. In the discussion that fol-
lows, we consider four techniques for solving this problem:channel inversion, regularized
channel inversion, sphere encoding and iterative interference balancing, or power control.

1.3.1 Channel Inversion

Channel inversion [15, 16] simply amounts to undoing the effects of the channel via precod-
ing; in other words, we precode the data with the (pseudo-)inverse of the channel prior to
transmission, as illustrated in Figure 1.2 for the case whereH is square. More generally, we
define

s =
1√
γ
H∗ (HH∗)

−1
d , (1.11)

where it is assumed thatnT ≥ K = nR. The scaling factorγ is present to limit the total
transmitted power to some predetermined valueρ:

‖s‖2 = ρ ⇒ γ =
1

ρ
d∗(HH∗)−1d . (1.12)
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Figure 1.2: Channel Inversion cancels all interference, but requires high power to cancel the
small elements ofH.

Ideally, all inter-user interference is canceled by this approach, reducing the problem toK
separate scalar channels, and each user sees only the desired symbol in additive noise:

xj =
1√
γ

dj + ej . (1.13)

One issue that may be a problem in practice is the fact that thescalingγ is data-dependent,
and will in general change from symbol to symbol. To avoid this problem,γ can be chosen
so that theaverage transmit power isρ, which leads to

γ =
1

ρ
trace

[

(HH∗)−1
]

(1.14)

if the users’ symbols are independent and have average unit power.
Obviously, a more serious problem arises if the channel is ill-conditioned. In such cases,

at least one of the singular values of(HH∗)−1 is very large,γ will be large, and the SNR at
the receivers will be low. It is interesting to contrast channel inversion with least-squares
or “zero-forcing” (ZF) receive beamforming, which appliesa dual of the transformation
in (1.11) to the receive data. Such beamformers are well-known to cause noise amplifica-
tion when the channel is nearly rank deficient. Here, on the transmit side, ZF produces sig-
nal attenuation instead. In fact, as shown in [6], the problem is very serious, even for what
one might consider the “ideal” case,i.e., where the elements ofH are independent, identi-
cally distributed Rayleigh random variables. If the elements ofd are modeled as independent
zero-mean unit-variance Gaussian random variables, it canbe shown [6] that the probability
density function ofγ is given by

p(γ) = K
γK−1

(1 + γ)K+1
, (1.15)

whennT = K = nR, andγ has an infinite mean! As a consequence, the capacity of channel
inversion does not increase linearly withK, unlike the capacity bound.

1.3.2 Regularized Channel Inversion

When rank-deficient channels are encountered in ZF receive beamforming, a common ap-
proach to reducing the effects of noise amplification is to regularize the inverse in the ZF
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filter. If the noise is spatially white and an appropriate regularization value is chosen, this
approach is equivalent to using a minimum mean-squared error (MMSE) criterion to design
the beamformer weights. Applying this principle to the transmit side suggests the following
solution:

s =
1√
γ
H∗ (HH∗ + ζI)

−1
d , (1.16)

whereζ is the regularization parameter. The presence of a non-zerovalue forζ will mean that
the transmit beamformer does not exactly cancel the “mixing” effect of the channel, resulting
in some level of inter-user interference. The key is to definea value forζ that optimally
trades off the numerical condition of the matrix inverse (which impacts the normalization
required for the power constraint) against the amount of interference that is produced. In [6],
it is shown that choosingζ = K/ρ approximately maximizes the SINR at each receiver, and
unlike standard channel inversion, leads to linear capacity growth withK.
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Figure 1.3: Comparing uncoded symbol error rates for standard and regularized channel in-
version forρ = 20dB as a function ofK. The performance of channel inversion decreases
with K, while regularized inversion improves slightly at high transmit power. The perfor-
mance of the sphere encoder described in Section 1.3.3 is also shown.

Figures 1.3 and 1.4 compare respectively the symbol error rates and capacity of standard
and regularized channel inversion. Figure 1.3 shows average error rates as a function ofK
for ρ = 20dB SNR and a 16-QAM signaling (the SNR is defined asρ since the elements of
e are assumed to have unit power). The elements of the channel matrices were simulated as
independent, unit-variance Rayleigh random variables. Note that the performance of standard
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channel inversion, as well as regularized inversion degrades asK increases; the performance
of the “sphere encoder,” which will be described in Section 1.3.3, improves withK. Fig-
ure 1.4 plots capacity as a function ofK assumingnT = K = nR andρ = 10dB. The
plot also shows that there is still a considerable gap between the performance of regularized
inversion and the sum capacity of the system.
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Figure 1.4: Comparison of the sum-capacity (dashed line) asa function ofK (wherenT =
K) for ρ = 10dB with the regularized channel inversion sum-rate (solid line) and the standard
channel inversion sum-rate (dash-dotted line).

1.3.3 Sphere Encoding

The simulation results of the previous section indicate that channel inversion techniques are
not capacity optimal. As mentioned above, dirty-paper coding (DPC) techniques more closely
approach (and in some cases achieve) multi-user capacity, and thus may be of interest when
capacity is the primary design criterion. DPC is different from other downlink approaches
in that the transmitted data is a non-linear function of the information symbols, as well as
the interference environment. For this reason, DPC is sometimes referred to as interference-
depending coding. Due to their non-linear nature and their need for high-dimensional lattices,
DPC techniques are often difficult to implement in practice.

Technically, DPC codes do not constitute beamformingper se, but they can be used in
conjunction with beamforming as illustrated below. In thissection we present a simple DPC
technique that fits in well with the channel inversion algorithms already discussed. Figure 1.5
illustrates the approach we will consider, which is referred to asvector precoding. As dis-
cussed above, channel inversion performs poorly because the scaling factorγ in (1.12) can
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(b) QR−based, Successive Precoding.
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Figure 1.5: Part (a) shows the vector precoding technique; avector chosen to minimize the
signal power is added to the data to be transmitted. Part (b) shows that QR-based techniques
successively cancel interference from previous users.

be large when the channel is ill-conditioned, and the vectord happens to (nearly) align it-
self with a right singular vector of(HH∗)−1 with large singular value. The idea behind the
technique proposed in [8, 17] is to “perturb” the symbol vector d by some valuēd such that
d + d̄ is directed towards singular vectors of(HH∗)−1 with smaller singular values, and in
such a way that the receivers can still decoded without knowledge of̄d. In particular, [8, 17]
constrains̄d to lie on a (complex) integer lattice:

d̄ = τ(a + jb) , (1.17)

wherea,b are vectors of integers andτ is a real-valued constant, and calculatesd̄ based on
the following optimization problem:

d̄ = arg min
d̄

(d + d̄)∗(HH∗)−1(d + d̄)

s.t. d̄ = τ(a + jb) .
(1.18)

This is an integer-lattice least-squares problem, and can be solved using standard sphere
algorithm methods [53–55], and other related techniques [56, 57]. Since it is used on the
transmit side for this application, in [8, 10, 17] it is referred to assphere encoding or sphere
precoding. Using this method, the vector of data at the receivers is given by

x =
1√
γ
d +

1√
γ

τ(a + jb) + e , (1.19)
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where, as before,γ is chosen to maintain a constant (average) transmit powerρ.
To eliminate the contribution of the vector perturbation, the receivers employ the modulo

function (1.9). Ifτ andγ (or E{γ}) are known at the receivers, then in the absence of noise,

fτ (
√

γxj) = fτ (dj + τaj + τbj) = dj . (1.20)

Small values ofτ are advantageous because they allow for a denser perturbation lattice,
and hence more flexibility in maximizing received SINR. However, τ must be chosen large
enough to allow for unambiguous decoding. In [8, 17], it is suggested thatτ be chosen as

τ = 2(dmax + ∆/2) , (1.21)

wheredmax is the distance from the origin to the farthest constellation point, and∆ is the
maximum distance between any two constellation points.

A simple numerical example is now presented to illustrate the algorithm. For simplicity,
we consider the special case of binary pulse-amplitude modulated (PAM) signaling over real-
valued channels withK = 2 andρ = 1. A near-singular channel matrix is chosen to illustrate
the benefit of non-linear precoding:

H =

[

−0.0521 0.17
−0.661 1.80

]

. (1.22)

Suppose the data to be transmitted isd = [−1, 1]T , with noisee = [0.011, 0.001]T . Simple
channel inversion gives the signalH−1d = [−106, − 38.4]T , which results inγ = 12, 700.
Transmitting the normalized signal through the channel results inx = [0.00213, 0.00987]T ,
which gives decoded PAM symbols[1, 1] when using the sign of the elements ofx to decode.
In contrast, sphere encoding results ind̄ = τ [0, 2]T , which results in a signal with a more
attractiveγ = 36.5. For our 2-PAM constellation, we chooseτ = 4, resulting in the received
signalx = [−0.154, − 1.82]T andfτ (x) = [−0.154, 0.166]T . In this case decoding based
onfτ (x) returns the correct symbols[−1, 1]T .

Figure 1.6 shows a plot of the uncoded symbol error probability of the algorithms dis-
cussed thus far for a case withnT = 10, nR = 10, a Rayleigh fading channel and QPSK
signaling. “Sphere Encoder” denotes the modulo precoding algorithm described above, and
“Reg. Sphere Encoder” refers to the use of vector modulo precoding together with regular-
ized channel inversion. Regularization improves performance, but by a smaller margin than
in the case of standard channel inversion. It is clear from the plot that, for SNRs high enough
to achieve reliable decoding, modulo precoding offers a significant improvement in perfor-
mance over channel inversion and regularized inversion. The modulo precoding technique
presented here represents perhaps the simplest form of DPC for the multi-user MIMO prob-
lem, i.e., one involving a simple cubical lattice. As reported in [8], improved performance
can be expected if more complicated, higher-dimensional lattices [39, 58] are employed. In
particular, these techniques may improve the low-SNR performance of the modulo precod-
ing techniques, which perform slightly worse than their linear counterparts in Figure 1.6.
Finally, we note that a suboptimal but more computationallyefficient version of the modulo
precoding algorithm has recently been presented in [9].

A full analysis of the algorithm appears difficult, due in part to the difficulty in obtaining
a distribution forγ. We focus instead on understanding the performance gains seen in our
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Figure 1.6: Uncoded probability of symbol error for variousdownlink algorithms as a func-
tion of transmit powerρ.

simulations. The precoding process alignsd − d̄ with the singular values of the inverse
channel. LetUDV∗ = H−1 be the singular value decomposition (SVD) of the channel
inverse, so thatδCI = |V∗d| is the channel-inversion data vector rotated by the right singular
vectors ofH−1, andδSE = |V∗ (

d − d̄
)

|, is the equivalent for the sphere encoded data. The
sphere encoder minimizes the cost function

γ = ‖δ∗
SEσ‖2 (1.23)

over d̄, whereσ is a vector containing the singular values ofH−1. For channel inversion
we haveγ = ‖δ∗

CIσ‖2. In [6] it is shown thatE{γ} = ∞ for plain channel inversion.
In contrast, for the sphere encoder,E{γ} is shown in [8, 17] to be approximately constant
with K. Specifically,d − d̄ is chosen to orient itself toward each singular vector in inverse
proportion to the singular value of the inverse channel matrix:

E{σ1δ1} = . . . = E{σKδK} . (1.24)

We illustrate this in Figure 1.7, whereδkσk are shown averaged over 10000 samples for a case
whereK = nt = 10 users and a 16-QAM constellation is employed. While basic channel
inversion does not modify or perturb the transmitted symbols, the sphere encoding technique
attempts to orient the symbol vector towards each singular vector in inverse proportion to
the singular valuesσ. For comparison we also show results for regularized inversion and
regularized vector precoding, both withζ = K/ρ; for these curves theσ is obtained from
the regularized inverse.
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Figure 1.7: The integer offset vectord̄ is chosen such that it orients itself towards each singu-
lar vector in inverse proportion to the singular valuesσ. Values ofδkσk are shown, averaged
over 1000 samples.

1.3.4 Computationally Efficient Precoding

Though the vector precoding technique in the previous section is very powerful, it is some-
what expensive computationally. There are several ways to increase the speed of the integer
least-squares search, including successive algorithms based on the QR and V-BLAST de-
compositions, and on the use of lattice reduction algorithms. We will present a simplified
technique which generates the integer offsetd̄ by repeated application of a modulo opera-
tion inspired by scalar Tomlinson-Harashima Precoding (THP) [59, 60]. The method uses a
QR decomposition of the channel matrixH, where the resulting triangular structure leads
to thekth user seeing interference only from users1, . . . , k − 1. The transmitter compen-
sates for this interference by using its knowledge ofs1, . . . , sk−1 to generatesk from uk,
for k = 2, . . . ,K. Methods based on the QR decomposition have been explored for use with
DPC codes in [1]. Similar algorithms have been used for crosstalk cancellation in digital sub-
scriber lines [61] and for CDMA transmission to distributedreceivers [62]. The achievable
capacity of a greedy form of this scheme is analyzed in [11], where it is shown to be close to
the sum-capacity.

Let H = RQ, whereR is a lower triangular matrix, andQ is a unitary matrix; letD be a
diagonal matrix composed of the diagonal entries ofR, andα = ρ/(1+ρ). We first generate
the signal̃s, and then form the transmitted signals = Q∗s̃. Because the matrixR − D is
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zero on and above the diagonal, a successive technique can beused to generatẽs:

s̃1 = d1

s̃2 = fτ

(

d2 − α
r21

r22
s̃1

)

...

s̃K = fτ

(

dK − α
K−1
∑

i=1

rKi

rKK
s̃i

)

, (1.25)

wheredk is thekth diagonal entry ofD, andrij is the entry on theith row and in thejth
column ofR. We may write this equation in terms of the vector of integersd̄ that the modulo
function effectively adds to the signal:

s̃ =
(

(1 − α)I + αD−1R
)−1 (

d + τ d̄
)

. (1.26)

The signals = Q∗s̃ is formed, normalized, and then sent through the channel. The K users
receive

x =
1√
γ
Hs + e =

1√
γ
R

(

(1 − α)I + αD−1R
)−1 (

d + τ d̄
)

+ e.

The parameterα increases the SINR for each user, similar to what the parameter ζ does
with regularized inversion in Section 1.3.2. Letyk be the data received at thekth user; de-
coding occurs at userk based on [1, 39]

y′
k = fτ̃k

(αyk) ,

whereτ̃k = τ rkk√
γ . Each receiver models the received data as

y′
k = α

rkk√
γ

dk + w′
k ,

wherew′
k combines the additive receiver noisewk and the interference. We do not analyze

the algorithm but simply mention that at highρ (whereα → 1),

s = Q∗R−1D
(

d + τ d̄
)

, (1.27)

which yields

y′
k = fτ̃k

(

rkk√
γ

dk + τ lk + wk

)

. (1.28)

Whenα = 1 there is no interference at userk from the other users’ signals. The algorithm
described here differs slightly from those of [61, 62] in ourintroduction of the parameterα.
However, our use ofα is well-known in the DPC literature [1, 39], including in theoriginal
paper by Costa [43]. An important characteristic of these QR-based algorithms is that they
do not achieve full diversity, although they do provide a significant computational advantage.
ForK = NR, the complexity is of orderK2. This is much less that for typical integer least-
squares algorithms, which have expected complexity of order K3 as described in [63]. A high
peak-to-average power ratio can cause clipping in power amplifiers and accuracy problems
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in processors with limited wordlength. We note that the technique described here explicitly
limits the peak signal strength; further research is neededon the use of a modulo function to
minimize the peak-to-average power ratio.

A V-BLAST-type ordering of the users can also be applied to the QR decomposition [9,
64], with similar complexity in the resulting precoding algorithm. In this case a permutation
of the users is obtained as part of the V-BLAST decomposition; the rest of the algorithm is
similar to that above for the QR-based techniques. A MMSE V-BLAST decomposition re-
turnsQ andR matrices that are no longer orthogonal and triangular, respectively. Some in-
terference is allowed at each user in order to increase the overall SINR. For a full description
and analysis of the basic V-BLAST technique, see [64]. The MMSE version of this technique
performs especially well [65]; however, it also does not achieve the full spatial/multi-user di-
versity available. This can be easily seen by noting that at least one channel is processed
linearly; at high SNR this channel will give an upper bound onperformance and result in the
same diversity as the linear techniques described in Section 1.3.1.

In contrast to the above techniques, an algorithm for findingthe integer offset vector using
the Lenstra-Lenstra-Lovász (LLL) algorithm [66] does give full diversity; at high SNR the
slope of the error curves for this technique are the same as for vector precoding. The LLL
matrix decomposition of the channel results in an integer matrix with unit determinant, and
a reduced matrixB:

H = BT, such that |T| = ±1 . (1.29)

ThusB has the same determinant asH. This decomposition can be used to obtain the Babai
estimate of the integer offset:

d̄ = τT

⌊

T−1d

τ

⌋

. (1.30)

MMSE versions of this algorithm exist for the uplink [67], though they have not been ex-
plored as much in the downlink setting.

1.3.5 Power Control

As mentioned above, sum rate maximization in “near-far” scenarios may result in one or two
strong users taking a dominant share of the available power,potentially leaving weak users
with little or no throughput. Consequently, in practice, the dualpower control problem is
often of more interest,i.e., minimizing power output at the transmitter subject to achieving
a desired QoS for each user. We illustrate this approach below for the case where QoS is
measured in terms of SINR. Assuming linear transmit beamformers and unit-power data
symbols and noise, the SINR for userj can be expressed as:

SINRj =
b∗

jRjbj
∑

k 6=j b∗
kRkbk + 1

, (1.31)

where eitherRj = hjh
∗
j or Rj = E{hjh

∗
j} depending on the type of CSI available at the

transmitter.
Given a desired minimum SINR for each user, which we denote byηj , the power control
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problem can be formulated as follows:

min
b1,··· ,bK

K
∑

k=1

b∗
kbk

s.t.
b∗

jRjbj
∑

k 6=j b∗
kRkbk + 1

≥ ηj , j = 1, · · · ,K .

(1.32)

In [23, 24], iterative algorithms are presented that solve this problem when a feasible solution
exists (i.e., if the SINR constraints can be met). An alternative formulation of the problem
is presented in [25], where (1.32) is recast as a minimization over the matricesWj = bjb

∗
j

rather than the beamformersbj directly. It is shown that the constraint thatWj be rank
one can be relaxed, and the resulting optimization problem will still have an optimal rank-
one solution. The advantage of this approach is that the problem becomes a semidefinite
optimization, for which efficient numerical algorithms exist. While the above discussion has
focused on linear beamforming, an approach based on vector precoding would be a natural
extension of this work.

1.4 Multiple Antenna Receivers

With only a single antenna, the users in the network can perform no spatial interference sup-
pression of their own, and can only receive data over a singlespatial channel. With multiple
antennas, these restrictions are removed, provided that the transmitter and receiver can coor-
dinate their spatial processing, and appropriately allocate the available spatial resources. In
this chapter, we present several methods that take advantage of the presence of multiple an-
tennas at the receivers for increased throughput, enhancedinterference suppression, or both.

1.4.1 Channel Block-Diagonalization

The single-antenna techniques of the previous section could be directly applied in the multiple-
antenna receiver case, provided thatnR ≤ nT , i.e., the number of transmit antennas is greater
than the number of receive antennas summed over all the users. In such cases, each receive
antenna is considered to be a separate “user,” and each transmitted data stream is decoded
independently on each receive antenna as if it were a SISO channel. As mentioned above,
while this approach results in a very simple receiver, it overly constrains the problem and
will lead to suboptimal performance.

Rather than forcingHB in (1.2) to be diagonal (or nearly so), an alternative is to make
it block-diagonal [7, 26–30]. This removes inter-user interference, but requires that the re-
ceiver perform some type of spatial demultiplexing to separate and decode the individual data
streams sent to it. To be precise, the goal is to findB such that

HB =







M1

.. .
MK






, (1.33)

whereMj is nRj
×nRj

assuming that up tonRj
data streams are transmitted to userj (some

of the columns ofMj could be zero so thatmj ≤ nRj
). There are several criteria that could
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be used to determineMj . Below, we present an algorithm that is sum-capacity-achieving
under the block-diagonal constraint [7].

DefineH̃j as the following(nR − nRj
) × nT matrix:

H̃j =
[

HT
1 · · · HT

j−1 HT
j+1 · · · HT

K

]T
. (1.34)

If we denote the rank of̃Hj asL̃j , then the nullspace of̃Hj has dimensionnT − L̃j ≥ nRj
.

The SVD ofH̃j is partitioned as follows:

H̃j = ŨjΣ̃j

[

Ṽ
(1)
j Ṽ

(0)
j

]∗
, (1.35)

whereṼ(0)
j holds thenT − L̃j singular vectors in the nullspace ofH̃j . The columns of̃V(0)

j

are candidates for userj’s beamforming matrixBj , since they will produce zero interference

at the other users. SincẽV(0)
j potentially holds more beamformers than the number of data

streams that userj can support, an optimal linear combination of these vectorsmust be found
to formBj , which can have at mostnRj

columns. To do this, the following SVD is formed:

HjṼ
(0)
j =

[

U
(1)
j U

(0)
j

]

[

Σj 0
0 0

]

[

V
(1)
j V

(0)
j

]∗
, (1.36)

whereΣj is Lj × Lj andV
(1)
j represents theLj singular vectors with non-zero singular

values. TheLj ≤ nRj
columns of the product̃V(0)

j V
(1)
j represent (to within a power loading

factor) the beamformers that maximize the information ratefor userj subject to producing
zero inter-user interference.

The transmit beamformer matrix will thus have the followingform:

B =
[

Ṽ
(0)
1 V

(1)
1 · · · Ṽ

(0)
K V

(1)
K

]

Λ1/2 , (1.37)

whereΛ is a diagonal matrix whose elements scale the power allocated to each “sub-channel.”
With B chosen as in (1.37), the capacity of the block-diagonalization (BD) method becomes

CBD = max
Λ

log2

∣

∣I + Σ2Λ
∣

∣ s.t. Tr(Λ) = ρ , (1.38)

where

Σ =







Σ1

.. .
ΣK






. (1.39)

The optimal power loading coefficients inΛ are then found using water-filling on the diago-
nal elements ofΣ. Forcing the inter-user interference to zero also allows for a power control
formulation of the above approach. This is done by performing water-filling on eachΣj in-
dividually in order to achieve the desired rate for userj, then formingΛ from the diagonal
matrices that result for each user.

Figure 1.8 illustrates the performance of the BD algorithm and several alternatives for a
case involvingnT = 4 andnR = 4 with ρ = 10dB. The elements ofH were independent
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Rayleigh random variables with unit variance, and the cumulative distribution function of
the capacity achieved by each method is plotted. The BD algorithm is implemented for three
different scenarios: four users with one antenna each ({1, 1, 1, 1} × 4), two users with two
antennas each ({2, 2} × 4), and a single user with 4 antennas (referred to as “1 User” in
the figure). “Inversion” refers to channel inversion with equal power distributed to each data
stream, and “TDM” refers to the case where no channel information is available and the users
are simply time-multiplexed. Note that the difference between channel inversion and BD in
the{1, 1, 1, 1} × 4 case is due to the fact that BD employs an optimal power allocation via
water-filling. The single-user performance is obviously the best, since it does not require the
block-diagonal constraint. The improved performance of BDin the{2, 2}×4 case compared
with the{1, 1, 1, 1}×4 scenario demonstrates the advantage of relaxing the requirement that
the channel be identically diagonalized.
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Figure 1.8: Cumulative distributions of the sum capacity for nT = nR = 4 achieved by
several transmit beamforming strategies.

1.4.2 Combined Block Diagonalization and MMSE THP Precoding

Block diagonalization (BD) always outperforms channel inversion, but it is still worse than
MMSE THP transmit filtering when the users are equipped with one antenna each. In a
scenario where we have multiple users equipped with one or more antennas, the performance
of the single-antenna users degrades the overall system performance. In [68] a combination
of MMSE THP and block diagonalization is proposed, where MMSE THP is used for the
single-antenna users and block diagonalization for the multiple-antenna users. This approach
significantly improves the performance of the single-antenna users, and hence also that of the
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Figure 1.9: Average BER of the single- as well as the multiple-antenna users as a function of
the SNR. For the single-antenna users we use either BD or MMSETHP.

overall system.
In the combined BD and MMSE THP approach, the modulation matrices for multiple-

antenna users are chosen to lie in the null space of the channel matrices of the other users
including those with single antennas. In this way the equivalent channel for the single-antenna
users looks as if there are no multiple-antenna users present. This improves diversity for these
users, which in turn improves their BER performance. MMSE THP is applied on the network
channel corresponding to these single-antenna users. The data transmitted to the multiple-
antenna users is also precoded using THP in order to eliminate the multi-user interference
which in this case only originates from the single-antenna users.

Figures 1.9 and 1.10 illustrate the performance of this combined technique. In the sim-
ulations, the data rate for each user is assumed to be proportional to the number of receive
antennas. In Figure 1.9 we compare the performance of the multiple- and single-antenna
users in a system with the configuration{1, 1, 2, 2}× 6. The BER performance of the single-
antenna users is represented using dashed lines. Here we compare the following algorithms:
BD with dominant eigenmode transmission (DET), MMSE THP, and BD MMSE THP. In the
case of MMSE THP, both single- and multiple-antenna users have similar performance. For
BD DET and BD MMSE THP, there is a difference between the performance of the single-
and multiple-antenna users. From the results for BD DET and BD MMSE THP, where the
only difference is that in the first case we use BD for single-antenna users and in the second
case we use MMSE THP, we can see that MMSE THP clearly outperforms BD for single-
antenna users. In Fig. 1.10, the overall system performanceis depicted comparing MMSE
THP, BD, and the combination of BD and MMSE THP. The combination of BD and MMSE
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Figure 1.10 Overall BER of all users as a function of the SNR.

THP achieves an SNR gain of about 2 dB with respect to MMSE THP.

1.4.3 Coordinated Tx/Rx Beamforming

Strictly speaking, the BD algorithm does not requirenT ≥ nR. However, when there are
more than just a couple of users,nR is usually close to the lower bound on the number of
transmit antennas.1 In this section, we examine methods that have a less stringent constraint
onnT , namely thatnT be no smaller than the total number of data streams to be transmitted.
For example, ifmj = 1 for all j, thennT ≥ K would be required. Obviously, in a real
system where the total number of users serviced by a basestation is very large, spatial multi-
plexing must be augmented by other multiple access techniques such as time and frequency
multiplexing. A key question is how to best group theK users to be spatially multiplexed
together into a given time/frequency slot.

To begin, consider the case wheremj = 1, and each receiver uses a beamformerwj in

1Technically, the BD approach requires

nT > max
n

rank(H̃1), · · · , rank(H̃K)
o

.

Since rank(H̃j) ≤ nR − nRj
, it is clear thatnR can be larger thannT . For example, two users with 3 antennas

each could be accommodated by a transmit array with no more than 4 antennas, and possibly fewer depending on
the rank ofH̃1 andH̃2.
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Figure 1.11: An illustration of coordinated transmitter-receiver beamforming, where the
transmitter estimates what beamformers the receivers are using, creates a “virtual channel”
matrix with one row per user, and uses channel inversion to create the transmit-side beam-
formers.

decoding the symboldj that is sent to it:

x̄j = w∗
jxj =

K
∑

k=1

w∗
jHjbkdk + w∗

jej (1.40)

=

K
∑

k=1

h̄∗
jbkdk + ēj , (1.41)

whereh̄∗
j = w∗

jHj represents the effective channel from the transmit array tothe output
of the receive beamformer, and̄ej = w∗

jej represents the noise at the output of the receive
beamformer. If we definēH∗ =

[

h̄1 · · · h̄K

]

, then we obtain an equation identical in form
to (1.2):

x̄ = H̄Bd + ē . (1.42)

Each receiver has a single element ofx̄ associated with it, so (1.42) has the same dimensions
as (1.2) whennRj

= 1. The implication is that, if the transmitter somehow has knowledge of
w1, · · · ,wK , then it knowsH̄, and hence any of the downlink algorithms in Section 1.3 for
the single-antenna-per-user case could be used. The coordinated transmit-receive beamform-
ing technique is illustrated in Figure 1.11.

The composite channel̄H could be estimated directly by the transmitter using uplink
training data in a reciprocal time-division duplex (TDD) system, assuming that the receiver
will use the conjugate of its transmit weights for downlink reception. However, this approach
begs the question of how the receiver chose its beamformer, and whether or not any type
of optimal solution is possible. An alternative is to assumethe basestation knows what al-
gorithm each receiver uses in computing its own “optimal” receive beamformer. Since the
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base generates the interference that each user sees, given CSI it can predict what each user’s
beamformer will be. For example, suppose it is known that user j employs MMSE receive
beamforming. Then

wj =
[

E
{

xjx
∗
j

}]−1 E
{

xjd
∗
j

}

(1.43)

=





∑

k 6=j

Hjbkb
∗
kH

∗
j + I





−1

Hjbj , (1.44)

which can be computed at the transmitter. Alternatively, ifthe receiver uses maximal ratio
combining (MRC), thenwj = Hjbj , which is also a function of information known at the
transmitter. Whatever the criterion chosen by the receiver,it is likely that the optimal value
for wj will depend on one or more of the transmit beamformers inB. On the other hand, the
choice ofB in (1.42) depends on̄H, which in turn depends on the receive beamformerswj .

The interdependency ofwj andB suggests the following iterative approach:

1. Find an initial value forw1, · · · ,wK . For example, they could be chosen as the prin-
ciple left singular vectors of the respective channel matricesHj .

2. Repeat steps 3-4 until convergence.

3. Givenw1, · · · ,wK , calculateH̄ and findB using any of the algorithms discussed
above (MMSE, MRC, or other).

4. GivenB, recalculate the receive beamformersw1, · · · , wK according to their respec-
tive algorithms.

Convergence can be said to have occurred, for example, when no appreciable change in the
achieved SINR or sum rate is observed from one iteration to the next. Algorithms of this
general form have been presented in [7, 32–37]. While analytical results for these approaches
are scarce, empirical evidence suggests they have reliableconvergence behavior.

In situations wheremj ≥ 1, solutions similar to those in Section 1.4.1 are possible,
where in this case it is the effective channelH̄ that is block-diagonalized. For this case,
step 3 in the above iterative algorithm is replaced by eitherthe capacity or the power control
formulation of the BD algorithm, and rather than computing the thew1, · · · , wK vectors in
step 4 independently, they are taken from the left singular vectorsU(1)

j in equation (1.36)
with Hj replaced byH̄j (whenmj = 1 this is equivalent to using MRC beamformers).
Figure 1.12 plots the cumulative distribution functions ofcapacity for the coordinated Tx/Rx
beamforming algorithm described above. The SNR for this example is 10dB and the channels
were all composed of independent, Rayleigh distributed entries. Several base/user geometries
were considered:4 × 4 (single-user case),{2, 2} × 4 with m1 = m2 = 2, {4, 4} × 4 also
with m1 = m2 = 2, {2, 2, 2, 2} × 4 and{4, 4, 4, 4} × 4. In the latter two scenarios, one
sub-channel is allocated to each user, and channel inversion is used to determineB. When
mj = 2, the BD algorithm is assumed. As expected, the more total receive antennas that are
available, the more flexibility there is in finding a good solution, and the higher the capacity.
The4 × 4 single-user system outperforms the{2, 2} × 4 case since it does not require the
block-diagonal constraint. Similarly, the{4, 4}×4 channel achieves higher capacity than the
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Figure 1.12: Cumulative distributions of the sum capacity for coordinated Tx/Rx beamform-
ing in several scenarios.

{2, 2, 2, 2}× 4 system since the block-diagonal constraint is less restrictive than full channel
diagonalization.

An obvious extension of this work is to combine the joint transmit-receive beamforming
technique with the vector precoding approach of Section 1.3.3. At the transmitter, the nonlin-
ear integer offset would be applied based on the effective channel which would include the
transmit beamformers, with the modulo operation at the receivers occurring after the receive
beamformers are applied. Similar to the significant diversity gain seen in Section 1.3.3 over
linear techniques, the combined technique is anticipated to provide a significant diversity
gain over linear joint transmit-receive beamforming.

1.5 Open Problems

1.5.1 Coding and Capacity

Analytic solutions for determining the multi-user capacity region in arbitrary scenarios is
the most visible open problem in the area of multi-antenna multi-user coding. The case of
Gaussian noise was recently solved [5], but the general problem has not been solved. This and
other theoretical results for the broadcast channel have built on dirty-paper coding techniques,
which are rather complex. An important area of research is finding simple techniques for
approaching the dirty-paper limit. In Section 1.3.3 we useda simple modulo operation to
approach capacity; this idea may be extended to higher-dimensional lattices. Though these
lattices are difficult to use for encoding and decoding, low-complexity techniques [9, 67]
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based on the LLL [66] algorithm exist.
A classic coding approach would be to use a QR-type approach as in Section 1.3.4

but with a more complex dirty-paper coding scheme replacingthe simple modulo function.
Candidate coding schemes include those based on nested lattices [58], repeat-accumulate
codes [40], low-density-parity-check codes [46, 47], and trellis precoding [48]. It remains
to be seen if the complexity of these schemes are prohibitivein practical MIMO systems.
Though we have focused on the frequency-flat case with CSI assumed known, future wireless
cellular systems will include appropriate coding to obtaintemporal and frequency diversity
as well as the spatial and multi-user diversity mentioned above.

1.5.2 Partial or Imperfect CSI

Almost all of the work on both theoretical and practical coding approaches for the MIMO
broadcast channel has assumed that the transmitter and receivers all know the channel ex-
actly [1, 2, 4, 8–10, 69]. Accurate CSI may be easy to obtain when the channel is changing
slowly, e.g., as for indoor scenarios, but it is much more difficult in situations where the
basestation or users are highly mobile. An analysis of the penalty for using imperfect or out-
dated feedback of channel information would be of significant benefit to system designers;
preliminary simulations indicate that the techniques of Section 1.3.3 are robust to channel
estimation error or “stale” CSI. The sum-capacity when onlythe transmitter or when no one
knows the channel would also provide insight for practical coding schemes. A related area
of open research is analysis of a system where the transmitter and/or receiver know only the
statistics of the channel coefficients. References to several papers that have addressed this
problem can be found in [14].

It has been proposed [52] that MIMO channel prediction has the ability to lengthen the
time between training intervals over that obtained by SISO prediction techniques. This is es-
pecially intriguing for multi-user scenarios where the CSIburden at the transmitter is consid-
erably higher than in the single-user case. Other CSI-related issues that require additional re-
search include: algorithms that take the statistics of the channel estimation error into account,
channel feedback methods that consume minimal bandwidth, and analysis of the trade-offs
between the amount of CSI fed back to the transmitter and the gain available from using the
CSI. A comparison of the resources needed for channel estimation in a time-division duplex
versus a frequency-division duplex system is given in [70].

1.5.3 Scheduling

In systems with a single base-station antenna, it is well known [71] that transmitting to the
user with the strongest channel at any given time achieves the sum-rate capacity. The resulting
“multi-user diversity” is expected to be present as well in the multi-antenna case. The idea is
that when a large number of users are sharing a network with rapidly time-varying channels,
a base station may use intelligent scheduling algorithms toimprove capacity by transmitting
to a subset of users. In situations whereK À nT , one obvious possibility is to transmit to a
set ofnT users at each symbol time. ThenT users with strongest average channel strength
could be selected, or some orthogonality criterion could beused [72].

In situations where minimal channel variation is to be found, “opportunistic beamform-
ing” has been used to create artificial channel variation in situations where it might not oth-
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erwise exist [73].Proportional fair scheduling is also investigated in [73] as a way to ensure
that users are treated fairly over some time interval. Some work has been done in extend-
ing the opportunistic beamforming idea to the case where base station and mobile stations
all have multiple antennas [74], but this has not been studied extensively. Multiple random
beams are used in [75] with limited feedback to communicate with many users. Other recent
studies in the area of scheduling include [76–90].

1.5.4 Resource Allocation

Related to the scheduling problem are numerous issues that arise when considering practical
network implementations. For example, a typical scenario involves more users than transmit
antennas; if SDMA is used to supplement existing TDMA and FDMA implementations, it
is important to consider how the users in the network will be grouped together. In particu-
lar, since the different spatial channels are non-orthogonal, it is critical that only “spatially-
compatible” users be chosen to be time- or frequency-coincident [91]. Efficient methods are
needed to determine how to optimally determine which users in a network should be spatially
multiplexed.

Downlink processing is only one aspect of the multi-user MIMO problem. The uplink
MIMO MAC has received significant attention in recent years (see [3, 4, 14] for a discussion
of the MIMO MAC and some of the duality relationships it shares with the MIMO broadcast
channel). We have focused solely on the cellular network architecture with a base terminal
and users that communicate data to the base.Ad-hoc networks composed of multiple antenna
nodes are of increasing interest, especially in military applications. An important question is
how MIMO nodes could be exploited in message relaying, wheresignal “hops” are required
to connect widely separated network nodes. When consideringall of these ideas together
in the context of a network where all users have arrays, complexity grows very quickly;
it is unlikely that globally optimal solutions can be easilyfound. The ability of heuristic
algorithms for scheduling and relaying to achieve the available capacity remains an important
area for future research. Some preliminary studies on the application of MIMO techniques to
ad-hoc networks have been conducted (e.g., see [92–95]).

Though the general area of multi-user communications has been well-studied, the addi-
tion of multiple antennas in a wireless network opens up manynew areas of research which
have not yet been addressed. Space does not permit a completetreatment of this topic; in
addition to the references cited above, there have been a number of other important re-
sults that have not been mentioned, including methods basedon estimating physical chan-
nel parameters (e.g., directions of arrival,etc.) [96–100], “multi-cell” or multi-basestation
MIMO [101, 102], and others [103–107].

1.6 Summary

A brief overview of coding techniques for the multi-user MIMO downlink has been given
in this chapter. We began with a description of techniques for the special case where each
user in the network has a single antenna. The capacity of channel inversion was shown to
approach a constant as the number of antennas grows, a fact which indicates its inefficiency.
A combination of regularized channel inversion and integerperturbation of the data to be
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transmitted is shown to operate near capacity when combinedwith an appropriate channel
code. Linear techniques for multiple-antenna receivers were also presented, including block
diagonalization of the channel and joint transmit/receivebeamforming.

Despite the progress in this area, many open problems remain. Efficient techniques for
multi-user scheduling, acquisition of CSI at the base station, and coding must be developed.
Future wireless cellular systems may include channel tracking techniques at the base station,
and use of this CSI with appropriate coding to obtain temporal, frequency, spatial, and multi-
user diversity. The complexity of this system is a serious challenge for researchers, since it
grows rapidly with the number of antennas, users, bandwidthand code length.
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[67] D. Wübben, R. B̈ohnke, V. K̈uhn, and K.-D. Kammeyer, “Mmse-based lattice-reduction for near-
ml detection of mimo systems,” inITG Workshop on Smart Antennas, Munich, Germany, March
2004.

[68] V. Stankovic, M. Haardt, and M. Fuchs, “Combination of block diagonalization and THP trans-
mit filtering for downlink beamforming in multi-user MIMO systems,” inProc. European Con-
ference on Wireless Technology (ECWT 2004), Amsterdam, The Netherlands, Oct. 2004, to be
published.

[69] P. Viswanath and D. Tse, “Sum capacity of the multi-antenna broadcast channel,” inProceedings
IEEE International Symposium on Information Theory, July 2002, p. 497.

[70] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state information in wireless
systems,”Submitted to IEEE Transactions on Signal Processing, 2004.

[71] R. Knopp and P. A. Humblet, “Information capacity and power control in single-cell multiuser
communications,” inProceedigns of the IEEE Int. Conf. on Communications, June 1995.

[72] M. J. Lopez, “Multiplexing, scheduling, and multicasting strategies for antenna arrays in wireless
networks,” Ph.D. dissertation, Massachusetts Institute of Technology,2002.

[73] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic Beamforming Using Dumb Antennas,”
IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.

[74] R. W. Heath, M. Airy, and A. J. Paulraj, “Multiuser Diversity for MIMO Wireless Systems With
Linear Receivers,” inConference Record of the 35th Asilomar Conference on Signals, Systems,
and Computers. Pacific Grove, CA: IEEE, November 4-7 2001, pp. 1194–1199.

[75] M. Sharif and B. Hassibi, “On the capacity of mimo broadcast channel with partial side informa-
tion,” in Proc. of the Thrity-Seventh Asilomar Conference on Signals, Systems and Computers,
November 2003, pp. 958–962.

[76] R. H. Jr, M. Airy, and A. Paulraj, “Multiuser Diversity for MIMO Wireless Systems with Linear
Receivers,” in35th Asilomar Conf. on Signals, Systems and Comp., Asilomar, CA., November
2001, pp. 1194–1199.

[77] H. Viswanathan and K. Kumaran, “Rate Scheduling in Multiple AntennaDownlink Wireless
Systems,” inProceedings of the 39th Annual Allerton Conference on Communication, Control,
and Computing, Monticello, IL, October 3-5 2001.

[78] I. Koutsopoulos and L. Tassiulas, “Adaptive Resource Allocationin SDMA-Based Wireless
Broadband Networks With OFDM Signaling,” inProceedings of IEEE INFOCOM 2002, vol. 3,
2002, pp. 1376–1385.

[79] V. Lau, Y. Liu, and T.-A. Chen, “Optimal Multi-User Space Time Scheduling for Wireless Com-
munications,” inProc. IEEE Vehic. Tech. Conf., September 2002, pp. 1939–1942.

[80] R. Gozali, R. Buehrer, and B. Woerner, “On the Performance of Scheduling over Space-Time
Architectures,” inProc. Vehicular Technology Conf., September 2002, pp. 415–419.

[81] M. Demirkol and M. Ingram, “Stream Control in Networks with Interfering MIMO Links,” in
Proc. IEEE Wireless Comm. & Networking Conf., March 2003, pp. 343–348.



REFERENCES 34

[82] B. Farhang-Boroujeny and Q. Spencer, “Layering Techniques for Space-Time Communication
in Multi-User Networks,” inProceedings of the IEEE 58th Vehicular Technology Conference.
Orlando, FL: IEEE, October 6-9 2003.

[83] D. Mazzarese and W. Krzymien, “High Throughput Downlink Cellular Packet Data Access with
Multiple Antennas and Multiuser Diversity,” inProc. IEEE Vehic. Tech. Conf., vol. 2, 2003, pp.
1079–1083.

[84] J. Chung, C.-S. Hwang, K. Kim, and Y. Kim, “A Random Beamforming Technique in MIMO
Systems Exploiting Multiuser Diversity,”IEEE J. Sel. Areas in Commun., vol. 21, no. 5, pp.
848–855, June 2003.

[85] H. Boche and M. Wiczanowski, “Stability region of arrival rates and optimal scheduling for
mimo-mac-a cross-layer approach,” inProc. 2004 International Zurich Seminar on Communi-
cations, Feb 2004, pp. 18–21.

[86] Z. Tu and R. Blum, “Multiuser Diversity for a Dirty Paper Approach,” IEEE Communications
Lett., vol. 7, no. 8, pp. 370–372, August 2003.

[87] L. Dong, T. Li, and Y.-F. Huang, “Opportunistic Transmission Scheduling for Multiuser MIMO
Systems,” inProc. ICASSP, vol. 5, April 2003, pp. V65–V68.

[88] O.-S. Shin and K. Bok, “Antenna-Assisted Round Robin Scheduling for MIMO Cellular Sys-
tems,”IEEE Communications Lett., vol. 7, no. 3, pp. 109–111, March 2003.

[89] D. Aktas and H. Gamal, “Multiuser scheduling for MIMO Wireless Systems,” in Proc. IEEE
Vehic. Tech. Conf., October 2003, pp. 1743–1747.

[90] K.-K. Wong, “Adaptive Space-Division-Multiplexing and Bit-and-Power Allocation in Mul-
tiuser MIMO Flat Fading Broadcast Channels,” inProceedings of the IEEE 58th Vehicular Tech-
nology Conference. Orlando, FL: IEEE, October 6-9 2003.

[91] Q. H. Spencer and A. L. Swindlehurst, “Channel Allocation in Multi-user MIMO Wireless Com-
munications Systems,” inProceedings of the IEEE International Conference on Communica-
tions. Paris: IEEE, June 2004.

[92] M. Dohler, A. Gkelias, and H. Aghvami, “A Resource Allocation Strategy for Distributed MIMO
Multi-Hop Communication Systems,”IEEE Communications Lett., vol. 8, no. 2, pp. 99–101,
February 2004.

[93] M. Dohler, J. Dominquez, and H. Aghvami, “Link Capacity Analysisfor Virtual Antenna Ar-
rays,” inProc. IEEE Vehic. Tech. Conf., September 2002, pp. 440–443.

[94] S. Bellofiore, J. Foutz, R. Govindarajula, I. Bahceci, C. Balanis,A. Spanias, J. Capone, and
T. Duman, “Smart Antenna System Analysis, Integration and Performance for Mobile Ad-Hoc
Networks (MANETs),”IEEE Trans. on Ant. and Prop., vol. 50, pp. 571–581, May 2002.

[95] Y. Chang and Y. Hua, “Application of Space-Time Linear Block Codes to Parallel Wireless
Relays in Mobile Ad Hoc Networks,” inProc. 37th Asilomar Conf. on Signals, Systems, and
Computers, 2003, pp. 1002–1006.

[96] P. Zetterberg and B. Ottersten, “The Spectrum Efficiency of a Base Station Antenna Array Sys-
tem for Spatially Selective Transmission,”IEEE Trans. on Vehic. Tech., vol. VT-44, no. 3, pp.
651–660, August 1995.

[97] J. Fonollosa, J. Goldberg, and G. Vazquez, “Downlink Beamforming in Cellular Mobile Com-
munications,” inProc. SPAWC Workshop, Paris, France, 1997, pp. 197–200.

[98] C. Farsakh and J. A. Nossek, “Spatial Covariance Based Downlink Beamforming in an SDMA
Mobile Radio System,”IEEE Transactions on Communications, vol. 46, no. 11, pp. 1497–1506,
November 1998.
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