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Abstract For further improvement of magnetic information storage density and writing speed, 
laser-induced writing procedures have been extensively explored recently. Within the framework 
of the Landau-Lifshitz-Bloch equation of motion, which does not conserve the length of the 
magnetization vector, we investigate thermally assisted switching analytically. We show that 
for temperatures close to (but still below) the Curie temperature two reversal modes appear, 
an elliptical mode and a linear one. We calculate the coercive fields and energy barriers for 
both elliptical and linear switching. Investigating the dynamics of linear reversal, which is the 
more relevant case close to the Curie temperature, we calculate the temperature dependence of 
the minimal time and field needed for thermally assisted switching below and above the Curie 
temperature. 
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Experimental studies with femtosecond time resolution 
are currently casting light on the physics of ultrafast 
magnetization processes [1-6]. Though the interpretation 
of these experiments in terms of a picosecond magne
tization dynamics was controversially discussed, a rapid 
decrease and recovery of the magnetization following a 
laser pulse is now well established [7]. Recent experimen
tal work [8] has even demonstrated the phenomenon of 
opto-magnetism, in which a circularly polarized laser pulse 
induced precessional motion in Dy FeO 3. More recently, 
the same workers [9] demonstrated that the opto-magnetic 
effect can give complete magnetization reversal in GdFeCo 
on a timcscale of only 1 ps. 

While the microscopic details of the energy and momen
tum transfer from the laser light to the magnetization are 
still under debate, it was shown that the response of a 
magnetic system to pulsed heating can be described in 
terms of an atomistic spin model the dynamics of which 
is based on the Landau-Lifshitz-Gilbert (LLG) equation 
with Langevin dynamics [10]. However, less attention 
has been paid to studies of the magnetization reversal 
process during laser heating in the presence of a magnetic 
field [11]. Clearly this is important in understanding the 
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dynamics of magnetization processes in the picosecond 
timescale, which is of practical importance in relation 
to heat-assisted magnetic recording (HAMR), which has 
been proposed as a means of writing information on high 
anisotropy magnetic media. 

In this letter we present a theory of magnetization 
reversal at elevated temperatures in the presence of an 
applied magnetic field, applicable close to and even above 
the Curie temperature Te , including an analysis of a 
mechanism which we term "linear reversal". At 0 K, the 
magnetization of a single domain magnetic nano-particle 
reverses by circular rotation, with all magnetic spins held 
parallel by the exchange field. This we term circular 
reversal. With increasing temperature, the magnetization 
has been shown to shrink as it moves into the magnetic 
hard direction [12]. This has an analogy with the onset of 
elliptical domain walls in magnetic materials [13-16] and 
as a result we term this elliptical reversal. At temperatures 
close to Te , the transverse components of magnetization 
vanish [17] and we are left with a "linear" reversal 
mechanism. This type of reversal mode was discussed 
in [17] for thermally activated switching in zero field. It is a 
characteristically different reversal mechanism, which does 
not exhibit the precession expected from the reversal of 
single domain nano-particles. In the following, we explore 
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the characteristic temperature separating the elliptical 
and linear reversal regimes and derive expressions for the 
energy barrier of the linear reversal mechanism. We will 
show that the picosecond reversal [9], which is beyond 
precessional mechanism, is consistent with linear reversal. 

Analytical results for energy barriers and switching field 
exist so far only in the zero-temperature limit (most 
prominent here is the Stoner-Wohlfarth theory [18]) or 
within the framework of Brown's theory [19], where a 
stochastic LLG equation is used to describe the dynamics 
of nano-particles under the influence of a thermal field. 
In these approaches, the thermodynamic behavior of the 
particle itself is neglected by assuming that the magneti
zation of the particle is constant in magnitude. In recent 
atomistic simulations [12], it has been demonstrated that 
at temperatures approaching the Curie temperature addi
tional effects occur, which cannot be described in this 
kind of approach: i) the magnetization vector magnitude 
is not conserved, ii) longitudinal magnetization relax
ation occurs, with the longitudinal relaxation time increas
ing approaching the Curie temperature (critical slowing 
down) , iii) at the same time the transverse relaxation 
time decreases. However, it has been shown that all these 
effects are in agreement with single macro-spin dynam
ics based on the Landau-Lifshitz-Bloch equation (LLB), 
which was derived by Garanin for classical [20] and quan
tum [21] average spin polarization. At low temperatures 
it coincides with the standard LLG equation but it is 
valid up to and beyond the Curie temperature Tc. The 
necessity of the longitudinal relaxation to model pump
probe experiments via a micromagnetic approach has been 
noted by several authors [22] who suggested to use for 
this purpose the Bloch equation. The advantage of the 
LLB equation resides in the fact that it is a much more 
consistent approach which has a more rigorous foundation 
and has been tested against the predictions of atomistic 
modeling [23]. 

The LLB equation (see [20] for more details) can be 
written in the form 

(1) 

where m is a spin polarization normalized to its zero
temperature value. It is not assumed to be of constant 
length and even its equilibrium value, me, is temperature 
dependent. Hence, besides the usual precession and relax
ation terms, the LLB equation contains another term that 
controls longitudinal relaxation. 

The LLB equation is valid for finite temperatures 
and even above Tc though the damping parameters and 
effective fields are different below and above Tc. all and 
a1- are dimension less longitudinal and transverse damping 
parameters. For T~Tc, they are all =2)..T/(3Tc) and 
a1- = )..(1- T/(3Tc)). For T;;:: Tc the damping parameters 
are equal, a1- = all = 2)..T/(3Tc)' Here, ).. is a microscopic 
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Fig. 1: (Color online) Trajectories for reversal at different 
temperatures. For 300 K the reversal is nearly circular (Stoner
Wohlfarth type), at 615 K elliptical deviations occur, at 645 K 
the reversal is linear. The red points represent the stationary 
points which are the initial condition as well as the final state. 
In the following, they are referred to as mo and moo. 

damping parameter that characterizes the coupling of 
the individual, atomistic spins to the heat bath. Note 
that even assuming ).. to be temperature independent, 
the macroscopic damping parameters of the LLB equation 
turns out to be temperature dependent [12]. In the limit 
T -+ 0, the longitudinal damping parameter all vanishes 
and with a1- = ).. the LLB equation goes over to the usual 
LLG equation. 

For a single-domain particle, the effective field Heff is 

(2) 
where HA = - (mxex + myey) /X1- represents the aniso
tropy field and B represents an external magnetic field. 
Here, the susceptibilities Xl are defined by Xl = 8mt/8BI 
with 1 =II,.L Note, that at low temperatures the perpen
dicular susceptibility X1- is related to the temperature
dependent anisotropy constant K via X1- = M~m~/ 
(2K) [20], where M~ is the zero-temperature saturation 
magnetization. In the following we use Xl and the reduced 
zero-field equilibrium magnetization mc(T) as calculated 
from a spin model for FePt (for details see [16,24]) for all 
our calculations. The corresponding Curie temperature 
Tc is 660K. 

The effective fields of the LLB equation are the deriva
tive Heff = - ~ /In of the free-energy density 

o M~ (2 2) MsQ (2 2)2 i=-BMs m z +-
2

- mx+my +-8-2 m -me , 
X1- Xllme 

(3) 
if we assume the external magnetic field B to point in 
z-direction. As in the case of the Stoner-Wohlfarth theory, 
the quasi-static coercive fields can be calculated from 
consideration of the free energy. However, due to the 
fact that the LLB equation allows for a variation of the 
magnetization magnitude different reversal mechanisms 
are possible (see fig. 1). The zero-temperature limit of 
the LLB equation is identical to the LLG equation and 
the reversal is circular as in the Stoner-Wohlfarth model. 
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With increasing temperature the reversal path becomes 
more elliptical with a smaller magnetization magnitude 
along the hard axis. We will call this path elliptical 
in the following even though, strictly, only the minimal 
energy path for thermally activated switching in zero 
field is elliptical [17J. The reversal path becomes oval 
due to the influence of the external field. Close to the 
Curie temperature, a reversal without any magnetization 
transverse to the easy axis sets in, which we will refer to 
as linear reversal. Note that for pure thermal switching, 
without magnetic field, these reversal paths were already 
discussed in [17J. 

We will start with the case of a linear reversal. During a 
linear reversal process the magnetization changes its direc
tion along the z-axis only, without any x- or v-components 
of the magnetization. This reversal is only possible at finite 
temperatures where the magnitude of the magnetization 
can shrink to zero followed by a reappearance with oppo
site direction along the easy axis. The free energy along 
that path depends only on m z . The condition ..!2.L88 = 0 m. 

leads to stationary points, either a local minimum, a global 
minimum, and a maximum for fields smaller than the coer
cive field or just one global minimum for fields above the 
coercive field. The corresponding magnetization values are 
given by the condition 

(4) 

Let us call the solutions for the two minima m± and the 
solution for the maximum mE. When additionally g88

2 
= 0 m. 

the free-energy minimum becomes unstable, yielding the 
coercive field for linear reversal, 

(5) 

and the corresponding magnetization value where switch
ing sets in, m~ = me/ J3. In other words, starting from 
a positive magnetization, a negative field will lead to a 
decreasing magnetization. When the magnetization is 
reduced by a factor of 1/J3 the system is no longer in a 
local free-energy minimum (in z-direction) and a linear 
reversal sets in. In this regime, the coercive field does not 
depend on the Xl. and, hence, on the anisotropy constant. 
Instead only the longitudinal susceptibility determines the 
coercive field. Note, however, that in general the coercive 
field for linear reversal is huge unless the temperature 
approaches the critical region where the longitudinal 
susceptibility diverges. For fields B < Bc, the energy 
barrier for linear reversal can be calculated as Ilf = 
f(mE) - f(m+). However, since for the calculation of m+ 
and mE a third-order equation has to be solved (eq. (4)), 
the results are rather lengthy and will be published 
elsewhere. 

For lower temperatures the system will reverse rather 
by rotation and in the following we will discuss this more 
common type of reversal process, where the magnetization 
follows a (more or less) elliptical path. The first derivative, 
..!2.L88 is always zero at mx = O. Let us once again assume mx 
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Fig. 2: (Color online) Energy barriers for linear and elliptical 
reversal as well as the Stoner-Wohlfarth limit. The susceptibil
ity ratio XIINJ. is also shown. 

that we start with positive magnetization and lower the 
magnetic field. Then, the second derivative 88

2 
{ must 

mx 
be negative for mx = 0 and m z = m+, so that the free 
energy has a (local) minimum at that point leading to the 
condition m+ > m e J1- 2XII/Xl.' When with decreasing 
field and, hence, decreasing m+ the above condition 
is violated, elliptical reversal sets in unless the system 
reverses earlier on a linear path. Note that XII / Xl. increases 
with temperature (from 0 at T = 0 to infinity at T = Te 
as can be seen in fig. 2) leading to the fact that the 
elliptical path vanishes already below Te , at a temperature 
T*, where XII/Xl. = 1/2 as discussed in [17J for thermally 
activated switching in zero field. 

Taking into account the limiting magnetization value for 
linear reversal, elliptical reversal occurs under the condi
tion m e /J3 ~ m+ ~ m e J1- 2XII/Xl., which is fulfilled if 
XII/Xl. ~ 1/3. The magnetic field required to lower the 
magnetization to the critical value where elliptical rever
sal sets in, m~ = me/ J1- 2XII/Xl., is the coercive field for 
elliptical reversal, 

(6) 

with the constraint XII < Xl./3. In the zero-temperature 
limit XII vanishes and the Stoner-Wohlfarth limit for 
circular reversal is recovered. 

Transforming eq. (3) into polar coordinates (m,8) the 
energy barrier for elliptical reversal can be calculated 
as well. The saddle point can be found from the condi
tions' ~ = U = 0 and the energy difference between 
saddle point and local energy minimum can be calcu
lated. However, once again third-order equations have to 
be solved so that the results are rather complicated and 
will be published elsewhere. Nevertheless fig. 2 shows the 
energy barriers for linear or elliptical reversal along with 
XII/Xl.. Close to Te the ellipticity of the reversal leads 
to a reduction of the energy barrier as compared to the 
Stoner-Wohlfarth limit. Furthermore, it can be seen that 
even below Te the energy barrier Ilfl for the linear rever
sal is reduced in relation to Ilfe, for the elliptical rever
sal. Actually, the linear reversal becomes more favourable 
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Fig. 3: (Color on line) Coercive fields vs. temperature. The 
values for linear, elliptical, and circular (Stoner-Wohlfarth) 
reversal are shown. The figure on the right-hand side shows 
the critical region in more detaiL 

at T* which is consistent with the earlier result that the 
elliptical path vanishes at this temperature. This is an 
important finding in relation to ultrafast laser pump-probe 
processes and, especially, for HAMR from a practical 
point of view. For high anisotropy materials such as FePt 
the critical temperature T* for linear reversal is below the 
actual Tc. Here, linear reversal is clearly involved in the 
switching process by cooling through Tc in the presence of 
an applied field due to the reduced energy barrier /:lil of 
the linear reversal in relation to the circular one as already 
discussed. Note, however, that the relevance of these find
ings is not entirely restricted to high anisotropic materials, 
since linear reversal occurs for all temperatures above the 
Curie temperature, probably the temperature range where 
heat-assisted writing will have to take place. 

Figure 3 shows the coercive fields required for either 
linear or elliptic reversaL For comparison, a thermo
dynamically corrected Stoner-Wohlfarth limit B~w = 
2K/(M~me) with temperature-dependent magnetization 
and anisotropy constant is shown as well. For lower 
temperatures the magnetic field needed for elliptical 
reversal is close to the Stoner-Wohlfarth limit and much 
smaller than the one needed for linear reversaL However, 
for temperatures approaching Tc linear reversal takes 
over. 

The next step is to discuss the dynamics of the reversal 
process. Linear reversal is along the z-axis only and 
the LLB equation reduces to a simple one-dimensional 
differential equation of the form 

(7) 

The parameters a, b, and c can be identified from the 
LLB equation and are different above and below Tc (see 
table 1), but with a, b ~ O. This differential equation can 
be integrated analytically. 

Its solution depends on the number of roots of the 
polynomial m 3 + bm - c. Most interesting in the context 
of thermally assisted switching is the case of only one 
real root, which occurs when the external field exceeds 
the coercive field. In this case, only one minimum of the 
free energy exists and no metastable states. Above Tc, this 
condition is always fulfilled. 

Table 1: Parameters a, b, and c of eq. (7). J.t is the atomic 
magnetic moment and Jo is the sum over all exchange integrals 
at a given site. 

T=Tc 

5 J.t 1 
a ----

b -m~ 0 
5T- Tc ----
3 Tc 

c 2m~XIIB ~!!...B 
3 Jo 

5T-Tc _
B ---XII 

3 Tc 

With m(t=O)=mo and m(t-too)=moo (see also 
fig. 1), the solution can be written in the form 

t = _ a (In [ 
3m;;" +b 

(2mo + moo)2 + p2 

(2mz + moo)2 + p2 

1 
mz - moo I] 3moo ( t [ 2mo + moo] x + -1-1- arc an I I mo -moo p p 

[
2mz +moo])) - arctan Ipl . 

Note that for the case of only one real root p2 = 
3m;" + 4b ~ O. During thermally assisted switching field 
and temperature have to be applied for a certain time 
to guarantee that the magnetization will recover along 
the direction defined by the field. Let us assume that 
the magnetization is first in negative direction. Then, 
a rectangular field (positive) and temperature pulse is 
applied. The magnetization will increase in time. As 
soon as the magnetization is positive the field (and 
temperature) can be switched off, and the magnetization 
will recover in the positive direction, i.e., switching will 
occur. Hence, the minimum time needed for the field and 
temperature pulse is given by mz(tp) = O. Using the above 
equation, the minimal pulse time can easily be identified. 

In certain limits, simplifications can be found. For 
T < Tc, b = -m~ and a = 2m~XII/ball) (see table 1). 
Assuming mo = -1, which mimics a low temperature 
initial condition and overestimates the time for reversal, 
moo > 0, and that close to the coercive field p2 = 3m;" -
4m~ « m;", we can approximate the minimal pulse time as 

t;::; 2m~XII (31fmoo -In[2]- 3). (8) 
p ,all (3m;;" - m~) J3m;;" - 4m~ 

For T» Tc, b = 5(T - Tc)/(3Tc) and a = 6 x XII/ball) 
(see table 1). Assuming once again mo = -1 and small 
moo;::; XIIB > 0, we can approximate the minimal pulse 
time as 
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Fig. 4: (Color online) Minimal pulse time vs, magnetic field for 
different temperatures for the linear regime. For T ~ Tc, the 
analytical solution coincides with eq. (10). 

where for smaller magnetic fields and higher temperatures 
the arctan term can be neglected as well. 

For T r:::;, Tc, moo = ~ ~ fa B. For smaller magnetic fields, 

i.e., small moo, we can expand the equation above, 
yielding 

t r:::;, 21f (~) 1/3 

p 3V3,),D:1I 3JoB2 
(10) 

In fig. 4 the minimal pulse time is shown vs. the 
magnetic field for different temperatures. The material 
parameters are once again those for FePt with A = 0.02. 
However, since tp '" 1/D:.l '" I/A other values of A will 
simply shift the curves. Note that below 630 K elliptical 
reversal would set in, the dynamics of which cannot be 
calculated analytically. 

In summary, we have investigated a novel and intrigu
ing mechanism of thermally activated reversal, specifi
cally a linear reversal mode in which precession is not 
involved; reversal is via a state of zero net magnetization. 
Essentially, the reversal mode evolves from coherent or 
"circular" reversal at zero temperature to elliptical rever
sal at non-zero temperature, and finally to the linear mode 
close to Tc. The importance of our findings derives from 
its significance in relation to ultrafast laser pump-probe 
processes and, from a practical point of view, HAMR. 
We find that the transition to linear reversal occurs at 
a temperature that differs from Tc by an amount which 
increases with increasing magnetic anisotropy energy. The 
current interest in temperature-assisted magnetization 
reversal in high anisotropy materials means that the criti
cal temperature for linear reversal is 10-20 K below Tc for 
materials such as FePt. Consequently, reversal by cooling 
through Tc in a bias field must involve linear reversal, with 
its reduced energy barrier relative to circular rotation. 
Given the scaling of the timescale with 1/ A, it is clear that 
reversal on a timescale of picoseconds is achievable with 
fields of r:::;, 10 T in materials with large damping (such as 
GdFeCo [9]). This suggests linear reversal as an important 
contribution to the optically induced ultrafast reversal. 

Our calculations show that writing in FePt with a 
field of 1 T appears only to be possible very close to 
or even above Tc (see fig. 3). In this temperature range, 
the reversal is definitely linear. The minimal pulse time 
for the writing procedure is of the order of 10-100 ps. 
Note that this is without the timescale for recovery, which 
might lead to an overall much slower writing process [10] 
though slow recovery is likely to be suppressed in nm scale 
grains. However, in nano-particles another problem arises: 
the energy barrier for linear reversal is much smaller than 
expected from a naive Stoner-Wohlfarth type of model (see 
fig. 2) suggesting that thermal fluctuations play a crucial 
role during the writing procedure. These fluctuations 
could lead to a reduction in the written magnetization. 
This is a potential limit to magnetic recording technology 
that will be explored in a separate publication. 

*** 
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