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Linear and Logarithmic Capacities in 
Associative Neural Networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract -A model of associative memory incorporating global linearity 
and pointwise nonlinearities in a state space of n-dimensional binary 
vectors is considered. Attention is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfocused on the ability to store a 
prescribed set of state vectors as attractors within the model. Within the 
framework of such associative nets, a specific strategy for information 
storage that utilizes the spectrum of a linear operator is considered in some 
detail. Comparisons are made between this spectral strategy and a prior 
proposed scheme which utilizes the sum of Kronecker outer products of 
the prescribed set of state vectors which are to function nominally as 
memories. The storage capacity of the spectral strategy is linear in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, the 
dimension of the state space under consideration, while an asymptotic 
result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof n/4logn holds for the storage capacity of the outer product 
scheme. Computer-simulated results are quoted in suppod of the analysis 
to show that the spectral strategy stores information more efficiently than 
the outer product scheme. Estimates of the preprocessing costs incurred in 
the two algorithms are provided, and recursive strategies are developed for 
their computation. 

I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Neural Networks 

E WILL CONSIDER two models of associative W memory based upon ideas from neural nets and 
characterize their performance. A neural network consists 
of a highly interconnected agglomerate of cells called 

neurons. The neurons generate action trains dependent 
upon the strengths of the synaptic interconnections. The 
instantaneous state of the system is described by the 

collective states of each of the individual neurons (firing or 
not firing). Models of learning (the Hebbian hypothesis 
[l]), and associative recall based on such networks (cf. [2] 
for instance), have been developed and illustrate how 
distributed computational properties become evident as a 
collective consequence of the interaction of a large number 
of simple elements (the neurons). The success of these 
biological models for memory has sparked considerable 
interest in developing powerful distributed processing sys- 
tems utilizing the neural network concept. Central features 
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of such systems include a high degree of parallelism, 
distributed storage of information, robustness, and very 

simple basic elements performing tasks of low computa- 

tional complexity. 
Our focus in this paper is on the distributed computa- 

tional aspects evidenced in such networks. In particular, 
we consider the capacity of two specific neural networks 
for storage of randomly specified data and their capability 
for error correction (or, equivalently, nearest neighbor 
search). 

We will be concerned with a specific neural network 

structure. We assume a densely interconnected network 
with neurons communicating with each other through lin- 
ear synaptic connections. We will consider two state tran- 

sition mechanisms for the system. In the synchronous 
mode each neuron updates its state simultaneously (at 
clocked intervals, for instance). In the asynchronous mode, 
each neuron updates its state at random times independent 

of the update times of the other neurons; in essence, with 
high probability, at most one neuron updates its state at 
any given instant. Mathematically speakmg, in either mode 

the state vector is operated upon by a global linear opera- 
tion followed by a pointwise nonlinear operation. We will 
consider two specific constructive schemes for generation 

of the matrix of synaptic weights corresponding to the 
global linear transformation, and utilize a thresholding 

decision rule. 

B. Organization 

In the next section, we will describe the neural network 
structure from a system-theoretic point of view and define 
the parameters that are important for the system to func- 
tion as an efficient associative memory. In Section I11 we 
briefly review a scheme for generation of the matrix of 
synaptic weights using outer products of the prescribed 

datum vectors. This scheme has been well outlined in the 
literature [3 ] - [6 ] .  Our focus in this section is on the state- 

ment of a new result concerning the storage capacity of the 
outer product scheme. 

In Section IV we outline a technique for generating the 
weight matrix by tailoring the linear transformation to 
obtain a desired spectrum. We analyze the performance of 

this scheme as an associative memory in some detail, and 
obtain estimates of its performance from purely theoretical 
considerations. We will use W to represent the linear 
operation for both schemes; in the event that it is impor- 
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tant to discriminate between the linear operators of the 
two schemes, we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoP for the outer product scheme, 
and W s  for the spectral scheme. Sections V and VI are 

devoted to computer simulations of the two techniques, 
ad hoc modifications, and discussions. 

Formal proofs of quoted results can be found in the 

Appendices. Propositions 1 and 2 are proved in Appendix 

I. Theorems 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and Corollary 3 are proved in Ap- 
pendix 11. 

B. Storage Capacity and Attraction 

Our concern in this paper is with the information stor- 
age capability of the specified structure. For it to function 
as an associative memory, we require that almost all pre- 
scribed m-sets of state vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u(l ) ,  U('); - 0 ,  u ( ~ ) }  E B" 
are storable in the network and that these state vectors are 
invokable by any input that is sufficiently close to any of 
the stored vectors in some sense, i.e., these states function 
as attractors. We shall soon make these intuitive notions 
more precise. 

We henceforth refer to the prescribed set of state vectors 11. LINEAR NETS WITH POINTWISE DECISION RULES 

A.  Description of the Model 

We consider a system of n neurons, each capable of 
assuming two values: -1  (off) and 1 (on). The instanta- 
neous state of the system is denoted by a binary n-tuple 
U E B", where B = { - l , l} ,  and the components U,, i = 

1; . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ,  of U denote the state of the ith neuron. The 
adaptation of the system with time, or the flow in state 
space, is governed by two mathematical operations: 1) a 
globally acting linear transformation W: R " + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIw " (corre- 
sponding to fixed synaptic strengths w ), and 2) a point- 
wise thresholding operation A: R"  + B'". 

Two distinct modes of operation are possible: syn- 
chronous, where the entire state vector updates itself, and 
asynchronous, where state changes are synonymous with bit 
changes and only a single randomly chosen neuron up- 
dates its state per adaptation. For the sake of notational 
simplicity, we use A to denote both these modes of opera- 
tion, and it will be clear from the context which mode we 

are actually referring to at any given time. 
We fix the thresholding level at zero, so that the thresh- 

olding operation can be described mathematically as fol- 

lows: for each U E R", 

A(  0 )  = U E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB" 

where 

1, if vi 2 0 

-1, if v i < O .  
U ,  = sgn(v,) = 

For the synchronous algorithm, the thresholding is done 
for each neuron, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =1;.., n ,  whereas for the asyn- 
chronous algorithm, only the i th neuron (corresponding to 
some randomly chosen i E { 1,2,. . . , n }) is updated per 
adaptation, with the others held fixed. 

We can clearly consider just the restriction of W to B", 
as wandering in the state space is confined to binary 
n-tuples by the nature of the algorithm. The total adapta- 
tion algorithm can hence be described as a cascade of 
operations A 0 W: B" + B". 

Other processing modes are feasible in such neural net- 

works. Models based on linear mappings, for instance, 

have been examined by Longuet-Higgins [7] and Gabor 
[8], while Poggio [9] has considered certain polynomial 
mappings. 

as datums to distinguish them from all other states of the 
system. Now, it is a desideratum that the prescribed da- 
tums dl), U('); . e ,  U("') E B" are self-perpetuating, i.e., are 
stable. We shall say that a datum U(') E B" is strictly 
stable (or simply stable) if (A 0 W)u( ' )  = U('). Thus a state 
is strictly stable if it is a fixed point of the neural network. 
Clearly, for this definition of stability, it is immaterial 

whether the system is synchronous or asynchronous. 
We define capacity to be a rate of growth rather than an 

exact number as in traditional channel capacity in infor- 
mation theory. Specifically, consider an algorithm X for 
storing prescribed datums in a neural network of the type 
we consider. We will assume that the components of the 
datums are chosen from a sequence of symmetric Bernoulli 
trials. 

Definition: A sequence of integers { C ( n ) } 7 = l  is a se- 
quence of capacities for algorithm X if and only if, for 
every h E (O,l) ,  as n + 00 the probability that each of the 

datums is strictly stable approaches one whenever rns 
(1 - h ) C ( n ) ,  and zero whenever m 2 (1 + h ) C ( n ) .  

The above definition of capacity was formally arrived at 
by a consideration of lower and upper limits for capacity 
and has been found to be particularly well-suited in the 
present context [lo]. Fig. 1 schematically illustrates the 
0-1 behavior required by the definition of capacity. A 
consequence of the above definition is that if a sequence of 
capacities does exist, then it is not unique; however, any 
two sequences of capacity are asymptotically equivalent. 

ps 1n.m) '' large " n 

I 

I 1  

Fig. 1. 0-1 behavior of capacity for large n: schematic plot of probabil- 
ity that all datums are stored as fiwed points by algorithm X (indicated 
by Ps(n ,  m )  in figure) is shown versus number of datums m.  

In the structure of association, we would like the stored 
datums to have a region of influence around themselves, so 
that if an input vector is "sufficiently close" to a datum (in 

the Hamming distance sense), the adaptive algorithm will 
cause the neural network to settle into a stable state 
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centered at that datum. The determination of attraction 
behavior in general depends on the specific structure of the 
linear transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. For the specific case where W is 
symmetric, however, we can demonstrate Lyapunov func- 

tions for the system, and this suffices as an indicator of 
attraction behavior. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB“ + R be the quadratic form 

1 1 ”  
E ( u )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(U, W U ) =  - - w,,u,u,. ( 2 . 1 )  

2 l , J = 1  

By analogy with physical systems we refer to E as the 

energy of the current system state. As in physical systems, 
the system dynamics proceeds in the direction of decreas- 

ing energy [ 6 ] ,  [12]  (also cf. Section V-D). However, the 
result does not hold for arbitrary symmetric weight matri- 
ces in a synchronous mode of operation. For such cases 
the functional F: B” + R defined by 

I 

can be shown to be a Lyapunov function for the system 

In either case, fixed points of the system reside as 
minima of either E or F for systems with symmetric 

weight matrices. If the datums are programmed to be 
fixed-points by suitable choice of symmetric W ,  then un- 
der the above conditions, trajectories in state space in the 
vicinity of the datums will tend to settle into strictly stable 
states at the datums thus establishing basins of attraction 
around the datums. (Limit cycles are possible with either E 
or F identically zero for those states. Ths,  however, has 
small probability in most cases.) 

C. Algorithm Complexity and Recursive Constructions 

An algorithm for storing datums in a neural network is 
hence simply a prescription for determining the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wl,. We will characterize the algorithm preprocessing cost 

by the number of elementary operations required to com- 

pute the matrix of weights [w i , ] .  For our purposes, we 
define an elementary operation to be the multiplication (or 

the addition) of two real quantities. 
Another facet of computational importance is whether a 

recursion can be set up for the algorithm whereby weight 
matrices could be simply updated whenever a new datum 
is to be added to the existing set of datums. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(“) 
denote the family of n X n matrices with real components. 
Consider an algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX for generating interconnection 
weight matrices. Let {U(’)} be a sequence of datums, and 
let { W x [ j ] }  be a sequence of weight matrices in U(“), 
where W x [ j ]  denotes the weight matrix generated by X 
for storing the first j datums U(’); + ., U(’). For conve- 
nience, we set Wx[O] = 0. 

Definition: An algorithm X for generating weight matri- 
ces is memoryless if and only if there is a function fX:  

U(”) X B ”  +MI(“) such that for any choice of datums 

{U(’)}, the sequence of weight matrices { W x [ j ] }  gener- 

[ I l l .  

ated by X satisfies 

W X [ k ] = f X ( W X [ k - l ] , ~ ( k ) ) ,  k 2 1 .  ( 2 . 3 )  

Thus, for memoryless algorithms, a new weight matrix 
can be generated given only knowledge of the previous 
weight matrix and the new datum. The terminology 
“memoryless” refers to the fact that, for storage algo- 
rithms satisfying this property, a set of datums can be 
essentially “forgotten” once a matrix of weights has been 
generated for their storage; updates of the weight matrix 
for the storage of new datums access information about 

the previous datums only through the generated matrix of 
weights. This is a computationally useful feature as the 

necessity of keeping track of the stored datums in some 
external storage medium is obviated. 

Definition: A storage algorithm X is (additively) local if 
and only if there are functions g,‘f: R + R and h:: B” + 

R ,  i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1,. . . , n ,  such that, for any choice of datums 
{ u ( ~ ) } ,  the components w , 7 [ k ]  of the generated sequence 

of weight matrices satisfy 

w , r [  k ]  = g,’f( w,;[ k - 11) + h:( u ( ~ ) ) ,  i ,  j = 1; . . , n .  

(2.4) 

Algorithm locality is a particularly nice feature to have 
as it almost invariably implies low computational require- 
ments for matrix updates. Another appealing feature of 

local algorithms is that component updates can be done 
“in place.” Particular simplicity results if the functions 
SI:= Id .  In this case, 

W X [ k ]  = W x [ k  - 1 ] + g ” ( ~ ‘ ” )  

where gX: B” +U(“). 
More general definitions of locality are, of course, possi- 

ble, but additive locality suffices for our purposes. Clearly, 

every local algorithm is memoryless. 

111. THE OUTER-PRODUCT ALGORITHM 

A .  The Model 

We review here a correlation-based scheme for generat- 
ing the linear transformation W. The scheme is based upon 
the sum of the outer products of the datum vectors and 
has been well-documented in the literature. Nakano [3] 
coined the term “associatron” for the technique and 
demonstrated how a linear net constructed using outer 
products of prescribed state vectors could be combined 
with a pointwise thresholding rule to obtain a time se- 

quence of associations, with some ability for recall and 

error correction. More recent papers emphasize the role of 
the nonlinearity in the scheme and include both syn- 
chronous and asynchronous approaches. The conditions 
under which long-term correlations can exist in memory 
have been investigated by Little zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] and Little and Shaw [ 5 ]  
utilizing a synchronous model. Using an asynchronous 
model, Hopfield [6 ]  demonstrated that the flow in state 

space was such that it minimized a bounded “energy” 
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functional and that associative recall of chosen datums was 
hence feasible with a measure of error correction. 

We now describe the model. We assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm datums zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U('), u ( ~ ) , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, u ( ~ )  E B" have been chosen randomly. The 

matrix of weights is constructed according to the following 
prescription: for i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =1; - ., n ,  set 

if i =  j .  

Thus [ w,",] is a symmetric zero-diagonal matrix of weights. 
We shall briefly review the question of stability and attrac- 
tors in the model before quoting the result on the storage 

capacity of the network with this particular choice of 
linear transformation. 

We first demonstrate that the datums are stable (at least 
in a probabilistic sense). Assume that one of the datums 
U(') is the initial state of the neural network. For each 

I =1;. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  n ,  we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n n m  

= wl;Pujr)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) ( r )  (WoPu(r) 
' J  ' J  

/ = I  J - 1  S = l  

I # I  

= ( n  - 1) U,") + c U ! ~ ) U ~ ~ ) U ( ' ) .  (3.2) 

We assume that the datum components, u ! ~ ) ,  i = 1,. . e ,  n ,  
r = 1; . ., m ,  are generated from a sequence of symmetric 
Bernoulli trials; specifically, P{ u ! ~ )  = - l} = P{ U,") = l} 
=1/2. It then follows that the second term of (3.2) has 
zero mean and variance equal to ( n  - l)(m - l), while the 
first term is simply ( n  - 1) times the sign of U,"). The terms 

wIJ from (3.1) are the sum of m independent random 
variables and are hence asymptotically normal vide the 
central limit theorem. As the second term in (3.2) is 

asymptotically normal, we have that the bit U,") will be 
stable only if the mean to standard deviation given by 
( n  - 1)'12/( m - 1)lI2 is large. Thus, as long as the storage 
capacity of the system is not overloaded, we expect the 
datums to be stable in probability. Note that the simple 
argument used above immediately implies that we require 
m = o(n ) .  Stable datums tend to exlubit attraction basins 
for t h s  model as the interaction matrix is symmetric. 

B. Storage Capacity of the Outer-Product Scheme 

Let the sequence { m,}$'l denote explicitly the number 
of datums as a function of the number of neurons n. We 

define the sequence of probabilities { Ps( n)}$= by 

P,( n )  = P{ U(') is a stable state, r = 1; . . , m ,  } . (3.3) 

The following results follow from [lo] and [12]. All loga- 
rithms are to base e.  

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Let 6 be a parameter with (1ogn)-' I 6 < 

3 log log n + log (128~6') 

s f r  J # I  

logn. If 

mn = - 4 log n [1+ 41og n + o (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&)I. 
as n - m ,  (3.4) 

then the probability that each of the m, datums is strictly 

stable is asymptotically e-', i.e., Ps(n)  - e-' as n -, CO. 

Corollary I :  C ( n )  = n/4log n is the storage capacity of 

the outer-product algorithm. 
The capacity result was based on the requirement that 

all of the datums be strictly stable. A recomputation of 
capacity based on the less stringent requirement that one 
of the datums be strictly stable with high probability yields 
a capacity of n/2log n. (This latter requirement yields that 
the expected number of strictly stable datums is m - o( m ) . )  
Thus requiring all the datums to be stable instead of just 
one reduces capacity by only a factor of a half. 

C. Update Rule and Preprocessing Cost 

Let U = [U('); * ., u ( ~ ) ]  be the n X m matrix of datums 
to be stored. From (3.1) we have that for direct construc- 
tion of the matrix of weights, 

WoP= W o P [ m ]  = U U T -  mZ (3.5) 

where Z is the n X n identity matrix. The following asser- 
tion follows directly. 

Theorem 2: The outer-product storage algorithm is lo- 
cal; specifically, 

W o P [ k ]  = W o P [ k - l ] + ~ ( k ) ~ ( k ) T - Z ,  k > l ,  (3.6) 

with WoPIO] = 0. 

Matrix updates to include new datums can hence be 
done in place at low computational expense for the outer- 
product algorithm. In fact, let NOP be the number of 

elementary operations required to compute the weight 
matrix WoP when all the m datums are to be directly 

stored by the outer-product algorithm according to (3.5): 
also let NoP[k]  denote the number of elementary opera- 
tions needed to compute the update of the weight matrix 

according to (3.6) when datum u ( ~ )  is to be included in the 
stored set of datums u ( ' ) ; . - , u ( ~ - ' ) .  We now have the 
following cost estimates which follow directly from (3.5) 
and (3.6), and the observation that the matrices are sym- 
metric and zero-diagonal. 

Corollary 2: 

n 2  n 
N o P [ k ] = - - -  2 2 '  k 2 l .  

In the above assertion we estimated the number of 
multiplications. Using real additions as a measure of ele- 
mentary operations yields the same order of magnitude of 
required elementary operations. Also note that mNoP[ k ]  = 

NOP, so that for this instance the total computational labor 
involved is the same whether we compute WoP directly or 

recursively. Providing an update capability thus does not 
cost any more. 
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Iv .  LOG CAPACITY AND LINEAR CAPACITY 

Each datum comprises n bits so that we can store up to 
n2/410g n bits using the outer-product algorithm. In the 
densely interconnected model of neural network that we 
utilize, we have n2 possible interconnections. The outer- 
product scheme is hence capable of storing of the order of 
1/41og n bits of information per connection. 

Thus, while the number of datums that can be stored 
grows at a reasonable rate with n, in terms of interconnec- 

tions, however, an ever-decreasing amount of information 

is stored per interconnection with every added intercon- 
nection. This is of concern, especially in digital implemen- 
tations, where the cost and circuit complexity of VLSI 
circuits increases rapidly with the number of interconnec- 
tions required [13]. 

We have n2 degrees of freedom corresponding to the 
matrix of weights [w,,] with which to tailor a network for 
storage of a given set of datums. The intuitive idea that the 
storage capacity of the network is a monotone function of 
the available degrees of freedom-in this case the total 
number of possible interconnections-has been previously 
remarked upon by Little and Shaw [5], and quantified by 
Abu-Mostafa and St. Jacques [14]. The latter authors de- 
fine the information capacity of the network as the loga- 
rithm of the total number of distinct mappings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB" to B" 
that can be made by all possible threshold logic operations 
of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 0  W. (All such distinct mappings can be 

regarded as informative transitions.) They deduce the in- 
formation capacity of the network to be exactly of the 
order of n3 bits, and, as a corollary, conclude that the 
storage capacity is at best of the order of n2. 

However, the n2 bound does not apply with the imposi- 
tion of the additional requirement that the stored datums 
be stable. Each neuron can be formally considered to be a 
threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlogic unit [15] within the model we consider, so 
that the neural network is simply a large interconnected 
network of threshold logic units. Using this fact and ideas 
from combinatorial geometry, we can demonstrate that if 
all possible neural networks are allowed for consideration 
(i.e., we are allowed to examine all choices of matrix W ) ,  
then the maximal algorithm independent storage capacity 
of neural networks is of the order of 2n datums [lo], [16], 
[17]. Specifically, let P ( m ,  n )  represent the probability that 

each of m randomly chosen associations of the form U - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 

can be stored for some choice of neural network. We quote 
the following result (cf. [lo], [16], [17]) without proof. 

Theorem 3: For every A E (0, l), as n -, CO, the follow- 

a) 
b) 

ing hold: 

P( m ,  n )  + 1 whenever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm I 2 n ( l -  A),  and 
P ( m ,  n )  + 0 whenever m 2 2 n ( l +  A).  

For the specific case of autoassociation some strictures 
apply on allowable choices for W (cf. [lo], [16] for details). 

In (141 an alternate deterministic formulation of capac- 
ity is used wherein it is required that, for every choice of m 
datums with m less than capacity, there must exist some 

neural network (restricted to symmetric zero-diagonal 

weight matrices) in which all the m datums are stable. 

With this definition the authors derive an upper bound of 
n for capacity. However, it can be demonstrated that this 
bound is rather loose for the adopted definition. In partic- 
ular, any two datums differing in precisely one component 
cannot be jointly stored as stable states in any neural 
network with a symmetric zero-diagonal weight matrix (cf. 
also [18]). 

The probabilistic definition of capacity that we adopted 
effectively relaxes the requirement that all choices of m 
datums (with m less than capacity) be storable to the 
requirement that almost all choices of m datums be 
storable. Pathological examples of choices of datums with 

m less than capacity that cannot be stored form a set 

whose size is small compared to ( z )  and are hence effec- 

tively ignored by our definition. Furthermore, the maximal 
capacity of 2n is a tight (probablistic) upper bound which 
can actually be realized in networks of sufficient size. 

With the added requirement of attraction, we conjecture 
that the storage capacity of 2n datums becomes of the 
order of about 1 bit of information per interconnection. 

We anticipate that, by careful choice of linear transforma- 
tion, we can store up to about 1 bit of information per 
interconnection. 

V. SPECTRAL ALGORITHMS 

A.  A New Perspective of the Outer-Product Scheme 

We again assume that m datums dl), u ( ~ ) ;  . -, u ( ~ )  E B" 
have been chosen randomly. For strict stability, we require 
that (A 0 W)(U( ' ) )  = U(') for r = 1,. * ,  m.  Specifically, if 

WU(') = U( ' )  E W ", we require that sgn( U,"))  = U,") for each 

For the outer-product scheme for generating the ele- 
, n. i = l , .  . . 

ments of the weight matrix, we have from (3.1) 
n 

(WOP,(') ), = wp,pu;" 
J = 1  

n m  
= u ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s )  ( I )  

' J  ' J  
J = 1  S = l  

J + l  

= ( n  - 1)u!r) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ! ~ )  (s)u( ' )  
' J  J 

s # r j # i  

= ( n  - 1) U,") + 8 ~ : ' )  (5.1) 

where E(6u: ' ) )  = 0, var(8ul')) = ( n  - l ) ( m  -1). Hence 

E ( l ( n  - l ) u f r ) l )  ( n  -1)'12 

(var(6u:r)))'12 - ( m  -11''~ 
CO as n -, CO, 

- 

where we require that m = o ( n )  from Corollary 1 so that 
the datums are stable with high probability. Hence we can 
write 

wopU(') = ( - + aU(') 

where 6u(') has components 8 ~ : ' )  whose contributions are 

small compared to U!'), at least in a probabilistic sense. In 
essence then, the datums U(') are "eigenvectors-in-mean" 
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B. Constructive Spectral Approaches 

In this section we demonstrate constructive schemes for 
the generation of the weight matrix which yield a larger 
capacity than the outer-product scheme. This construction 
ensures that the given set of datums is stable under the 
algorithm; specifically, we obtain linear operators W s  
whch ensure that the conditions sgn( W'U(~)), = ~ l ( ~ ) ,  i = 

1,. . ., n ,  r =1; . ., m, are satisfied for rn I n .  The con- 

struction entails an extension of the approach outlined in 
the previous section so that the datums u ( ~ )  are true 

eigenvectors of the linear operator W s  [lo], [19]. Related 
approaches include those of Kohonen [20], who considers 
a purely linear mapping that is optimal in the mean-square 
sense, and Poggio's polynomial mapping technique [9]. 
Other schemes formally related to our approach are the 
interesting orthogonalization techniques proposed by 
Amari [21] and Personnaz et al. [22] .  We now utilize a 
result due to Koml6s on binary n-tuples, to establish two 
results which have a direct bearing on the construction of 
the weight matrix. 

Proposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 

a) For all randomly chosen binary ( - 1 , l )  n-tuples 
U('), U('),-. ., u ( ~ )  E B" with rn I n ,  define the n x 
m ( - 1 ,  1)  matrix U = [,(')U(') . . -  u ( ~ ) ] .  Then 
P{rank(U) = m }  + 1  as n + 00. 

b) Let E, be the family of bases for R "  with all basis 

elements constrained to be binary n-tuples; (i.e., E = 

( e , , e , ; . - , e , }  € E n  if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 1 e 2 , . - . , e n E B n  
are linearly independent). Then asymptotically as 
n -+ 00, almost all vectors U E B" have a representa- 
tion of the form 

U =  cxJeJ, cx , fOforeachJ=l ; . . ,n ,  (5.2) 

for almost all bases E in E,. 

n 

J - 1  

We use these results to establish the validity of the 
following schemes for constructing the weight matrix W,. 
Fix m I n ,  and let A('), A''), . . . , A'") E R + be fixed (but 
arbitrary) positive real numbers. Let U('), U('), . . . , u ( ~ )  E 

B" be the m randomly chosen datums to be stored in the 
memory. In what follows we formally define two "spectral" 

formulations for the interconnection matrix. 
Strategy 1: Define the m X m diagonal matrix A = 

dg[A(", A''), . . . , A'")], and the n X rn( - 1 , l )  matrix of da- 
tums U =  [u(,)u(*). . d")]. Set w" = UA(UTU)-'UT. 

Strategy 2: Choose any ( n  - m )  vectors u(~+'), u(~+'), 
. . . , u ( ~ )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB", such that the vectors U('),. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  ucm), 
u(~+'),. . . , U(") are linearly independent. Define the aug- 
mented n X n diagonal matrix A,, and the augmented 
n xn(- l , l )  matrix U, by A,=dg[A('),...,A("),O;..,O], 

The crucial assumption of linear independence of the 
datums in the formal definitions above is justified by 

and U, = [U('). . . ~ ( m ) ~ ( m + l ) .  . . U(")]. Set Ws = u,A U-'.  
n u  

Proposition 1-a). Specifically, rank(U) = m and rank(U,) 
= n for almost any choice of datums, so that the inverses 
are well defined. 

Note that in both strategies, {A('), A('); . ., A'")} is the 
spectrum of the linear operator W", and the datums 
U('), U('); . , u ( ~ )  are the corresponding eigenvectors. Al- 

ternative schemes can also be obtained by combining the 
two strategies. 

Theorem 4: The storage capacity of all spectral strate- 
gies is linear in n ;  specifically, C ( n )  = n for all spectral 
strategies. 

Remarks 

1 )  Additional stable states are created by both strategies: 
For simplicity, let us consider the eigenvalues A(') to be 
equal to some value A > 0. Let r = span { U('), U(') 

, . . . , dm)} c R ". Clearly, if U belongs to r n B ', then U is 

also stable for both strategies. By Proposition 1-b), how- 

ever, there will not be many such stable states created if 
m < n .  In addition there will be some more stable states 
created in more or less random fashon in both strategies. 
Such stable states satisfy the more general stability require- 

ment: sgn(W"u),= U ,  for each i = l ; . . , n ,  and are not 
eigenvectors of the linear operator W'. 

2) Both strategies have some capacity for positive recogni- 
tion of unfamiliar starting states: Let @ c R "  denote the 
null space of W'. For strategy 1, @ is the orthogonal 
subspace to r, while for strategy 2, @=span{u("+'), 

U("+');..,U(")). If U € @ ,  we have WSu=O. Conse- 
quently, at least for a synchronous algorithm, ( A  0 W s )  will 
iteratively map U to some vector U(') E B" for all U E a. 
The vector U(') in this case represents a positive indication 
that the starting state was not familiar. 

C. Recursive Constructions and Cost 

Note that there is a computational advantage in choos- 
ing strategy 1 as it involves just an rn x m matrix inversion 
as opposed to the n X n matrix inversion required in 
strategy 2.  In what follows we assume that we construct 
W s  according to the prescription of strategy 1. 

The linear capacity evidenced in the spectral schemes 
yields considerable improvement over the (inverse-) loga- 
rithmic capacity of the outer-product algorithm. The im- 

provement in capacity, however, is at the cost of increased 
complexity in the construction of the weight matrix. In 
general, this increased complexity implies that simple up- 
date rules like (3.6) cannot be found. However, for the 

particular (but important) case where the spectrum is 
chosen to be m-fold degenerate, some simplicity is at- 
tained. 

Theorem 5: For a constant choice of eigenvalues, A ( k )  = 

A > 0, k 2 1, the pseudo-inverse spectral storage algorithm 
of strategy 1 is memoryless; specifically, let e(" )  be the 
n-vector given by 
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Then 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW”[O] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. 

Note that the algorithm is not local-each component 
of the updated matrix requires knowledge of the entire 
previous weight matrix-so that in-place updates are not 
possible. For the general spectral algorithm with unequal 

eigenvalues, a recursion can still be provided (cf. Appendix 

11) to construct updated matrices. However, the spectral 
algorithm is not memoryless for the general case. 

The matrix inversions that have to be performed for the 
spectral strategies pose a much more involved computa- 

tional task than the simple Kronecker products required in 
the outer-product algorithm. Symmetries in the structure 
can, however, be utilized to ease the computational bur- 

den. We again restrict our attention to the pseudo-inverse 
formulation of strategy 1. 

Let N s  denote the number of elementary operations 

required to compute the weight matrix W s  directly from 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm datums to be stored, and let N ” [ k ]  denote the 
number of elementary operations needed to compute the 
update of the weight matrix according to (5.3). Again 
counting the number of multiplications (the number of 
additions is of the same order), we get the following cost 

estimates. 
Corollary 3: 

m3 

2 
N” = mn’ + rn’n + - + O( n’) 

N ” [ k ] = 2 n 2 + 2 n ,  k 2 1 .  

Note that for all choices of m < n,  we have m N ” [ k ]  2 N”, 
so that, especially for large n ,  the recursive construction of 
W ”  through the updates (5.3) is computationally more 
expensive than the direct estimation of W”. There is thus 
an additional cost to be paid if updating capability is 

desired. 

D. Exhibition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Attractorlike Behavior by Datums 

We now probe the question of whether or not a region 
of attraction exists around each datum. We will restrict 

ourselves to the case where W has an m-fold degenerate 
spectrum. For definiteness, we consider variants of the 
matrix W chosen according to the pseudoinverse scheme of 

strategy 1. 
As in the case of the outer product algorithm, the 

signal-to-noise ratio (SNR) serves as a good ad hoc mea- 
sure of attraction capability. Specifically, let X > 0 be the 
m-fold degenerate eigenvalue of W. Then we claim that 
IIWxll I Xllxll for all x E R“. To see this we write x in the 
form x = x1 + x2,  where x, E r and x2 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,. (Recall that 
we defined r = span I u(l ) ,  u ( ~ ) , -  . . , u ( ~ )  ), and Q, was the 

Now, if U(‘) is a datum and U = U(‘) + Su, then Wu = 

Xu(‘)+ W ~ U ,  so that U will be mapped into U(“) by the 
adaptation algorithm only if the perturbation team W6u is 
sufficiently small. As a measure of the strength of the 
perturbation, we define the SNR by (1  Wu(”ll/l\ W6u(l= 
X f i / l ~ W S u ~ ~ ;  a high SNR implies that the perturbation 
term is weak, and conversely. From the discussion in the 
preceding paragraph, we have that the SNR 2 f i / ~ l S u ~ l .  If 

d denotes the Hamming distance between U and U(‘), then 

))6uJJ = 2 @ .  For vectors U in the immediate neighborhood 
of U(‘), we have d << n. We hence obtain a large SNR 
which is lower-bounded by 1&/20,  which is indicative of 
a small perturbation term (compared to the “signal” term). 

The SNR argument provides a quantitative measure of 
the attraction radius. The existence of attraction basins is, 
however, ensured only in probability, insofar as we accept 
the SNR as an accurate barometer of attraction behavior. 
For the case where W has an m-fold degenerate spectrum, 
a direct analytical argument can be supplied for the exis- 
tence of a flow in the state space towards stable states 

whatever the mode of operation adopted [23]. We use the 
following facts. 

Fact: If the spectrum of W generated by strategy 1 is 

m-fold degenerate, then W is symmetric, nonnegative defi- 
nite. 

Proof: Let X > 0 be the rn-fold degenerate eigenvalue 
of W. Then W T =  W=AU(CJTU)-lUT, so that W is 
symmetric. Furthermore, for any U,  set U = u1 + u2,  where 
u1 lies in the degenerate subspace of eigenvectors r and u2 
lies in the orthogonal subspace to r. Then (U, Wu) = 

Now, for any mode of operation, and for each state U,  

let the algorithm result in a flow in state space defined by 

u - u + S u ,  where Su is an n-vector whose components 
take on values - 2, 0, and + 2 only. The change in energy 

6E( U )  = E(  U + Su) - E (  U )  is then given by 

X l l U J 2  2 0. 

1 

2 
S E ( u )  = - - [ ( a l l ,  Wu)+(u ,  WSu)+(Su,  WSU)] 

1 
= - ( S u ,  Wu)-  ~ ( S U ’ W S U ) ,  (5.4) 

as W is symmetric. Now, every nonzero component of 6u  
has the same sign as the corresponding component of Wu 
by the prescription for state changes, so that (Su, Wu) 2 0. 
Further, (Su, WSu) 2 0 as W is nonnegative definite. 
Hence S E ( u ) s O  for every U E B “ .  It then follows that 
model trajectories in state space follow contours of de- 
creasing energy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the energy attains (local) minima at 
stable datums, basins of attraction are typically estab- 
lished. In the general case, however, this does not preclude 
the possibility of lower energy stable states being inciden- 
tally created close to a datum (cf. remarks following Theo- 
rem 4), so that the attractive flow in the region is domi- 
nated by the extraneous stable state. 

- .  
orthogonal subspace to r.) Then Wx = Wx, = Ax,. Also 

))x)12 = ))xll)’ + JJx2) ) ’  2 JIx1J12. Hence llWrll = Allxlll < 
Proposition 2: Global energy minima are formed at the 

datums for the m-fold degenerate spectral scheme of strat- 

XIIXII- egy 1. 
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This result is not true in general for the outer product 

scheme. 
Note that as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW is nonnegative definite, the energy is 

always nonpositive. All vectors in the null space of W 
have zero energy so that the flow in state space is typically 
away from these vectors. Vectors in the null space hence 
consti tu te repellor states. 

When the spectrum of W is not degenerate, however, 
the above argument does not hold, and the algorithm does 
not always generate flows that decrease energy. However, a 
statistical argument can be adduced instead of the analyti- 
cal argument above to show that such flows are typically 
the case. 

VI. COMPUTER SIMULATIONS 

Trends observed in computer simulations for systems 
with state vectors of between 32 and 64 bits have bolstered 

our intuitive supposition that the increased storage capac- 
ity of the spectral approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(uis-&vis the outer product 
scheme) results in significantly improved performance as 

an associative memory. A typical comparative plot be- 
tween the two schemes is shown in Fig. 2. 

Synchronous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmode: n = 32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L” 

+ Spectral 
+ Outer-Product 

18 - 
1 6 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lo 1 4 -  

p 12- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 1 0 -  

: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 :  

4 6: 

0 2 4 6 8 10 12 1 4  1 6  1 8  20 

Number of Datums 

Fig. 2. Error correction in outer-product scheme compared with that in 
spectral scheme using equal eigenvalues. 

To test the robustness of the scheme to changes in the 
weight matrix, we considered a modified spectral weight 
matrix whose elements were hard-limited to have binary 

values. Comparisons with hard-limited versions of the 
outer-product algorithm showed some superiority in at- 
traction radius for the spectral algorithm in the cases 
considered, with qualitative similarity to the behavior for 
the non-hard-limited case (barring a slight decrease in 

storage capacity) as illustrated in Fig. 3. 
While the datums are stable up to m = n for the spectral 

scheme, the SNR argument indicates that attraction behav- 
ior secures for m I kn with k < 1. As illustrated in Fig. 4, 
datums stored using the spectral algorithm were seen to 
exhibit some attraction behavior for m I n /2 .  

Small random perturbations did not have a significant 
effect on performance of the spectral scheme. As antici- 
pated by the SNR argument, decreasing a datum’s eigen- 
value (relative to the mean) in general caused a decrease in 

the corresponding radius of attraction, while substantially 

Asynchronous mode: n = 32 

- Spectral 
+ Outer-Product 

16 

Number of Datums 

Fig. 3. Error correction in hard-limited outer-product scheme compared 
with that in hard-limited spectral scheme with equal eigenvalues: 
hard-limited version of both schemes is generated by replacing each 
individual component of original weight matrix by sign (-1 or 1) of 
that component. 

Synchronous mode 

40 I 

10 
30 4 0  5 0  60 

n 
3 

Fig. 4. Number of datums m that can be stored in spectral scheme 
(using equal eigenvalues) with attraction over unit Hamming distance 
plotted as function of number of neurons n. 

Asynchronous mode: n = 32 

” . . . . . . . . 
0 8 16  2 4  32 40  4 8  5 6  

Eigenvalue 

Fig. 5. Attraction radius of typical datum plotted as function of its 
eigenvalue in spectral scheme. Several curves are generated by varying 
number of datums stored as parameter, fixing eigenvalues of all other 
datums equal to n (in this case 32). 

increasing a datum’s eigenvalue usually increases the ra- 
dius of attraction (Fig. 5). 

The figures are plotted for a typical choice of datum and 
“error” vectors chosen randomly at the prescribed Ham- 
ming distances. However, simulations on a variety of da- 
tums with different choices of error vectors indicate that 

the plots (sans the fluctuations) are quite representative of 

the average attraction behavior of datums under the algo- 
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rithm. Also, synchronous and asynchronous modes of op- 
eration were seen to yield virtually identical attraction 

behavior. 

VII. CONCLUSION 

A number of viable implementations ranging from con- 
ventional digital circuitry to analog systems can be envis- 
aged for such associative memories based on simple neural 
models. Recently proposed optical implementations of such 

models [24] are particularly exciting in this regard. For 
large systems, digital implementations may founder upon 
the problems of full interconnection since the cost and 
circuit complexity of VLSI circuits usually are driven by 
the wiring or interconnection problem [13]. Optical sys- 
tems, in contrast, have a built-in capacity for global com- 
munication; accordingly, large associative nets with high 
performance and rapid convergence may be realized opti- 

cally. 
The relatively simple construction of the linear transfor- 

mation by means of outer products yields surprisingly 
good performance and has a reasonably large storage 
capacity of (n/4logn). The spectral approach to con- 

structing the linear transformation is more complex in 
structure, but results in considerable improvement in per- 
formance, with a storage capacity linear in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. While the 
spectral capacity is nearly optimal, the question remains 
whether or not different (more optimal) choices of linear 
transformation could affect a substantial improvement in 
attraction performance. 

The larger storage capacity of the spectral scheme is 
reflected in increased preprocessing costs for computing 
the components of the weight matrix. For m of the order 
of n/4log n, however, the spectral algorithm requires only 

about twice as many elementary operations as the outer- 
product algorithm; for rn of the order of n,  the spectral 
algorithm requires about five times as many elementary 

operations as the outer-product algorithm which, however, 
does not function well for this range of m. 
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APPENDIX I 

Proof of Proposition 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U)  This is essentially Koml6s' result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] .  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, denote the 

number of singular n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX n matrices with binary elements ( -  1,l).  
Koml6s demonstrated that 

(Komlos' result was for n X n (0,l) matrices, but it holds equally 
well for n x n ( -  1, l )  matrices.) Let A,j .  denote the number of 
n x m( - 1, l )  matrices with rank strictly less than m. We have 
that A, l . ,12 ' f ( "~" ' )  - < A,, ,  so that, from (A.l), A ,,,", 2T"" -+ 0 as 
n + CO. It then follows that asymptotically as n + CO, almost all 
n x m( - 1,l) matrices with m I n are full rank. This proves the 
first part of the proposition. 

h) We first estimate the cardinality of E,l as follows. Let 
0, = { T = { d, ,  d , ,  . . . , d,, } c B": T is a linearly dependent set}. 
We have 

Let T = { d, ,  d , ,  . . . , d,, } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Then [d,d,  . . . d,] is a singular 
matrix. Each permutation of the column vectors d l ,  d ,  , . . . , d,  
yields another distinct singular matrix. Since the column vectors 
are all distinct, we have n!l@,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI A , f .  We further have 

(I-;)( 1-;j. . .  ( 1 -  Gj 
> (1 -+  ( 1 - 7 )  n ( n - 1 )  

Combining these results with (A .2 )  we get 

Define the sequence { K , ~  } by 

Then from (A.l) we have that K ,  

Define a sequence of random variables { S,, }:= such that S,, 
takes on the value 0 if a randomly chosen binary n-tuple U E B" 
has the representation (5.2) in a randomly chosen basis E E E,, 
and 1 otherwise. To complete the proof, it suffices to show that 
E{S,,}=P(S,=l}-+Oas n + w .  

Fix U E B", E E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,$, and assume that (5.2) does not hold. Then 
3 j  E { 1,2,. . . , n } such that aJ = 0. Assume without loss of gener- 
ality that a, = 0. Then 

1 as n + CO. 

n - 1  

U =  aJe,,  a, 2 0. (A.4) 
/ = I  

We hence have that { e,, e,, . . . , e, - U } E e,. An overestimate 
for the number of choices of U and E such that (A.4) holds is 

( nT1)2'1. Also, the total number of ways that we can choose 

E E z,,, and U E B" is If,12,. Hence, from this and (A.3), we have 

( ~ , 1 )  By definition of K , , ,  we then have that P( S,, = 1} + 0 as n + CO. 

0 
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Proof of Proposition 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For each datum d r ) ,  the energy is given by 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 

2 '  2 
E (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&)) = - - ( * ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWU"') = - -. 

Let U E B "  be arbitrary. We can write U in the form U =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ErF l a ( r ) d r )  + no, where u0 is a vector in the subspace orthogo- 
nal to the space spanned by the m datums zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl), d2); . ., dm) ,  and 
CY(') are real scalars. Then the energy is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L \ r = 1  
r - 1  I 

0 

APPENDIX I1 

Proof of Theorem 4 

Assume the datums U('),. . ., d m ) ,  are linearly independent 
(over W). Then for strategy 1 we have 

( A  w.1 U ( r )  = ( A  ( U A ( U W - '  U T ) )  

, m ,  - A (  - A ( r ) ~ ( r ) )  = U(') r = I , .  . . 

as A(') > 0 so that sgn(A(')u,")) = u!~'. Similarly, for strategy 2 
we have 

A w ~ ~ ( ~ )  = ( A  .( U,A,U;l)) U( r )  = A (  A ( r ) U ( r ) )  = U ( r ) .  

Thus the datums are stable regardless of the strategy adopted. 
The assumption of linear independence holds with probability 

one for large n by proposition 2. Hence almost all choices of 
datums are stable regardless of the adopted spectral strategy. The 
capacity result follows because a linear transformation can have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o 
For the proof of Theorem 5 we will need the following lemma 

due to Greville [27]  which yields a simple recursive construction 
for the pseudo-inverse of a matrix. 

Lemma I: Let U be a real n X m  matrix of full rank with 
m < n,  and let U [ k ] ,  k I m, denote the n X k submatrix formed 
from the first k columns of U. To each U [ k ]  associate the m x n 
matrix V [ k ]  (the pseudo-inverse of U [ k ] )  given by 

at most n linearly independent eigenvectors in n-space. 

V [  k] = ( U [  k]%[ k])- lU[k]T.  

Let U(!') be the k th column vector of U. Then, if U [ k ] V [ k ]  # Z, 

1 

n 
y[1] = -U ( ' ) r  

and 

where d k )  is an n-vector defined by 

( z  - U [  k -11 V [  k - l ] ) U ( A )  

( B . 4  X ( k )  = 

z - U [  k - 11 V [  k - 11) U(&) . 
Proof of Theorem 5 

For m < n ,  let U('); . ., d m )  be a choice of datums. (With the 
same justification as before, we assume these to be linearly 
independent.) For k= l ; . . , r n ,  let U [ k ]  be the n x k  matrix 
formed from the first k datums: U = [U(') . . . U(&)]. Let V [ k ]  = 

( U [ k ] T U [ k ] ) - ' U [ k ]  be the pseudo-inverse of U [ k ] ,  and let 
A [ k ]  = &(A('),. . . ,A (&) )  be the k X k diagonal matrix whose 
diagonal comprises of the (positive) eigenvalues for the first k 
datums. For the pseudo-inverse spectral strategy, we have 

W"[ k] = U [  k]A[ k ]  V [  k ] .  

By Construction we have 

U[k ]  = [U[k-l ]U(k']  

and 

Choosing the n-vector d k )  according to the prescription (B.2) of 
Lemma 1, we hence have 

V [  k -l]( z - U ( k ) X ( k ) T  

X ( k ) T  

= [ U [  k - 11 A[ k - 11 

' [ X ( k ) r  

A ( k ) ~ ( k ) ]  

)I V [  k - 1]( z - U(k)X(k)T 

= W'[ k - 1]( - " ( k ) , ( W  > A  + ( k ) * ( k ) p T  

= W"[ k - 11 + ( Ack)Z - W"[ k - 11) dk)dk) ' .  03.3) 

U(k)"(kf( z - U [  k - 11 V [  k - 11) 

z - U [  k - 11 V [  k - 11) U(&) ' 

By (B.2) we have 

U( k ) X ( k  ) T =  

Now, for the particular case where the eigenvalues are all equal, 
A ( " = A > O ,  j21,wehave 

WS[A = XU[jl V [ j l  
Hence 

U(k)U(kq AZ - W"[  k -11) 

A Z  - WS[ k - 11) U(k) 

U ( k ) X ( k ) T =  

Setting 

e(&) = ( A I  - W"[ k - 1 1 ) ~ ' ~ )  

in (B.3) we finally have 

0 

We will utilize the number of real multiplications as a measure 
of preprocessing cost and consider the pseudo-inverse spectral 
algorithm. 



568 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof of Corollary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

We first estimate the number of elementary operations N” 
required to directly compute the weight matrix W” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

AU(UTU)-’UT, where X > 0 is the positive eigenvalue corre- 
sponding to the m-fold degenerate spectrum of W’. The matrix 
product UTU requires mn( n - 1)/2 elementary operations as it is 
a symmetric matrix with constant diagonal n .  Since UTU is 
symmetric positive-definite, its inverse can be efficiently per- 
formed using the Choleski decomposition (cf. [28]). This compu- 
tation requires m3/2 + 2m2 + 5 m / 2  real multiplications. (This 
can be computed directly from the inversion algorithm given in 
[28].) Using the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw” is symmetric, the remaining matrix 
products require mn2/2+ m2n + m n / 2 +  n multiplications. The 
direct computation of Ws hence requires mn2 + m2n + m3/2 + 
o(n2) elementary operations. 

To compute W ” [ k ]  note that the outer product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdk )dk f ,  and 

the division by in each require n ( n  +1)/2 multiplica- 
tions, the inner product u(k)re(k) requires n multiplications, and 
the estimation of e ( k )  = (X I  - W s [ k  - 11)~‘~)  requires n2 multi- 
plications. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI3 
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