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SUMMARY 
Model features may be appraised by computing upper and lower bounds for the 
average value of the model over a specified region. The bounds are computed by 
constructing extremal models which maximize and minimize this average. In order 
to compute the most meaningful bounds, it is important that the allowed models are 
geophysically realistic. In this paper, the appraisal analysis of Oldenburg (1983) is 
extended to incorporate a bound on the total variation of the extremal models. 
Restricting the variation discriminates against highly oscillatory models and, as a 
consequence, the difference between upper and lower bounds is often considerably 
reduced. The original presentation of the funnel function bound curves is extended 
to include the variation of the model as another dimension. The interpreter may 
make use of any knowledge or insight regarding the variation of the model to 
generate realistic extremal models and meaningful bounds. 

The appraisal analysis is extended to non-linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' problems by altering the usual 
linearized equations so that a global norm of the model can be used in the objective 
function. The method is general, but is applied here specifically to compute bounds 
for localized conductivity averages of the Earth by inverting magnetotelluric 
measurements. The variation bound may be formulated in terms of conductivity or 
log conductivity. The appraisal is illustrated using synthetic data and field measure- 
ments from southeastern British Columbia, Canada. 

Bounding the total variation may be viewed as constraining the flatness of the 
model. This suggests a new method of calculating (piecewise-constant) I, flattest 
models by minimizing the norm of the total variation. Unlike l2 flattest models 
which vary in a smooth, continuous manner, the I I  minimum-variation model is a 
least-structure model that resembles a layered earth with structural variations 
occurring at distinct depths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: appraisal, extremal models, inference, inversion, non-uniqueness, 
variation. 

1 INTRODUCTION errors and the known kernel functions to extract 

In linear inverse theory, the general relationship between 
the data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{e j ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1, N }  and the model m(z)  is given by a 
Fredholm equation of the first kind 

e, = (m, g,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(z)g,(z) dz j = 1, . . . , N ,  (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 
where g j ( z )  is the kernel function corresponding to the jth 
datum. The model m and the kernels {gj}  are members of a 
Hilbert space H and are defined on the interval [O, a]. The 
notation (,) is used to indicate the inner product. The goal 
of inverse theory is to use the observed data, their assumed 

information about the model. A fundamental difficulty is 
that of non-uniqueness: for any finite data set, if there exists 
one model that adequately reproduces the data via ( l) ,  then 
infinitely many such models exist. These acceptable models 
may be diverse. As a result of the inherent non-uniqueness, 
any finite data set can not impose bounds on the value of the 
model at a fixed point. However, model averages over a 
finite width will, in general, be constrained by the data, 
provided at least one kernel function is non-zero over a 
portion of this width. 

One approach to overcoming the non-uniqueness has 
been given by Backus & Gilbert (1970). By taking 
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appropriate linear combinations of the data equations, they 
generated unique averages of the model at a depth of 
interest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,, of the form 

(m(zo)> = (4 A(z,)), 

where A(z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) = C,”=,, crj(zo)gj(z) is known as the averaging 
function or resolving kernel, and the coefficients cr,(qJ are 
chosen to make A(z ,  zo) close (in some sense) to a Dirac 
delta function centred at z,. The model average (m(zo ) )  is 
unique in the sense that the inner product of A ( z ,  z,) with 
any acceptable model must produce this same value. In 
practical cases where the data are inaccurate, a trade-off 
exists between the resolution width of the averaging 
function and the variance of the model average. The 
interpreter must select an A(z ,  2,) and associated (m(z , ) )  

which represents the most meaningful compromise between 
resolution and accuracy. Although this produces excellent 
results in some cases, for certain problems the averaging 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z, 2,) may have undesirable characteristics such 
as significant sidelobes or negative values, or it may not be 
centred at the depth of interest. In such cases, the average 
value, although unique, is not readily interpreted. Huestis 
(1987) presented a method for computing non-negative 
averaging functions, however, he demonstrated that for 
some problems such functions do not exist, and in cases 
where they do exist, the advantage gained in their use may 
be offset by a greatly increased computational burden. 
Another difficulty with the general formulation is that all 
mathematically acceptable models are included in the 
Backus-Gilbert averages. It may be that better averages 
could be obtained if additional physical constraints (e.g. 
positivity) could be incorporated. 

To overcome these shortcomings, it is advantageous to 
obtain quantitative information about model averages by 
formulating the appropriate inference problem. The 
mathematical foundation for inference theory has been 
presented by Backus (1970a,b,c, 1972) and a pragmatic 
implementation of aspects of that philosophy has been 
presented by Oldenburg (1983) and will be briefly recounted 
here. In Oldenburg (1983) (henceforth referred to as 0 1 )  it 
was shown that upper and lower bounds for predicted linear 
functionals of the model could be computed using linear 
programming (LP) techniques. One of the most useful linear 
functionals is the integral of the model with a unimodular 
boxcar B of width A centred at a particular depth of 
interest zO: 

The resultant inner product 

m h ,  A )  = (m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(Z,, A)) (3) 

represents an average value of the model over a width A 

centred at z,. Since B(z ,  z,, A) can not generally be formed 
as a linear combination of the kernel functions, m(z,, A )  

can not be determined uniquely. However, lower and upper 
bounds 

(4) mL(z,, A )  zs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr?r(z,, A )  5 mU(z,, A )  

can be obtained by constructing extremal models which 
minimize and maximize (3) subject to the data and other 
available constraints on the model. 

Numerical implementation of this procedure requires a 
partitioning of the interval [O ,a ]  with boundaries at 
(0, z,, z 2 , .  . , , zn = a } .  The model is assumed to be 
constant on each partition element, i.e. m ( z ) = m i  for 
zi-l 5 . z  s z i .  Linear programming methods can be used to 
minimize or maximize an objective function of the form 
C$ = Cy=l wimi subject to equality or inequality constraints 
on linear combinations of the model parameters mi. The 
{wi}  are a set of arbitrary weights which may be chosen 
according to 

( z i - z i - , ) / A ,  if z , - A / 2 s z i - , ,  z i s z o + A / 2 ;  

otherwise, wi = { o, 
( 5 )  

so as to make the objective function represent a discretized 
form of the model average, i.e. 

n 

C$ = c wimi = r?r(z,, A).  (6) 
i = l  

Lower apd upper bounds m L  and mu for m(zO, A )  are 
calculated- by minimizing and maximizing C$ subject to the 
data constraints of ( l) ,  which may be written in discretized 
form as 

ej = 2 y,mi 

where 

” 
(7) j = I, . . . , N 

i = l  

y;, = [ > ( z )  dz i = 1, . . . , n. 

Data inaccuracies may be incorporated either as ‘hard’ 
bounds (strict inequalities), or as ‘soft’ bounds where a few 
data are allowed to have large misfits while the total misfit is 
kept within acceptable limits. Soft bound constraints require 
additional LP variables to represent the data misfits. 

An important advantage of the LP method is that any 
additional physical information about the model can be 
incorporated in the inversion, as long as it can be 
formulated in terms of a linear constraint. For instance, a 
priori lower and upper limits for the model elements 

m,: 5 m.  1 -  < m t  I )  (9) 

are easily included. 
For each value of z,, the bounds mL(z,, A )  and 

mU(zo, A )  may be calculated for a number of different 
averaging widths A, and plotted as a function of A to 
produce a funnel function diagram. Such a plot provides 
immediate insight into the resolving power of the data at the 
depth of interest z,. The only loss in generality in this 
formulation is that caused by the partitioning and 
parametrization. This is not of practical significance, 
however, provided that the partition quantization is 
sufficiently small. Lang (1985) demonstrated that the exact 
problem can be approximated to arbitrary accuracy by a 
discretized problem given a small enough partition interval. 

Unfortunately, in 01 it was found that the constructed 
extremal models often exhibit unacceptably large oscilla- 
tions. When model limits are absent or large, the extremal 
models are characteristically sparse and spiky, consisting of 
isolated regions of large amplitude. If confining model limits 
are imposed the extremal models characteristically consist of 
a sequence of sections which alternate between the imposed 
limits and in some cases fluctuate rapidly between the limits 
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(see, e.g. fig. 7 in 01) .  Although these models represent 
mathematically acceptable solutions, they are generally not 
geophysically realistic. As a consequence, since the funnel 
function bounds are obtained from these extremal models, it 
is likely that the bounds found in 01 are pessimistic. It is 
anticipated that more meaningful bounds could be 
calculated if these highly variable models are purposely 
winnowed from the analysis. 

In this paper we introduce the total variation as a measure 
of the amount of structure of a model and discriminate 
against highly oscillatory models by placing an upper limit 
on the variation of the extremal models. In Section 2 the 
total variation is defined and two methods for carrying out 
the calculations are presented. In Section 3 the appraisal 
technique and the dependence of the computed bounds on 
the allowed variation is demonstrated using a simple linear 
example. Section 4 describes a general method by which the 
appraisal may be applied to non-linear problems, and in 
Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 6 the method is applied specifically to the 
non-linear magnetotelluric problem by considering synthetic 
and field data cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 EXTREMAL MODELS OF BOUNDED 
VARIATION 

The total variation of a function m ( z )  over an interval [0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ]  
may be defined as (Korevaar 1968, p. 406) 

V [ m ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (dml. (10) 

In order to eliminate extremal models which are judged to 
have too much structure, we will first supply an upper limit 
for V in (lo), and then modify the method in 01 to include 
this constraint. By placing an upper bound on V ,  models 
which are sparse and spiky or jump repeatedly between the 
imposed limits can be discriminated against. Abrupt or 
discontinuous changes in the model are still allowed, but the 
total number and magnitude of such changes can be limited 
to an amount deemed reasonable. The goal is to select a 
variation bound which results in models that are judged to 
be geophysically realistic and produce the most meaningful 
funnel function bounds. Two methods of bounding the total 
variation of the extremal models are presented. 

Method 1 

The first method is applicable to models that are assumed to 
be continuous, i.e. m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C’.  In this case (10) can be written 
as 

V = V [ m ]  = 

where m ’ = d m / d z .  In discrete form, where the model is 
assumed to have a constant gradient on each partition 
element, the variation can be written as 

Im’(z)l dz,  6 

Linear programming methods assume that the variables are 
positive, but model derivatives which may be either positive 
or negative can be accommodated by writing each param- 
eter mi as the difference between two positive quantities 
mi = p i  - q i ,  where pi ,q i?O are the variables to be 

determined by the LP algorithm. The absolute values lm,!l in 
(11) can not be included in a linear constraint; however, 
they may be represented as lmt!l ‘ -p i  + qi, with equality 
holding when either p i  or qi is zero. The total variation V 
must obey the inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

v 5 C (p i  + qi)(zr - zi-1) 
i = l  

and an upper bound for the variation V, may be specified by 
requiring 

Equation (12) is a linear constraint for the total variation of 
the form that can be included in the LP algorithm. To 
constrain the total variation according to (12), we need to 
write the LP objective function and constraints in a form 
which involves only p i  and qi with mi = p i  - qi. We first 
consider the objective function. If mo = m(z  = 0) is assumed 
known, then the value of the model on the ith partition is 

i - I  

mi = m,, + 2 ( z k  - zk-,)mL + 4(zi - z i -Jmi .  (13) 
k-I 

The objective function in (6) becomes 

To put the data constraints into a compatible form, we 
integrate (1) by parts to obtain 

6 = m’(z) [hJ(z )  - hJ(a) l  d z 9  

where 6 and hJ(z)  are ‘new’ data and kernels given by 

6 = m,hJ(a) - 

h,(z) = g,(u) flu. 

Discretization yields 

n 

J = C  y,m: j = 1 ,  . . . ,  N 
r = l  

rzt 
y.. = [h,(z) - hJ(a)] dz i = 1, . . . , n. 

11 J,, 
As a final constraint, limits for individual model elements, 

m; 5 mi 5 m:, may be included as 

mr: 5 m, + 2 (zk - zk-,)rn; + f ( z i  - z j - l )m[  5 m+ 
i -1 

k = l  

i = 1, . . . , n. (17) 

The LP problem of computing bounds for m(zo, A) 
consists of extremizing the objective + given by (14) subject 
to the data constraints of (16), the model limits of (17) and 
the variation bound of (12). The extremal model may be 
calculated according to (13). 

Method 2 

The second method does not require the model to be a 
continuous function. The model is represented by a constant 
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value on each partition element. In this case the total 
variation of the model can be characterized as 

n-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C -mil. 

i = l  

Instead of formulating a LP problem in which the objective 
function, data and physical constraints, and model variation 
are all written in terms of the model derivative, we keep the 
formulation as presented in 0 1  and introduce (n - 1) 
additional variables 

i = 1, . . . , n - 1. 

The variables to be solved for are the values of the model 
within the partition elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, and the change in the 
model at the partition boundaries Am,. These are not 
independent of course, and the (n - 1) equations (19) must 
be included as constraints. Unless the models are known to 
be monotonic, the Am, will usually be allowed to take on 
positive or negative values; this is accomplished by writing 
Am, = r, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, where r,, s, 2 0. It follows that IAm,) I r, + s, 
and therefore the total variation can be constrained by 
requiring 

Am, = m,+, - rn, (19) 

n-1 

2 (Ti + S i )  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,. 
,= l  

For the work presented here, we have programmed both 
methods. The advantage of the first method is that fewer 
variables and constraints are required in the LP algorithm. 
In Method 1, 2n variables are needed to represent the 
model derivative elements and the variation bound is 
specified as a single constraint, whereas in Method 2, 4n - 2 
variables [n bipolar model elements and 2(n - 1) variables 
to represent the model changes] and a total of n constraints 
are required to specify the variation bound. It would seem 
that Method 1 should be used in general. However, the 
sparsity of the constraint matrix is destroyed when the upper 
and lower limits for the model are expressed in terms of the 
model derivative. In practice, this can be a significant 
disadvantage since many LP algorithms are designed for 
large, sparse constraint matrices. Despite the fact that the 
second method requires more variables and constraints, the 
constraints are sparse, and for the LP code available to us, 
the second method was found both to be significantly faster 
and more stable computationally for large extremization 
problems. For this reason, and also because Method 2 does 
not require integrating the data equations or knowledge of 
any model value, the numerical examples given in this paper 
are computed using Method 2. 

In either method, however, since the variation bound is 
specified as an inequality constraint, it may be that the 
extremal model does not achieve a total variation of V,. The 
actual variation V of the constructed model is evaluated 
directly. In practice it is generally found that V =  V,, 
provided the variation bound V, is less than the variation of 
the unbound extremal model. 

The variation measure given by (11) or (18) is essentially 
the I, norm of the gradient energy of the model. The model 
which minimizes this norm is often referred to as the I, 
‘flattest’ or ‘minimum-structure’ model. Thus, bounding the 
total variation may also be viewed as constraining the 
flatness of the model. Any attempt to constrain the variation 

to a value less than that of the flattest model will result in an 
inconsistency between the variation bound and the data 
constraints. 

This suggests a new method for constructing I, flattest 
models. The standard procedure (e.g. Oldenburg 1984) 
requires that the data equations be integrated by parts to 
produce data constraints in terms of the model derivative. 
Linear programming methods are used to construct the 
smallest derivative model, and this model is integrated 
(assuming a model endpoint value is known) to produce the 
flattest model. An alternate method would be to construct a 
piecewise-constant 1,  flattest model by formulating the LP 
problem in terms of model values and differences as 
variables and minimize the total variation $J = c:=;’ IAm,I. 

In practice, this is accomplished by minimizing 

n-1 

$J = 2 (ri + Si). 
i = l  

This produces an I, flattest or minimum-variation model 
without resorting to model derivatives, and has the 
additional benefits of not requiring any integrations which 
may introduce numerical error, and not requiring 
knowledge of a model endpoint value. 

Many minimum-structure inversion algorithms minimize 
the I, norm of the model gradient (e.g. Constable, Parker & 
Constable 1987; Smith & Booker 1988). This discriminates 
against large abrupt changes and the models produced tend 
to vary in a smooth, continuous manner with depth. 
Minimizing the I, total-variation norm given by (21) does 
not discriminate against abrupt changes, but rather produces 
a minimum-structure model that more closely resembles a 
layered earth with structural variations occurring at distinct 
depths. 

3 LINEAR EXAMPLE 

To illustrate the appraisal technique and to demonstrate the 
improvement in resolution that can result when a reasonable 
bound is placed on the total variation, consider the 
following numerical example used in 0 1 .  Let the model be 
defined on the interval [0,1] as 

m(z)  = 1 - cos (2x2) 

and the data be obtained from the equations 

A total of 11 data were generated, and these are used to 
infer information about the value of the true model for a 
depth z,, = 0.5 where the model attains its maximum value of 
1.5. Fig. l(a) shows upper and lower bounds calculated 
using the method in 0 1  when no limits (except a positivity 
constraint) are placed on the model elements, and no bound 
is placed on the total variation. Averages of the true model 
are indicated by the dashed line. The wide bounds indicate 
that the resolving power of the data is poor. For instance, 
for an averaging width of A=O.2, the model average is 
known to lie only within the bounds 0 .I m(z,, A) .I 4.16 
while the true model lies within the range 1.47 5 m(z)  I 
1.50. Only for A>O.5 is mL>O, so without additional 
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Figure 1. Lower and upper bounds for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i i (Z0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5, A) are shown in (a), (d) and (g). In (a) only positivity was required, in (d) model limits 
0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 m, 5 2.0 have been imposed and in (g) a variation bound of V, = 2.0 was also included. This variation bound corresponds to the actual 
variation of the true model. The true model averages are indicated by the dashed line. The two plots to the right of each funnel function 
diagram show the constructed models which minimize and maximize t i i (Z0 = 0.5, A = 0.2). In these plots the true model is indicated by the 
dashed line. 

physical information, a region of nonzero amplitude near 
z, = 0.5 is not a required feature of the model. 

Figure l (b  and c) shows constructed extremal models 
which minimize and maximize the model average rii(zo, A) 
for an averaging width of A=O.2. The true model is 
indicated by the dashed line. The constructed models consist 
of a sequence of zones of zero amplitude with two or three 
isolated regions of large amplitude extending over a width of 
one partition element. This structure is characteristic of all 
extremal models which produced the funnel functions of 
Fig. l(a). 

The constructed models for the unconstrained extremiza- 
tions exhibit narrow regions with amplitudes of up to 40 or 
more. These values differ significantly from the true model. 
If reasonable limits for the model amplitude are known, the 
computed bounds can be greatly improved. Fig. l(d) shows 
the funnel functions calculated after requiring that 
0.5 5 mi 5 2.0. The significant improvement in resolution for 
all averaging widths is apparent when Fig. l (a  and d) are 
compared. The funnel functions also show the minimum 
resolution width required before the measured data 
influence the bounds. For instance, only for A>O.28 is 
rnL > 0.5, the imposed lower limit, and mu < 2.0, the 
imposed upper limit. 

Figure l(e and f) shows constructed extremal models 
which minimize and maximize rFz(zO, A = 0.2). These models 
consist predominately of a sequence of sections which 
alternate between the imposed limits. Only a few model 

elements do not achieve either m- = 0.5 or mt = 2.0. In 
some cases, the extremal models fluctuate rapidly between 
the imposed limits. An example of this is given in Fig. 2 
which shows the constructed model which minimizes 
m(zO, A = 1.0). 

The bimodal form of these extremizing models is similar 
to that of Parker's (1974, 1975) ideal bodies. The ideal body 
rn,(z) is that model which is everywhere equal to either zero 
or M,, where M, represents the greatest lower bound on the 
largest value of rn (i.e. the smallest supremum of m). rn, is 
unique in that it is the only acceptable model which nowhere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n n  - 
0 .0  0 2 0.4 0.6 0.8 1 .o 

Depth z 
Figure 2. The constructed model which minimizes m(zn=0.5,  

A = 1.0) with imposed model limits 0.5 5 mi 5 2.0. The true model 
is indicated by the dashed line. 
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50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0 -  
Q 
>: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 
+ 

>o 20 
N 
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 1 0 -  

0 

exceeds Ma. In the limit of m-+O and m++Mo, the LP 
extremal models will be equal to ml(z) regardless of the 
values of zo or A. However, we have found that the 
extremal models retain this bimodal form for a wide range 
of values for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm- and m + ,  provided the discretization 
interval is sufficiently small. 

Models such as those shown in Figs l(b, c, e and f) and 2 
might not be considered geophysically realistic, and hence 
the computed bounds may be unduly pessimistic. Fig. l(g) 
shows the results of employing a variation bound V, = 2.0, 
which represents the actual variation of the true model. A 
significant improvement in resolution is apparent when Figs 
l(d) and (g) are compared. In this case there appears to be 
no minimum resolution width before the data influence the 
computed bounds. For instance, for an averaging width of 
A = 0.28, the computed bounds are 0.86 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 m 5 1.72, while 
in Fig. l(d), the computed bounds simply reflect the 
imposed limits 0 . 5 ~ f i ~ 2 . 0 .  Fig. l(h and i) shows 
constructed models which minimize and maximize 
m(z,), A = 0.2) for a variation bound V 5 2.0. These models 
do not exhibit excessive oscillations and might be considered 
to be more geophysically realistic than those shown in Figs 
l(b, c, e and f )  or 2. 

To quantify the improvement in the bounds that results 
when the allowed variation is changed from V, to V,, we 
compute the 'per cent improvement', P ,  

- 

- 

I I I I I 

x 100 per cent. (22) 

In (22) the subscripts V, and V, indicate the total variation 
allowed in the extremal models. The results for V, = a (no 
variation bound) and V, = 2.0 are shown in Fig. 3. For most 
averaging widths the funnel function bounds are improved 
by 30-40 per cent. 

By reformulating the appraisal method to bound the total 
variation of the model, the analysis has been extended to 
include the variation as another dimension. Upper and 
lower bounds may now be considered as a function of both 
averaging width and model variation. Fig. 4 shows the 
computed bounds as a function of the allowed variation for 
fixed A = 0.2. No limits (except positivity) were placed on 
the model elements. The true model has a variation of 
V = 2.0 and an average value of m(zo, A = 0.2) = 1.47; this 
point is indicated by a cross. For large allowed variations the 

4 -  

3 

E 3 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J- 2 -  

1 -  

0 -  

0 2 4 6 8 1 0 1 2 1 4  

Variation V 
Figure 4. Lower and upper bounds as a function of the total 
variation V of the extremal model. The true model average is 
indicated by a cross. 

bounds are wide and the model average is poorly 
constrained. For instance, for a variation of V = 14.0, the 
model average is only known to lie within the bounds 
0 < m(zo, .A) < 4.15. As the allowed variation is decreased, 
the bounds converge smoothly. The upper bound decreases 
monotonically as the allowed variation is decreased from 
V = 14.0; however, it is not until the variation is less than 
about V = 5.0 that the lower bound increases from zero. At 
the true model variation of V = 2.0, the model average is 
known to lie within the bounds 0.73 5 m(zo, A) 5 1.75. 

Reducing the allowed variation to a value less than 2.0 
excludes the true model from the LP solution space and may 
result in computed bounds which do not contain the true 
model average. This point is also illustrated in Fig. 4. As V 
is decreased below 2.0, the bounds continue to converge; for 
variations V c 1 . 5  the bounds no longer contain the true 
model average. The upper and lower bounds meet at a 
variation of V = 0.75. For this variation, the model average 
is known precisely, since mL = 1.15 5 m I 1.15 = mu, but 
this value does not correspond to the true model average of 
m = 1.47. This demonstrates that although it is important to 
use the best possible value for the variation bound, 
over-constraining the variation (or any other physical 
property) can lead to misleading results. 

The point at which the bounds meet represent the 
smallest possible variation which still permits an acceptable 
model. Any attempt to reduce the allowed variation below 
this value results in an inconsistency between the variation 
bound and the data constraints. The model which achieves 
the minimum variation is the (piecewise-constant) 1, flattest 
model. The model constructed by minimizing (21) and the 
extremal models computed for V,, = 0.75 are identical and 
are shown in Fig. 5. 

The funnel function resolution depends upon both the 
averaging width A and the allowed variation V. This 
dependence is illustrated in Fig. 6 in which contours of the 
normalized bound width 2(mU - m")/(m" + m") are 
plotted. The bound width increases with increasing variation 
and decreases with increasing averaging widths. The best 
resolution occurs for large averaging widths and small 
allowed variation. In practice, a plot like Fig. 6 together 
with an examination of the extremal models constructed for 
various variation bounds should enable an interpreter to 
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Extremal models of bounded variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA489 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 

0.4 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0  
0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 4  0 6  0 8  1 0  

Depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 
Figure 5. The I, minimum-variation model or piecewise-constant I, 
flattest model. The identical model is computed by minimizing the 
total-variation norm (21) or by minimizing or maximizing 
m(z,, A=O.2) with Vb=0.75. The true model is indicated by the 
dashed line. 

0.0 0.2 0.4 0.6 0.8 1.0 

Averaging Width A 
Figure 6. Contours of the normalized bound width 2(mU- 
mL)/(mu + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm") as a function of averaging width A and variation V 
for z,, = 0.5. 

determine meaningful bounds on the average value of the 
model over the region of interest. 

4 APPRAISAL IN NON-LINEAR 
PROBLEMS 

In many geophysical problems of interest the relationship 
between the model and the observations is functionally 
non-linear. When this is the case, Backus-Gilbert appraisal 
suffers a disadvantage in addition to those mentioned in 
Section I in that the unique averages computed pertain only 
to models that are linearly close to an acceptable 
constructed model. The method of appraisal using extremal 
models was extended to non-linear inverse problems in 01 
by altering the usual linearized equations so that a global 
norm of the model could be used in the objective function. 
The method is general and can be applied to any non- 
linear problem. In this section the general formulation is 
briefly described; in Sections 5 and 6 the method is applied 

specifically to the non-linear magnetotelluric inverse 
problem. 

In a non-linear inverse problem, the model is related to 
the observations by 

ej = F;[m(z)] j = 1, . . . , N ,  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is a non-linear functional. This general 
relationship, however, is not in a form which is amenable to 
our appraisal analysis. We proceed by writing the unknown 
model m ( z )  as the sum of a known starting model m,(z) 

and an unknown perturbation 6m(z) ,  i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, = F;[m,(z) + 
6m(z)]. Expanding the functional Z$ about m,(z) leads to 

ej = F;[m,(z)] + G,[m,; 21 6m(z )  dz + HOT, (23) 6 
where HOT represents higher-order terms. If the higher- 
order terms of (23) can be shown to be of order (16m112, 

then F; is Frtchet differentiable and Gj is called the Frtchet 
kernel. In this case the higher-order terms may be neglected 
resulting in a linear expression 

Sej = G,[m,; z ]  Sm(r) dz, 6 
where 6el = el - F;[m,(z)]. The crucial step, as first 
described in 0 1 ,  is to write 6m(z )  = m ( z )  - m,(z) so that 
(24) may be recast as 

6el + [G,[m,; z]m&) dz = i: Gl[m,; z ] m ( z )  dz. (25) 

The left side of (25) consists of known quantities and may 
be considered modified data. By formulating the inversion 
problem according to (25), the methods of linear inverse 
theory may be used to construct a model m(z)  which 
extremizes a global norm of the model. Since higher-order 
terms have been neglected, (25) is not exact and the 
linearized inversion must be repeated iteratively until the 
constructed model adequately reproduces the observed 
data. 

The linear form in (25) allows considerable flexibility: 
models of different global character can be constructed by 
the application of different norms to m(z).  For instance, 
globally flattest or smoothest models may be found by 
minimizing the 1, norm of the first or second derivative of 
m(z).  These models are particularly useful in that they 
exhibit the minimum structure necessary to fit the data, and 
therefore are as simple as possible. Constable et al. (1987) 
and Smith & Booker (1988) have applied this method to the 
inversion of magnetotelluric data. In our minimum-structure 
inversion algorithm we minimize the norm 

where f(z) represents the depth function and w ( z )  is an 
arbitrary weighting function. An alternative minimum- 
structure model is constructed by minimizing the total- 
variation norm given by (21). For the purposes of 
constructing extremal models of bounded variation to 
appraise model features, the norm to be, extremized consists 
of the model average m given by (5) and (6). 
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490 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Dosso and D. W. Oldenburg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 APPLICATION TO MAGNETOTELLURICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The goal of magnetotellurics (MT) is to infer information 
about the conductivity structure u(z)  of the Earth by 
inverting electromagnetic responses observed on the Earth’s 
surface. The method of appraisal using extremal models was 
applied to the non-linear MT problem in 01 to estimate 
upper and lower bounds for conductivity averages in regions 
of interest. However, the constructed extremal models were 
found to fluctuate in an unacceptable manner. To 
discriminate against such models and obtain more 
meaningful conductivity bounds, we have reformulated the 
method to include a bound on the total variation. 

Magnetotelluric responses consist of ratios of magnetic 
and electric fields observed at discrete frequencies w, at the 
Earth’s surface. We have chosen as data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a - - 1  

1 1  
- I 1  

B(a;  z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, w,) 
e .  = ’ j = l , .  . . , N ,  

E ( o ;  z = 0, w,) 

where B and E represent orthogonal components of the 
magnetic and electric fields, as it appears to be the response 
for which the inverse problem is most linear (Smith & 
Booker 1988). When the complex response is considered 
separately as amplitude lei[ and phase #, with e j =  

lejl exp ( iGj)  and the model is m ( z )  = a(z),  the Fr6chet 
kernels are given by (Oldenburg 1979) 

for lejl, and 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc#J~. If the model is m ( z )  = log a(z), then Gj(a,; z )  in 
(27) and (28) is replaced by a,(z)G,(a,; z). 

If the region [O,a] is partitioned and a starting 
conductivity model ao(z) specified, then an extremal 
conductivity model a(z) can be constructed by applying the 
LP formulation described in Sections 1 and 2 to the 
linearized equation (25). In practice, the inversion is 
iterated until the constructed extremal model adequately 
reproduces the observed data according to the x2  criterion 
(Parker 1977) and the extremal value of B does not change 
significantly between iterations. If the procedure is initiated 
with an acceptable starting model, we have found the 
algorithm generally converges to a stable solution within two 
or three iterations. This likely reflects the fact that the 
inverse problem for conductance (depth-integrated conduc- 
tivity) is well posed (Weidelt 1985). Moreover, we have 
found that the same solution is generally obtained when the 
algorithm is initiated with very different starting models; this 
provides some confidence that a global (rather than local) 
extremum for B has been found. 

To illustrate the appraisal in the analysis of MT data, we 
consider the following example. The true conductivity 
model consists of the test case considered by Whittall & 
Oldenburg (1989) in their survey of 1-D MT inversion 
techniques. The model, shown by the dashed line in Fig. 7(a 
and b), consists of four homogeneous layers overlying a 
uniform half-space. 26 data were generated at 13 periods 
equally spaced in logarithmic time from 0.0025 to 250 s. 
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102 103 104 105 

Depth z (m) 
Figure 7. Minimum-structure conductivity models for the synthetic 
MT example. (a) shows the 1, flattest model, (b) shows the 1, 
minimum-variation model. The true model is indicated by the 
dashed line. 

Although the data used in the inversions were accurate, they 
were assumed to have an uncertainty of 2.5 per cent in 
amplitude and phase so that a X2-misfit criterion could be 
used to measure the relative fit of the models. 

Figure 7 shows two minimum-structure models con- 
structed by utilizing (25) in an iterative algorithm. Fig. 7(a) 
shows the I ,  flattest model computed by minimizing the 
norm given by (26) with m ( z ) =  a(z) ,  f ( z ) = z  and 
w ( z )  = 1; Fig. 7(b) shows the minimum-variation model 
computed by minimizing the total-variation norm given by 
(21). Both constructed models reproduce the observed data 
to within a x2 misfit of 26. Minimizing the 1, norm of the 
model gradient discriminates against large abrupt changes in 
conductivity and the model shown in Fig. 7(a) varies in a 
smooth, continuous manner with depth. Minimizing the I ,  
norm of the total variation does not discriminate against 
abrupt changes, but produces a minimum-structure model 
that resembles a layered earth with structural variations 
occurring at distinct depths, as shown in Fig. 7(b). 

The constructed models in Fig. 7 generally reproduce the 
features of the true model. In particular, both models 
indicate a region of low conductivity centred near 4000m 
depth. We shall compute upper and lower bounds for 
conductivity averages B(zo = 4oO0, A) of this region. Fig. 
8(a) shows the bounds computed when model limits 
a- = 0.002, a+ = 0.2 S m-l are imposed, but no constraint 
is placed on the total variation of the extremal models. The 
upper bound decreases from the imposed upper limit of 
0.2 S m-’ for A I 300 m to a value of about 0.047 S m-l at 
A = 3000 m. The computed lower bounds for regions of low 
conductivity are often not particularly meaningful since MT 
measurements contain little information about resistive 
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Extremal models of bounded variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA491 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1000 2000 3000 102 103 104 106 102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA103 104 106 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - - - - - - - - - - - - - - - - - -  -1- 

b 0.0 
I I I I I 

0 1000 2000 3000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Averaging Width A (m) 

0.10 

\ 0.06[ 1 
0.06 

0.04 -__. .  
n 
.N- 0.021 1 

0 . 0 E :  (,,, 'W , , , ,,,,,, , , , , ,uJ 
102 103 104 106 

Depth z (m) 
Figure 8. Lower and upper bounds for b(zn = 4OO0, A) are shown in (a) and (d). In (a) only model limits 0.002 5 a, 5 0.2 S m-' have been 
imposed; in (d) a variation bound of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, = 0.21 S m-' (the variation of the true model) was also included. The true model averages are indicated 
by the dashed line. The two plots to the right of each funnel function diagram show the constructed models which minimize and maximize 
a(zn = 4000, A = 3000). In these plots the true model is indicated by the dashed line. 

layers. In this case the lower bound simply reflects the 
imposed lower limit over the entire width 100 5 A 5 3000 m. 

Examples of extremal models which produce the funnel 
function bounds of Fig. 8(a) are given in Figs 8(b) and (c) 
which show, respectively, the constructed models which 
minimize and maximize ii(z,, A = 3000). These models have 
the characteristic sparse, spiky form of solutions of un- 
constrained variation, consisting of regions of conductivity 
at the imposed lower limit with isolated zones of high 
conductivity at or near the upper limit. All extremal models 
constructed to produce the bounds in Fig. 8(a) are of this 
form and have total variation values of 2.0 to 3.0Sm-', 
more than 10 times that of the true model. 

It is interesting to compare the LP extremal models with 
the theoretical results of Weidelt (1985). Weidelt treated the 
full non-linear problem of extremizing the conductance 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(2,) = J $ % J ( ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz subject to exactly fitting a small 
number of MT data. He determined that when no model 
limits (except positivity) are imposed, the extremal models 
consist of insulating zones ( a  = 0) and thin regions of infinite 
conductivity, but finite conductance, located at isolated 
points. When S(z2) is maximized, a conducting region is 
located at z,-O, which is just included in the region of 
integration, whereas when S(z,) is minimized, a conducting 
region is.located at z,+O, which is just excluded. When 
model limits u- 5 u 5 u+ are imposed, Weidelt found that 
the extremal models consist of a sequence of sections of 
alternating conductivities u- and u+. In general, when S(z,) 
is maximized, a layer of conductivity u+ ends at z = z,, 

whereas when S(z,) is minimized, a layer of conductivity u+ 
begins at z = z,. The extremal models of unconstrained 
variation in Fig. 8(b and c) (and in Figs 1 and 2 for the 
linear example) appear to be of generally the same form as 
Weidelt's exact solutions; the discrepancies are likely due to 
the finite discretization interval employed. 

Weidelt's exact extremal models represent an interesting 
and important result. However, if the purpose of the 
extremization is to determine meaningful bounds for 
a(%, A), these types of models might not be satisfactory. 

Fig. 8(d) shows the result of imposing a variation bound of 
V, = 0.21 S m-', which represents the total variation of the 
true model. A significant improvement in the resolution is 
apparent when Figs 8(a) and (d) are compared. The 
computed lower bound still reflects the imposed lower limit 
of 0.002 S m-I, however the upper bound has been reduced 
significantly, particularly at small widths. For A = 3000 m 
bound for the average conductivity are 0 . 0 0 2 1 ~ 7 5  
0.025 S m-'. The per cent improvement, P(zo, V,, V,, A) 
given by (22), for Vl=m (no variation bound) and 
V2=0.21Sm-' is shown in Fig. 9. For most averaging 
widths the funnel function bounds are improved by 50-75 
per cent. Examples of the extremal models which produced 
the improved funnel function bounds are given in Fig. 8(e 
and f )  which show the models which minimize and maximize 
C7(zo, A = 3000) for V, = 0.21 S m-'. 

The constructed models shown in Fig. 7(a and b) exhibit a 
region of low conductivity centred at about 4000 m followed 
by a region of high conductivity centred at about 8000 m. To 
verify if this structure is required by all acceptable models 
we have computed upper bounds for z, = 4000 m and lower 
bounds for z,, = 8000 m. Fig. lO(a) shows these bounds when 

75 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70 
a- 
>: 65 

+r 60 

- 55 a 
50 

0 
N 

\ 

I I 

0 1000 2000 3000 

Averaging Width A (m) 
Figure 9. The percent improvement, P, for V , = m  (no variation 
bound) and V2=0.21S m-' for the synthetic MT example with 
zn=4000m. 
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0.201 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b 0.01- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoL( zp=8O0O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 2000 4000 

0.10 

E 0.08 

0.06 

0.04 

0.02 

0.0 

n 

\ 
W 

> 
b 

;I- 

0 2000 4000 

Averaging Width A (m) 
Figure 10. The upper bound a"(% = 4000, A) is compared to the 
lower bound aL(zo = 8000, A) as a function of averaging width A. 
In (a) only model limits 0.002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, c 0.2 S m-' were imposed, while 
in (b) a variation bound of V, = 0.21 S m-' was also imposed. 

model limits u- = 0.002, a+ = 0.2 S m-l were imposed but 
the total variation was unconstrained. The computed lower 
bound for z, = 8000 m is lower than the upper bound for 
zo=4000m for all A, indicating that without additional 
information the difference between the two regions can not 
be resolved from the data. The results of including a 
variation bound Vb=0.21Sm-' are shown in Fig. 10(b). 
For resolution widths greater than about 700 m the 
computed lower bound for z, = 8000 m is greater than the 
upper bound for z0=4000m indicating that the region of 
low conductivity followed by a region of higher conductivity 
is clearly resolved and is a required feature of all acceptable 
models with a total variation V < V,. 

6 MT FIELD DATA EXAMPLE 

As a final illustration of our appraisal, we analyse a set of 
wide-band MT field data measured near Kootenay Lake in 
southeastern British Columbia, Canada. The data were 
collected as part of the LITHOPROBE Southern Cor- 
dilleran transect, and a preliminary analysis has been carried 
out by Jones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1988). Fig. 11 shows the 
determinant-average MT responses (Ranganayaki 1984) 
together with two minimum-structure models. Jones el al. 
(1988) found that, with the exception of the single longest 
period, the data are consistent with the response of a 
one-dimensional model according to the criterion of Parker 
(1980) and Weidelt (1986). Fig. l l (a)  shows the 1, flattest 
model constructed by minimizing the gradient in log 
conductivity with log depth [i.e. m ( z )  = log a(z) ,  f(z) = 
log L and w ( z )  = 1 in (26)], and the I, minimum-variation 

100 I I 

;a::;l F 69  

9 2o 
0 
10-3 10-2 10-1 100 101 102 103 

T ( s )  

Figure 11. Minimum-structure models and MT responses observed 
in southeastern British Columbia, Canada. (a) The 1, flattest model 
(smoothly varying curve) and the I, minimum-variation model; (b) 
and (c) comparison of the observed apparent resistivities and phases 
(squares) with those predicted from the constructed models (solid 
lines). 

model constructed by minimizing the total variation of 
m(z)=loga(z). Figs l l (b)  and (c) compare the observed 
apparent resistivities and phases with those predicted for the 
constructed models. 

The two models shown in Fig. l l (a)  are in good 
agreement and show essentially the same features as those 
obtained by Jones et al. (1988). In particular, the models 
indicate a region of low conductivity at 2000-7000 m depth 
and a region of high conductivity at 20 000-30 OOO m depth. 
We will appraise these features. 

In Fig. l l (a)  we have considered our model to be log u ( z )  
rather than a(z) since we are interested in conductivity 
variations over several orders of magnitude. In order to 
appraise model features we still wish to determine bounds 
for the conductivity average 3; however, to construct 
realistic extremal models of log a@), we need to constrain 
the total variation of log u(z ) .  This can be accomplished as 
follows. 

If the model m ( t )  is taken to be log a ( z ) ,  the definition of 
the total variation given by (10) becomes 

V[log a ]  = k Idulul, 

where k = log e. In discrete form, this can be approximated 
by 

IAail 
n-1 

i = l  ( ~ j + , +  ~ j ) / 2  
V[loga]= k 2 
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The variation of log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(z )  can be constrained by applying the 
LP formulation of Method 2, Section 2. The variational 
constraint (20) is modified to be 

where a,, a,,, are values of the conductivity model of the 
previous iteration and V, is a bound on the log variation. 
Since (29) is not an exact representation of the variation of 
log a(z),  the actual log variation of the constructed model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C, (log a,,, - log q), must be evaluated directly. 

Since the log variation constraint depends on the model of 
the previous iteration, it is important that the iterations 
converge to a stable solution where changes in the model 
between iterations are negligible. To ensure that differences 
between successive iterations are not too great, we have 
limited changes in the model to a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 2. Although this 
may not be an optimal procedure for stabilizing the 
convergence, it has proved successful for all cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe have 
considered. We have also found that the same solution is 
obtained when the algorithm is initiated with different 
starting models; this provides confidence that the extremal 
value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is independent of uo(z). 
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b 
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102 103 104 105 
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't; 
v 10-2 

10-3 

10-4 

n 

b 
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I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  1 I , I l l 1  

102 103 104 106 

Depth z (m) 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Constructed models which maximize u for the apparent 
low conductivity region, 2OOO-7OOO m depth. Model limits 
u- = O.OOO1, u+ = 1.0 S m-' were imposed in each case. (a) shows 
the extremal model of unconstrained variation; (b) and (c) show 
extremal models with log variations of 15 and 9.2, respectively. 

Figure 12(a) shows the extremal model which maximizes 
C over the apparent low conductivity region, 2000-7000 m 
depth. Conductivity limits (I- = 0.OOO1, CJ+ = 1.0 S m-' 
were imposed, but no bound was included on the variation. 
The computed upper bound for ti is 0.0024 S rn-' and the 
log variation of the model is 76. The model is sparse and 
spiky, consisting of regions of conductivity at the imposed 
lower limit with isolated zones of high conductivity. A 
narrow zone of high conductivity (one partition element 
wide) is just included at each edge of the region of 
maximization. Such a model is not appealing from a 
geophysical point of view. 

Figures 12(b) and (c) show extremal models with log 
variations of 15 and 9.2, respectively. The rapid fluctuations 
between low and high conductivity values have been 
suppressed. The upper bounds for ~3 computed from the 
models in Figs 12(b) and (c) are 0.0020 and 0.0017Sm-'. 
The models which minimize ~3 for this region simply reflect 
the imposed lower limit and are not shown. 

In many practical cases, an appropriate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori bound for 
the variation may not be known. When this is the case, the 
interpreter may wish to construct extremal models for a 
number of variation bound values and select the model with 

100 I 

E 
v t;. 

N 
v 
b 

1 0' 103 104 105 

100 

lo-' 

10-2 

10-3 

10-4 

102 103 104 105 

10-41 I 1 1 1 1 1 1 1 1  I I , 1 I I I l I  I l , , l l J  
102 103 104 105 

Depth z (m) 
Figure 13. Constructed models which minimize u for the apparent 
high Conductivity region, 20 ooO-30Ooo m depth. Model limits 
u- = O.OOO1, u+ = 1.0 S m-' were imposed in each case. (a) shows 
the extremal model of unconstrained variation; (b) and (c) show 
extremal models with log variations of 24 and 9.5, respectively. 
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the largest variation that is deemed geophysically plausible. 
For example, the extremal model shown in Fig. 12(a) is not 
realistic; however, the model shown in Fig. 12(c) might be 
considered acceptable and therefore a meaningful bound for 

would be 0.0017 S m-'. In this particular example where 
the computed upper bound does not change greatly with 
variation, constructing extremal models with a number of 
different variations also serves to verify that a meaningful 
bound has been determined. 

Extremal models which minimize and maximize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& for the 
apparent high conductivity region at 20 000-30 000 m depth 
are shown in Figs 13 and 14. Model limits u-=0.0001, 
of = 1.0 S m-' were imposed in each case. Fig. 13(a) shows 
the model of unconstrained variation which minimizes u. 

The lower bound for 6 computed from this model is 
0.060Sm-' and the log variation is 78. Fig. 13(b and c) 
shows minimization models with log variations of 24 and 
9.5. The lower bounds for i? computed from these models 
are 0.066 and 0.091 S m-', respectively. The extremal 
model of unconstrained variation which maximizes (5 is 
shown in Fig. 14(a). The upper bound for Lj computed from 
this model is 0.30Sm--' and the log variation is 75. Fig. 
14(b and c) shows maximization models with log variations 
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rrl - 10-2 - 
W 
N 10-3 
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2 10-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 14. Constructed models which maximize 5 for the apparent 
high conductivity region, 20 000-30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000 m depth. Model limits 
u- = 0,0001, u+ = 1.0 S m-' were imposed in each case. (a) shows 
the extremal model of unconstrained variation; (b) and (c) show 
extrernal models with log variations of 24 and 8.9, respectively. 

of 24 and 8.9; the computed upper bounds for 13 are 0.30 
and 0.26 S m-', respectively. 

If we accept the extremal models shown in Figs 13(c) and 
14(c) as geophysically realistic representations of the Earth, 
bounds for the average conductivity are 0.091 5 Lj 5 
0.26 S m-'. This establishes the region at 20 000-30 000 m 
depth as a zone of high conductivity. The average 
conductivity of this is greater than that of the low 
conductivity zone at 2000-7000 m depth (Lj 5 0.0017 S m-') 
by at least an order of magnitude. 

7 DISCUSSION 

In this paper we have shown that model features can be 
appraised by constructing extremal models to determine 
bounds for averages of the model over specified regions. In 
order to compute optimal bounds, it is important that the 
extremal models be geophysically realistic. Unfortunately, 
extremizing the model average while still satisfying the data 
constraints often produces models with an excessive amount 
of structure. In many practical applications we are not 
willing to accept such models even if they are consistent with 
the observed data. In order to incorporate this prejudice, we 
have introduced the total variation as a measure of structure 
and have presented two methods of bounding the variation 
to produce reasonable extremal models. Restricting the 
variation discriminates against highly oscillatory models and, 
as consequence of operating on a restricted model space, the 
difference between the upper and lower bounds is often 
considerably reduced. 

It would be advantageous if the variation bound V, could 
be ascertained through analysis or from the physics of the 
problem. Unfortunately, this is seldom the possible. 
Nevertheless, there are several ways to proceed. One way is 
to specify V, as some multiplicative factor of the variation of 
the least-structure model. Alternatively, in a more complete 
analysis we construct models for a number of values of V, 

ranging from the minimum to that of the unbound extremal 
model, and select the model with the largest variation that is 
judged to be geophysically plausible. This establishes V, for 
the analysis. In this manner the interpreter makes use of any 
knowledge or insight regarding the variation of the model to 
select the reasonable extremal models and meaningful 
funnel function bounds. Lastly, even though the constructed 
models vary greatly with V,, it is often found that 
approximately the same bounds for m are computed for a 
wide range of V,. This provides confidence that even when a 
non-optimal variation bound is used, meaningful bounds for 
m may still be computed. 

The ability to estimate bounds for averages of the model 
depends crucially upon the restructuring of the linearized 
data equations (see equation 25). This linearized approach, 
however, raises concern about whether the algorithm 
converges to a global extremum. We know of no way to 
evaluate this directly, and it is not clear whether this 
transformation will prove equally successful in all non-linear 
problems. For the MT application we have found that the 
same solution is obtained when the algorithm is initiated 
with very different starting models. This does not constitute 
proof, but it does provide some confidence that a global 
extremum has been found. 

In the MT application, because the conductivity u can 
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vary over many orders of magnitude, it is often desirable to 
evaluate the geologic reasonableness of extremal models in 
a log-log domain. This adds a further complication. We 
have introduced a method of bounding V[loga] which 
requires using the conductivity model of the previous 
iteration. Although this slows the convergence somewhat, 
by initiating the algorithm with an acceptable minimum- 
structure model and limiting the changes in the model 
between successive iterations, we have found the algorithm 
to work effectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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