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In this dissertation, an advanced implementation of the direct 

boundary element method applicable to free-vibration, periodic (steady

state) vibration and linear and nonlinear transient dynamic problems 

involving two and three-dimensional isotropic solids of arbitrary shape is 

presented. Interior, exterior and half-sp::!.ce problems can all be solved l¥ 

the present fODmulation. 

For the free-vibration analysis, a new real variable BEM formulation 

is presented which solves the free-vibration problem in the form of 

algebraic equations (formed from the static kernels> and needs only surface 

discretization. 

In the area of time-domain transient analysis the BEM is well suited 

because it gives an implicit formulation. Although the integral 

formulations are elegant, because of the complexity of the formulation it 

has never been implemented in exact form. In the present work, linear and 

nonlinear time domain transient analysis for three-dimensional solids has 

been implemented in a general and complete manner. The formulation and 

implementation of the nonlinear, transient, ayramic analysis presented here 

is the first ever in the field of boundary element analysis. 

Almost all the existing formulation of BEM in dynamics use the 

constant variation of the variables in space and time which is very 

unrealistic for engineering problems and, in some cases, it leads to 

unacceptably inaccurate results. In the present work. linear and 

quadratic. isoparametric boundary elements are used for discretization of 

geometry and fUnctional variations in space. In addition higher order 

variations in time are used. 
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These methods of analysis are applicable to piecewise-homogeneous 

materials. such that not only problems of the layered media and the soil

structure interaction can be analyzed but also a large problem can be 

solved ~ the usual sub-structuring technique. 

The analyses have been incorporated in a versatile. general-purpose 

computer program. Some numerical problems are solved and. through 

comparisons with available analytical and numerical results. the stability 

and high accuracy of these dynamic analyses techniques are established. 
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tDrATIONS 

A short list of notation is given below. All other symbols 

are defined when first introduced. A few symbols have different 

reeanings in different contexts. but no confusion should arise. 

E 

" 

p 

s 

s 

v 

u. ,t. 
1 1 

a .. 
1J 

5 .. 
1J 
o a .. 
1J 

G. ,F .. 
1J 1J 

[AJ, [BJ 

{xl. {yl 

{1\1l 

N 
11 

M/3 

Young's modulus 

Poisson's ratio 

Lame's elastic constants 

mass density 

pressure wave velocity 

shear wave velocity 

time 

Laplace transform paraweter 

circular frequency 

surface of the domain 

volume of the domain 

displacements and tractions 

stresses 

Kronecker's delta function 

initial stress 

global coordinates of the receiver or field point 

global coordinates of the source point 

displacement and traction fundamental singular solutions 

matrices of coefficients multiplying the known and unknown 

field quantitites, respectively 

known and unknown boundary field quantities 

vector containing past dynamic hisotry 

spatial shape functions for boundary elements 

spatial shape functions for volume cells 
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\" 
L 

SUperscripts 

a 

u 

b 

s 

incremental quantity 

spatial derivative 

sUImnation 

time derivative 

Laplace or Fourier transformed quantity 

quantity related to interior stress 

quantity related to interior displacement 

quantity related to a boundary pJint 

quantity related to elasto-static 
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I.1 THE NEED FOR THE PEESEN!' WRK 

The dynamic analyses of engineering problems involving two and three

dimensional solids have been a subject of intense research for the last two 

decades. For these problems. closed-form analytic solutions are extremely 

difficult to obtain except for very simple geometries and boundary 

conditions which hardly exist in practice. Experiments. on the other hand. 

are expensive and difficult to perform. They also involve elaborate 

apparatus in order to reproduce the desired excitations and to scale the 

important parameters correctly. Therefore. resort has to be made to 

numerical rrethods of solution. 

There are currently two major categories of numerical methods 

available for dynamic analysis of solids; namely, approximate continuum and 

discrete (lumped parameter) models. The most widely used approximate 

continuum method at present is the Finite Element Method (FEM). In 

principle it app:ars to be a very versatile technique because it can handle 

complex structure geometry, medium inhomogeneities and ccmplicated material 

behavior in both two and three dimensions. The finite element formulation 

results in a system of equations that may be solved by modal analysis. 

Fourier transform techniques. or step-by-step integration schemes (Ref. 

Zienkiewicz. 1977). However. the major deficiency of the FEM is that an 

infinite or semi-infinite medium has to be modeled by a mesh of finite 

size. This results in undesirable wave reflections from the artificial 

boundaries. This situation is remedied by the use of transmitting 

boundaries (e.g. Kausel et al. 197 S), hybrid techniques (e.g. Tzong et al. 

1981), or infinite elements (e.g. Bettess, 1977). The use of infinite 

element is restricted to homogeneous far fields because lt does not permit 

variation in material properties, and hence problems invol ving layered 

media cannot be solved by using infinite elements. Similarly. a 
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transmitting boundary encompassing all FOssible cases of waves impinging at 

the ends of a mesh has yet to be devised. Furthermore, the computational 

cost involved in analyzing three-dimensional problems by the FEM is so 

enormous that only a few researchers can afford it. Another continuum 

method is the Finite difference method (FDM). It has been used less 

frequently than the FEM, primarily because of the difficulties associated 

with it in handling complicated geometries and boundary conditions. 

Discrete models are also in use for a certain class of problems (Ref. 

Hadjian et al, 1974). The basic idea behind the discrete model approach is 

the evaluation of the mass, stiffness and damping coefficients that 

essentially represents the medium. With the use of these frequency 

dependent coefficients known as impedance functions, the dynamic analysis 

of the structure is possible. However, exact expressions for impedance 

functions can be obtained for very few cases only and therefore the use of 

discrete models is rather restricted to some simple problems, e.g. some 

foundation problems (Ref. Arnold et al, 1955,: Veletsos. 1971). 

In contrast. it is convincingly demonstrated that accurate and 

efficient solutions to dynamic problems can be easily obtained by using the 

Boundary elenent method (Ref. Banerjee and Butterfield. 1981) because the 

radiation condition is automatically (and correctly) satisfied and for 

linear problems only the surface of the problem needs to be discretized. 

Even for problems with material nonlinearity (e.g. soil). in addition to 

the surface discretization. only a small part of the domain where nonlinear 

behavior is expected needs to be discretized. Thus. a tremendous reduction 

in the size of the problem can be achleved. A brief description of the 

Boundary element method CBEM) is provided in Section II.2 and a complete 

review of the existing work on dynamic analysis by BEM is presented in 

Chapter III. From this review. it can be seen that most of the existing 
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work on dynamic analysis by BEM suffers either from the lack of generality 

or from unacceptable level of accuracy. In addition, all of the existing 

work is based on the assumption of linear elastic behavior and most of them 

assume steady-state conditions. However, in the real world of engineering 

problems, steady-state conditions and linear behavior are at best a first 

order approximation. For truly transient processes it is thus mandatory to 

consider time response and nonlinear behavior. 

Because of the reasons discussed above, there is a need for a complete 

and general analysis method for dynamic problems of two and three

dimensional solids, particularly for problems related to the semi-infinite 

mediums. 

The work described in this thesis represents a comprehensive attempt 

towards the development of a general numerical methodology for solving two 

and three-dimensional dynamic problems by using BEM. The developed 

methodology is applicable to tree-vibration, periodic vibration and linear 

as well as nonlinear transient dynamic analysis of solid bodies of 

arbitrary shape. 

I.2 RELEVANt' PROBLEMS OF ENGINEERING ANALYSIS AND 
THE SOOPE OF THE PRESENt' ~jQRK 

The ability to predict the dynamic response of solid bodies subjected 

to time and space dependent loads and boundary conditions has gained 

considerable importance in all engineering fields such as machine 

foundation design, seismology, non-destructive testing of materials, soil-

structure interaction analysis, structural dynamics, metal forming by 

explosives, auto-frettage, and aircraft structure design. 

The methodology for dynamic analysis presented in this dissertation 

can be used for solving a number of problems described above. Brief 

descriptions of some of these problems are given below. 
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(i) Machine Foundation Design: The design of a machine foundation 

essentially consists in limiting its motion to amplitudes and frequencies 

which will neither endanger the satisfactory operation of the machine nor 

will they disturb the people working in the nnmediate vicinity. Therefore, 

for a successful machine foundation design. a careful engineering analysis 

of the foundation response to the dynamic loads from the anticipated 

operation of the machine is desirable. The existing methods for analyzing 

machine foundations can be categorized into two groups: namely, lumped 

parameter approaches and the finite element method. In the lumped 

parameter approach all the motions are assumed to be uncoupled and for 

compl icated geometries it is iJnt.:ossible to find impedance functions. On 

the other hand, as discussed earlier the finite element method is unable to 

handle realistic three-dimensional foundation problems because of its 

finite boundaries and computational costs. Therefore, the methodology 

presented here provides a viable tool for analyzing machine foundations 

with complex geometries embedded in layered soils. The multi-region 

capability of the present code will allow the realistic modeling of the 

foundation as well as the soil. It should be noted that the assumption of 

a rigid or flexible foundation is not needed in the present case. Also, 

different combinations of dynamic loading and boundary conditions can be 

easily incorporated. 

(ii) Seismo~: In the field of seismology, one is concerned with the 

study of wave propagation in soils. For this purpose, linearized theory of 

elastodynamics are commonly used. Thus, the present work provides a 

general methodology for studying wave propagation in a homogeneous 

halfspace as well as in layered soils. 
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(iii) Agto-frettage Process: This process is used in gun-building and in 

the construction of pressure vessels. In this process. walled structures 

such as pipes and spherical and cylindrical shaped containers are 

deliberately subJected to high pressure during their construction. This 

causes plastic deformation and thereby raises the yield strength of the 

material and induces favorable stress distributions. As a result. the 

working loads (i.e. internal pressures) are now carried out by purely 

elastic deformations. In order to achieve an optimum design of a pressure 

vessel by auto-frettage. the auto-frettage process has to be analyzed 

numerically. For this purpose. nonlinear static analysis algorithms are 

generally used. However. a realistic simulation of this problem can only 

be achieved by using a nonlinear dynamic analysis algorit~ The nonlinear 

transient dynamic algorithm presented in this thesis can serve this 

purpose. 

(iv) structural Dynamics: The problems related to forced and free

vibration of structural components such as beams. columns. and shear walls 

can all be analyzed by the proposed methodology. The nonlinear behavior of 

a structure subjected to an arbitrary transient loading can also be 

obtained by using the present method including the cracking and yielding of 

joints. 

(v) Soil-structure Interaction: The safety of structures such as nuclear 

power plants. dams. bridges. schools. hospitals. and utility pipelines 

during an earthquake is of great concern to the designers and the local 

authorities. Thus. to determine the response of these structures during an 

earthquake. a great deal of research has been done and several techniques 

have been developed. Nevertheless. the problem is so complicated that it 

is still a subject of intensive study. 
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The response of structure during an earthquake depends on the 

characteristics of the ground motion. the surrounding soil. and the 

structure itself. For structures founded on soft soils. the foundation 

motion differs from that in the free-field due to the coupling of the soil 

and structure during an earthquake. Thus. soil-structure interaction has 

to be taken into account in analyzing the response of structures founded on 

soft soils. The available soil-structure analysis techniques can be 

categorized in two groups: i.e •• the direct method and the substructure 

approach. In the substructuring approach. one of the steps invol ved is the 

determination of the dynamic stiffness of the foundation as a function of 

the frequency. The steady-state dynamic algorithm of the present work can 

be used to determine the dynamic stiffnesses of two or three-dimensional 

foundations and embedment of the foundation and layering of the soil can 

both be taken into account. As discussed earlier this methodology is a 

better alternative to the finite element rrethod for this type of problem. 

The time-domain. nonlinear. transient algorithm presented in this 

thesis is a strong candidate for realistic analysis of soil-structure 

interaction problems because. in addition to embedment and layering. it can 

also take into account the nonlinear behavior of soils. Finally. for 

structures subjected to wind load. the present implementation provides an 

accurate and efficient analysis. 

1.3 OUl'LINE OF THE D1SSERI'ATION 

This dissertation presents a complete and general numerical 

implementation of the direct boundary element method applicable to free

vibration. periodic vibration and 1 inear and nonl inear transient dynamic 

problems involving two and three-dimensiortal isotropic piecewise 

homogeneous solids of arbitrary shape. 
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The early history of elastodynamics is presented in Chapter II. Also 

presented is a brief introduction to the boundary element method, its 

historical background and recent developments. 

A literature review of the existing work on dynamic analysis by 

boundary element method is presented in Chapter III. In this chapter, for 

completeness, work on scalar wave problems is also reviewed although it is 

not related to the present work because in elastodynamics waves are 

considered to be vectors not scalars. 

In Chapter IV, an advanced implementation of the direct boundary 

element method for two-dimensional problems of periodic vibrations is 

introduced. The governing equations of elastodynamics are presented 

followed by the boundary integral formulation in transformed domain. 

Subsequently, numerical implementation is introduced which includes 

discussions on the use of isoparametric elements, advanced numerical 

integration techniques, and an efficient solution algorithm. Some 

numerical problems are solved and the results are compared with available 

analytical and numerical results. 

A new real-variable BEM formulation for free-vibratlon analysis and 

its numerical tmplementation for two-dimensional problems are presented in 

Chapter V. This method solves the free-vibration problem in the form of 

algebraic equations and needs only surface discretization. First, the 

formulation of the problem is introduced and then some stmple problems are 

solved and compared with available results to demonstrate the accuracy of 

this new rrethod. 

In Chapter VI, an advanced implementation of the BEM appl icable to 

steady-state dynamic problems of three-dimensional solids is presented. 

The governing equations and boundary integral formulation are the same as 

those introduced in Chapter IV. The numerical implementation for three-
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dimensional problems is discussed first. Additional features like built-in 

symmetry and sliding at interfaces are also introduced. Finally, a few 

ntmlerical problems are sol ved and are compared with the available results. 

The Laplace-transform-domain, transient, dynamic algorithm applicable 

to two and three-dimensional solids is introduced in Chapter VII. The 

basic formulation and the inverse transformation techniques are discussed 

first followed by a number of example problems which demonstrates the 

stability and accuracy of this algorithm. 

In Chapter VIII, the boundary element formulation for time domain 

transient elastodynamits and its numerical implementation for three

dimensional solids is presented for the first time in a general and 

complete manner. Higher order shape functions are used for approximating 

the variation of field quantities in space as well as in time. The 

unconditional stability and accuracy of this algorithm is demonstrated by 

solving a number of problems and comparing the results against available 

analytical solutions. 

Chapter IX presents for the first time in the history of boundary

element analysis a direct boundary-element formulation for nonlinear 

transient dynamic analysis of solids and its ntmlerical nnplementation for 

three-dimensional problems. The formulation is discussed first followed by 

discussions on constitutive IOOdeL voltmle integration, time stepping and 

iterative solution algorit~ Subsequently, a few ntmlerical problems are 

solved and results are presented. 

Finally, conclusions and recorranendation for future research are set 

forth in Chapter X. 
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II.1 HIS'lPRlCAL ACQ)UNT OF ELAS'IQ-DYNAMICS 

The study of wave propagation in elastic solids has a long and 

distinguished history. Until the middle of the nineteenth century light 

was thought to be the propagation of a disturbance in an elastic ether. 

This view was espoused ~ such great mathematicians as cauchy and Poisson 

and to a large extent motivated them to develop what is now generally known 

as the theory of elasticity. The solution of the scalar wave equation as a 

potential was first achieved by Poisson (1829). In 1852, Lamt! added the 

vector potential appropriate to the solenoidal displacement component to 

the Poisson's general solution. 'nlus, through the efforts of Poisson and 

Lamt! it was shown that the general elastodynamic displacement field can be 

represented as the sum of the gradient of a scalar potential and the curl 

of a vector potentiaL each satisfying a wave equation (i.e. longitudinal 

and transverse wave equations). Clebsch (1863), Somigliana (1892), Tedone 

(1897), and Duhem (1898) provided the proof for the completeness of Lam$ 

solution; and in 1885 Neumann gave the proof of the uniqueness for the 

solutions of the three fundamental boundary initial value problems for 

finite elastic medium (recently, the proof of the uniqueness is extended to 

infinite medium ~ Wheeler and Sternberg, 1968). Later, Poisson's solution 

was presented in a more general form by Kirchoff (1883). This problem of 

scalar wave was further studied as a problem with retarded potentials ~ 

Love (1904). 

Investigation of elastic wave motion due to body forces was first 

carried out by Stokes (1849) and later by Love (1904). In 1887, Rayleigh 

made the very important discovery of his now well known surface wave. In 

1904 Lamb was the first to study the propagation of a pulse in an elastic 

half-space. He derived his solutions through Fourier synthesis of the 

steady-state propagation solutions. The ingenious technique of Cagniard 
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for solving transient wave problems came along in 1939. He developed the 

technique of solving the problem in the Laplace transfoon domain and then 

obtained the solution by inverse Laplace transfoon. This technique is the 

basis for much of the modern work in transient elastodynamics. 

The classical works on elastodynamics are collected and presented with 

the recent analytical developments in a number of books, such as Achenbach 

(1973), Eringen and Suhubi (1975), and Miklowitz (1980). 

During the early 1960s,some pioneering work using an integral equation 

formulation was done for acoustic problems by Friedman and Shaw (1962), 

Banaugh and Goldsmith (1963a), Papadopoulis (1963) and others. Kupradze 

(1963) also has done a great deal of work in the extension of Fredholm 

theory to the foonulation of problems ranging from 1 inear, homogeneous, 

isotropic elasto-statics to the vibrations of piecewise homogeneous bodies. 

The general transient problem was attempted by Doyle (1966) who used the 

singular solution for the transfooned equations to obtain representations 

for the displacement vector, dilatation, and rotation vector. However, he 

did not attack the general boundary value problem in terms of boundary data 

and did not attempt a solution and inversion to complete the problem. 

Nowacki (1964) also treated the transient problem but his solution method 

required finding a Green's function before attempting the Laplace 

inversion. During the past two decades, Banaugh and Goldsmith (1963a) were 

the first ones to use the boundary integral formulation to solve an 

elastodynamic problem. After that, a number of researchers have used the 

boundary element method for solving elastodynamic problems. A complete 

review of these works is presented in Chapter III. 
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II.2 HIsroRICAL DEVEWpMENl' OF THE BOUNDARY ELEMENl' Mm'HOD 

The boundary element method (BEM) has now emerged as a powerful 

numerical technique for solving problems of continuum mechanics. In recent 

years, it has been successfully employed for the solution of a very wice 

range of physical problems such as those of potential flow, elastostatics, 

elastoplasticity, elastodynarnics, acoustics etc. The BEM, has a number of 

distinct advantages over the Finite element (FEM) and Finite difference 

(POM) methods such as.: discretization of only the boundary of the domain of 

interest rather than the whole domain (i.e., the dimensionality of the 

problem is reduced by one), abil ity to sol ve problems with high stress 

concentrations, accuracy, and the ease of solution in an infinite and semi

infinite comain. 

This method essentially consists of transformation of the partial 

differential equation describing the behavior of the field variables inside 

and on the boundary of the domain into an integral equation relating only 

boundary values and then finding out the numerical solution of this 

equation. If the values of field variables inside the domain are required, 

they are calculated afterwards from the known boundary values of the field 

variables. The above Cescribed transformation of the partial differential 

equation into an integral equation is achieved through the use of an 

appropriate reciprocal work theorem, the fundamental singular solution of 

the partial differential equation (Green's function) and the divergence 

theorem. The BEM yields a system matrix which is much smaller than that of 

a differential formulation (i.e. FEM or FDM) but, in BEM, the system matrix 

is fully I;X>pulated for a homogeneous region and block banded when more than 

one region is involved. 

Historically, the first use of integral equations dates back to 1903 

when Fredholm (1903) formulated the boundary value problems of potential 
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theory in the form of integral equations and demonstrated the existence of 

solutions to such equations. Since then they have been studied intensively 

particularly in connection Wlth field theory (e.g. Kellog, 1953; Kupradze, 

1963; MuskhelishvilL 1953; Smirnov, 1964). During the 1950s, a major 

contribution to the formal understanding of integral equations was provided 

by Mikhlin (1957, 1965a, 1965b) who studied the singularities and 

discontinuities of the integrands. Due to the difficulty of finding 

closed-form analytical solutions, all of the classical work has, to a great 

extent, been limited to the investigations of existence and uniqueness of 

solutions of problems of mathematical physics, except for the slinplest of 

problems (Ref. Morse and Feshbach, 1953). However, the emergence of high

speed computers in late 1960s spurred the development of numerical 

algorithms based on adaptations of these integral formulations to the 

solution of general boundary value problems and the resulting technique 

came to be known as the Boundary Element Method. 

The pioneering works in the field of BEM was done by Shaw and Friedman 

(1963a,b) for scalar wave problems; Banaugh and Goldsmith (1963a,b) for 

elastic wave scattering problems; Hess (1962a,b), Jaswon (1963), and Symm 

(1963) for potential problems; Jaswon and Ponter (1963), and Rizzo (1967) 

for elastostatic problems; Cruse (1967) for transient elastodynamic 

problems.: SWedlow and Cruse (1971) for elastoplastic problems.: and Banerjee 

and Butterfield (1977) for problems of geamechanics. 

In recent years, advances such as the use of higher-order elements, 

accurate and efficient numerical integration techniques, careful analytical 

treatment of singular integrals and efficient solution algorithms have had 

a major impact on the competitiveness of the BEM in routine linear and 

nonlinear two and three-dimensional static analyses. The contributions of 

Lachat and watson (1976), Rizzo and Shippy, (1977), Curse and Wilson 
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(1977), Banerjee et al (1979, 1985), Banerjee and Davies (1984), Raveendra 

(1984), Telles (1983, 1981), and Mukherjee (1982) should be mentioned. A 

number of textbooks, such as Banerjee and Butterfield (1981), Brebbia and 

Walker (1980), Liggett and Liu (1983)' Mukherjee (1982), Brebbia, Telles 

and Wrobel (1984), and advanced level monographs, such as Banerjee and 

Butterfield (1979), Banerjee and Shaw (1982), Banerjee and Mukherjee 

(1984), and Banerjee and watson (1986), provide a full description of the 

recent developnents in the Boundary elanent method. 
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II!. 1 SCAIAR WAVE PEOBLEMS 

The phenomenon of scalar wave propagation is frequently encountered in 

a variety of engineering fields such as acoustics. electromagnetic field 

theory and fluid mechanics. The existence of integral equations for scalar 

wave problems in terms of unknown potential functions dates back to 

Kirchoff (1883). However. the use of boundary integral equations to solve 

the scalar wave problems started in early 1960s with Friedman and Shaw 

(1962) solving ~~e transient acoustic wave scattering problem followed ~ 

Banaugh and Goldsmith (1963b) solving the steady-state (time haononic) wave 

scattering problem. Since then a number of researchers have contributed in 

this field. Both transient and steady-state behavior have been analyzed 

for wave scattering as well as radiation problems. A radiatlon problem is 

one where a given displacement or velocity field is specified on a part of 

the surface. A problem wherein an obstacle with a prescribed boundary 

conditions (usually homogeneous) interacts with some incident wave field 

generated ~ sources elsewhere is called a scattering problem. It should 

be mentioned that both of the above problems are related to infinite or 

semi-infinite space where t:oundary element method has no competitor. 

Some comparisons of the BEM against the FDM and the FEM are provided 

by Schenck (1967) for time-harmonic. acoustic scattering and radiation. 

Shaw (1970) for transient and time-harmonic. acoustic scattering and 

radiation. Chertock (1971) and Kleinman and Roach (1974) for acoustic 

problems. and rUttra (1973) for the electromagnetic case. For water wave 

problems. the boundary-integral-equation approach has been used by Garrison 

and Seethararna (1971) and Garrison and Chow (1972). with success. Recent 

works on scalar wave problems include that of Shaw (1975a.b). Shippy 

(1975). l-teyer et al (1977). Morita (1978). Davis (1976). Groenenboom 

(1983). Mansur and Brebbia (1982). al!d Misljenovic (1982). 
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It should be noted that the scalar wave problem is much simpler than 

the elastodynamic problem because of the reduced dimensionality of the 

parameters involved in scalar problems and because the analytic 

complexities of the fundamental solutions are also not so severe. 

III.2 TWO-DIMENSIONAL STRESS ANALYSIS 

(A) Transient JOnamics 

The existing work on two-dimensional linear transient elastodynamic or 

visco-elastodynamic problems can be categorized into the following four 

groups. 

(i) Fourier domain solution: In thlS approach, the time domain 

response is reconstructed by Fourier synthesis of the steady-state 

solutions obtained by a frequency domain BEM formulation. This approach 

has been used by Banaugh and Goldsmith (1963b), Niwa et al (1975,1976), 

and Kobayashi et al (1975, 1982). Banaugh and Goldsmith solved a problem 

of elastic wave scattering. Niwa et al and Kobayashi et al solved the 

problem of wave scattering by cavities of arbitrary shape due to the 

passage of travelling waves. Kobayashi and Nishimura (1982) also 

introduced a technique for the problems of fictitious eigenfrequency in 

certain exterior problems. 

(ii) Laplace domain solution: This approach involves solution of the 

problem in the Laplace-transform domain by the BEM followed by a nmnerical 

inverse transformation to obtain the response in the time domain. Doyle 

(1966) was the first to develop a Laplace domain formulation by BEM, 

but he did not solve any problem while Cruse (1967) presented numerical 

results for the two-dimensional problem of the elastic halfspace under 

transient load in plane strain. Numerical results using this approach have 

been also presented by Cruse and Rizzo (1968) and Manolis and Beskos 
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(1981) • 

(iii) Time domain solution: In this approach. the problem is 

formulated in the time domain by the BEM and solved through a step-by-step 

time integration scheme. The fundamental solution used in this approach is 

a function of time and has time retarding properties. This approach has 

been used by Cole et al (1978) for the anti-plane strain case (i.e. one

dimensional problem). by Niwa et al (1980) for the two-dimensional wave 

scattering problem. by Rice and Sadd (1984) for anti-plane strain wave 

scattering problem. and by Spyrakos (1984) for strip-footing problems. 

(iv) DOIrain integral transform approach: In this approach the domain 

integral related to the inertia term is transformed into a boundary 

integral by approximating the displacements inside the domain. This 

results in a finite element type matrix differential equation formulation 

which can be solved by using a direct time integration procedure such as 

the Wilson theta method. Houbolt method etc. This approach has been used 

by Brebbia and Nardini (1983) to solve a two-dimensional simple frame. 

This method uses a static Green's function instead of ttme embedded Green's 

functions and therefore it cannot satisfy the radiation condition nor can 

it reproduce the actual transient response at early times. Because of the 

radiation condition. it cannot be used for semi-infinite problems where the 

BEM has a definite edge over all other numerical methods. 

A comparison of the first three approaches on the basis of their 

accuracy and efficiency , .. as done by Manolis (1983). It should be noted 

that. in the above. some simple two-dimensional or anti-plane strain 

elastodynarnic problems were solved such as: (a) the case of an unlined or 

1 ined circular cyl indrical cavity under the passage of longitudinal or 

transverse waves.: (b) the cases of square or horseshoe shaped cylindrical 

cavities under longitudinal waves; (c) the case of wave propagation in 
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half-planes, etc. 

Most of the above mentioned work suffers from one or more of the 

following: lack of generality, crude assumption of constant variation of 

the field variables in space and time, inadequate treatment of singular 

integrals, and unacceptable level of accuracy. For example, Cole et al 

found the transient dynamic formulation to be unstable, leading to a 

building up of errors as the time stepping progresses; Rice and Sadd found 

that dominant errors in the method arises from integrating the Green's 

function over the singularity and the time domain formulation when applied 

to time harmonic problems reveals solution error propagation; Spyrakos 

finds his flexible strip results to be affected due to the absence of 

corner and edges in his modeling (this is a consequence WhlCh arises due to 

the use of constant elements); and Niwa et al (1976) suggest that use of 

higher approximating techniques for time and space variation of field 

variables may improve the accuracy and stability of their method. All 

these fears has been put to rest in the present work by using a higher 

order interpolation function in time and space. taking care of singular 

integral in an accurate and elegant nanner (Ref. Sec. IV.4). using superior 

and sophisticated integration techniques and implementing the BEf.1 

formulation in a complete and general manner. The time-domain transient 

algorithm developed in this work is unconditionally stable and capable of 

producing accurate results for general three-dimensional problems. 

(B) STEADY-STATE (PERIODIC) DYNAMICS 

Two dimensional steady-state dynamic problems have been sol ved by 

using the BE~1 by a number of researchers, such as, Banaugh and Goldsmith 
. 

(1963b) and Niwa et al (1975) obtained the steady-state solution of their 

respective problems before reconstructing the transient response by Fourier 
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S¥nthesis. Recently, Dravinsky (1982a,b) used a indirect BEM formulation 

to study two-dimensional problems of plane wave diffraction by subsurface 

topography, Alarcon and Dominguez (1981) applied the direct BEM to 

determine the dynamic stiffnesses of 2D rigid strip footings, and Kobayashi 

and Nishimura (1983) used the direct BEM to obtain steady-state responses 

of a tunnel and a column in the halfspace subjected to plane waves of 

oblique incidence. Askar et al (1984) presented an interesting, 

approximate, iterative boundary-element formulation for steady-state wave 

scattering problems which does not require any matrix inversion. He 

presented the results for the problem of wave scattering by a tunnel in 

half-space. Another interesting study has been cone by ~1akai et al (1984), 

they introduced viscous dashpots in a two-dimenslonal analysis to simulate 

energy dissipation in the third direction due to radiation. Lately, 

Estorff and Schmid (1984) has applied the BEM to study the effects of depth 

of the soil layer, embedment of the foundation, and percentage of 

hysteretic soil damping on the dynamic stiffness of a rigid strip in a 

viscoelastic soil. Another work related to rigid strip footing was 

recently presented by Abascal and Dominguez (1984, 1985), where they 

studied the influence of a non-rigid soil base on the compl iances 

(flexibility) of a rigid surface footing and response of the rigid surface 

strip footing to incident waves. 

In all the works discussed above, the singularity which arises in the 

traction kernels (fundamental solution) is not taken into account properly 

(Ref. Sec. IV.4), and in all of them except that of Kobayashi and Nishimura 

(1983) it is assumed that the field variables remains constant within an 

element. As pointed out by Kobayashi and Nishimura, it is crucial to use 

higher-order boundary elements for boundary modelling of a steady-state 

dynamic problem so that it is fine enough to be compatible with the wavy 
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nature of the solution. In addition, it should be noted that none of the 

above mentioned algorithm, is capable of solving general two-dimensional 

steady-state elastodynamic or visco-elastodynamic problems because they 

cannot take care of corner and edges which are always present in a real 

engineering problem. To remedy all the above discussed problems, this 

thesis presents a versatile steady-state dynamic algorithm by BEM which is 

capable of solving two-dimensional problems involving complicated 

geometries and boundary conditions. 

III.3 THHEE-DIMEtlSIONAL STRESS A~~YSIS 

Three-dimensional problems of elastodynamics were not attempted until 

recently principally because of enormous computing requirements and 

formidable task of numerical implementation. In order to reduce the 

computation and complications involved, simplifications of the BEM 

formulation dictated by the nature of the problem to be solved have been 

developed by a number of workers. 

Dominguez (1978a) simplified the steady-state dynamic kernel functions 

for the special case of periodic surface loading on rectangular 

foundations. He also used another simplified formulation (1976b) to study 

the response of embedded rectangular foundations subjected to travelling 

waves. Karabalis and Beskos (1984) have done similar simplifications to 

the time domain transient boundary integral formulation. Yoshida et al 

(1984) used a simplified BEM formulation for determining the response of a 

square foundation on an elastic halfspace, subjected to periodic loading 

and harmonic waves. Tanaka and Maeda (1984) have developed a Green's 

function for two-layered visco-elastic medium, and using this Green 

function in a simplified BEM formulation they numerically calculated the 

compliances for a hemispherical foundation. More complex problems 
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involving the periodic response of piles and pile groups have been 

attempted by Sen et al (1984, 1985a, 1985b), and Kaynia and Kausel (1982). 

They simplified the I:oundary integral formulation so that only displacement 

kernels are involved in the formulation. Some authors (Ref. Apsel, 197~ 

DravinskL 1983) have introduced a p:>tentially unstable method involving an 

'auxiliary boundary' so that singular integration can be avoided. In all 

of the above works. the displacements and tractions are assumed to be 

constant within each element. 

Recently. Rizzo et al (1985) and Kitahara and Nakagawa (1985) have 

~lemented the BEM formulation for steady-state elastodynamic problems in 

a general form. Rizzo also implemented a mixed-transform inversion to 

obtain the response in the time domain and a technique for the problem of 

fictitious eigenfrequency in certain exterior problems with homogeneous 

boundary conditions. Kitahara and Nakagawa have introduced a series 

expansion of the periodic kernels for low frequency range. to obtain a 

stable solution at low frequencies. 

In the present work, the direct boundary element formulations for 

periodic dynamic analysis. transformed domain transient analysis and time

domain transient analysis have been implemented for problems involving 

isotropic, piecewise-homogeneous. three-dimensional sol ids. These 

implementations are general and complete in all respects. In addition. for 

nonlinear transient dynamic analysis of three-dimensional solids. the 

direct I:oundary element formulation and its numerical implementation are 

presented for the first time. To the best of the author's knowledge, a 

comparable system for steady-state and time dependent analyses by the BEM 

has not yet appeared in the published literature. 
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III.4. FREE-YlBRATION A~~YSIS 

The existing methods for free-vibration analysis by Boundary element 

method can be classified into the following two categories: 

(A) Determinant search nethod, and 

(B) Domain integral transform method. 

(A) Determinant search method: 

Most of the existing work on the application of BEM to eigenvalue 

problems falls into this category. This includes the work of Tai and Shaw 

(1974), Vivoli and Filippi (1974), DeMey (1976, 1977), Hutchinson (1978, 

1985), Hutchinson and Wong (1979), and Shaw (1979) for membrane (Helmholtz 

equation) and plate vibratlons. Niwa et al (1982) also used this method 

for free-vibration problems of Elasto-dynarnics. A review of the existing 

work by this approach can also be found in Shaw (1979), and Hutchinson 

(1984). 

In this method, after the usual discretization and the integration 

process, the boundary integral equation for the eigenvalue problem leads to 

a homogeneous set of simultaneous equations, i.e. 

[A(Il.I)] {X} = {OJ (3.1) 

where the elements of vector {X} are the unknown boundary conditions at 

each node and the coefficients of matrix [A] are the transcendental 

function of the frequency. These coefficients are complex when calculated 

by USing the fundamental solution for the corresponding forced vibration 

problem (e.g. Tai and Shaw, 1974; Niwa et al, 1982), or real when 

calculated by using an arbitrary singular solution (e.g. Hutchinson (1978), 

DeMey (1977». 

The necessary and sufficient condition for equation (3.1) to have a 

non-trivial solution is 
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D = IA(IIl) I = 0 (3.2) 

The eigenvalues are characteristic roots of this determinant. 

However. in the numerical calculation. the eigenvalue can only be 

determined as parameters which attain local minima of the absolute value of 

the determinant. D. as a function of the frequency. Ill. This requires 

the formation of equation (3.1) for a large number of trial frequencies. 

which makes this method extremely uneconomical for practical applications. 

Moreover. when the eigenvalues are closely spaced. this method may fail to 

give correct eigenvalues. 

As pointed out by Shaw (1979), this approach also leads to fictitious 

roots when an arbitrary singular solution is used rather than a fundamental 

solution. However. Hutchinson (1985) Justifies the use of an arbitrary 

singular solution by stating that one can easily sort out the fictitious 

roots by a brief look at the mode shapes. 

(B) Domin Integral Transform Method: 

In this approach. the displacements within the domain are approximated 

by some suitable functions. Due to this approximation, the domain integral 

(related to the displacements within the domain) of the integral equation 

is transformed into boundary integrals by using the divergence theorem. 

Since all the integrals of the integral equation are now related to the 

boundary. after some rranipulation. the integral equation is reduced to a 

simple algebraic eigenvalue equation. This method was first proposed by 

Nardini and Brebbia (1982). A similar way of achieving volume to surface 

integral conversion has also been outlined recently by Kamiya and Sawaki 

(1985). 

The min advantage of this method is that the boundary integrals need 

to be computed only once as they are frequency independent rather than 
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frequency dependent (as in the case of determinant search method). 

Moreover, since all of the calculations are in terms of real arithmetic, it 

appears to be economical when compared to the determinant search method. 

The method proposed in this thesis has some superficial snnilarities with 

this method and, therefore, it is briefly reviewed below. 

The governing differential equation for free-vibration of an isotropic 

homogeneous elastic body can be written as: 

where u. = components of displacement amplitudes 
1 

Gik = stress tensor components 

~ = natural circular frequency 

p = mass density. 

(3.3) 

By using the static Kelvin's point force solution the above differential 

equation can be transformed into an integral representation: 

c. ·u. (..s.) = S G •• (X,~)t. (x)ds - SF .. (X,~)u. (x)ds 
1J 1 1J 1 1J 1 

S S 

+ pc} S u· (Z)G .. (z,.&.)dv 
1 1J 

(3.4) 
V 

where X = field point 

~ = source point 

ti = traction components = Giknk 

nk = components of outward normal on the boundary 

F .. = traction kernel corresponding to the displacement kernel 
1J 

GiJ 

cij = 0ij - ~ij , where ~iJ is the Jump term. 

Equation (3.4) not only contains the unknown displacement 
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the traction ti (x) on the boundary. but also the unknown displacements 

ui(~) within the domain appearing in the inertial term. In order to 

formulate the probl em in terms of the boundary unknowns only. the 

displacements within the danain ui (z.) are approximated by using a set of 

unknown coefficients aim and a class of functions fm(~) (superscript m 

denoting the member of the class). such that 

(3.5) 

where 

(3.6) 

where c = a suitably chosen constant 

r(z..~) = distance from the point ~ where the function is 

applied to a point z.. 

With this approxirration. the domain integral of equation (3.5) becomes. 

J Ui(Z.)Gij(Z.·~)dv = aim J fm(~)Gij(X.~)dv (3.7) 

V V 

Now if one can find a displacement field 111 ~ i with the corresponding 

stress tensor m 't'l ik such that 

(3.8) 

the volume integral in (3.7) can be transformed into a boundary integral 

via the divergence theoran. Thus equation (3.4) can be expressed as (Ref. 

Nardini. 19 82) • 

c .. u. (s) - J G·· (X.s)t. (X)ds + J F .. (x.~)u. (X)ds 
1J 1 1J 1 1J 1 

S S 
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= pw
2 £-cij ~i(s) + J Gij(~'~)Pri(~)ds - J Fij(~'~) ~~i(~)ds}~ 

S S 
(3.9) 

where Pri = ~~iknk = traction vector corresponding to the displacement 

field ~ri ' where 

(3.10) 

After the usual discretization and integration process, equation (3.10) can 

be written in a natrix form as 

[F]{u} - [G]{t} = pw2 ([G]{p} - [F]{~}){a} (3.11) 

The relationship between {u} and {a} can be established using 

equation (3.5), Le. 

{u} = [Q] {a} (3.12) 

where elements of matrix [Q] are simply the values of the functions 

er'(z) at the nodal ~ints. 

Since natrix [F] is square and ~ssess an inverse, therefore 

(3.13) 

It is important to note that [Q] is a fully populated matrix and 

therefore its inversion is costly for a realistic probl~ 

Substituting (3.13) into (3.11), we obtain 

[F]{u} - [G]{t} = w2{M]{U} (3.14) 

where 

[M] = p([G]{p} - [F]{v})[Q]-l (3.15) 
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Equation (3.14) is now written in a submatrix form as follows: 

(3.16) 

where u1 and u2 are the displacement vectors related to boundaries s1 

and s2 respectively, and t1 and t2 are the traction vectors related to 

boundaries s1 and s2 res{:eCti vely. 

The homogeneous boundary conditions state that on any part of the 

boundary either u or t is zero. Therefore, assuming u1 = 0 and t2 = 0: 

(3.17) 

From these two sets of equations, {t1} can be eliminated resulting in: 

Equation (3.19) represents the generalized eigenvalue problem. 

Although the method outlined above (first proposed by Nardini and 

Brebbia) eliminates much of the difficulties of the determinant search 

techniques, it still has a number of deficiencies as a practical problem 

solving tool: 

(1) the form of proFOsed approximation for the internal displacements via 

equation (3.5) seens to be based on a rather ad hoc basis, 

(2) it is rather difficult to find the displacement tensor ~li and the 

corresFOnding stress tensor 't'lik to satisfy equation (3.8) for roore 

complex problens such as ax i-symmetric and three-dimensional ones or 

those involving inhomogeneity and anisotroRf, 
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(3) the rratrix algebra invol ved in the construction of the final system 

equations via (3.13)' (3.16-18) restricts the method essentially to 

srrall test problems. In particular, equation (3.19) cannot be formed 

for a multi-region problem where the interface traction and 

displacements must remain in the system equations for the algebraic 

eigenvalue problem. 

In addition to the two above discussed methods, Benzine (1980) 

presented a mixed boundary-integral finite-element approach for plate 

vibration problems which also reduces the problem to a standard algebraic 

eigenvalue problem. However, his approach is computationally more 

expensive than the Nardini and Brebbia's (1982) method. 
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CHAPrEB IV 

ADVANCED 'lW)-DIMENSIONAL STEADY-Sl'ATE DYNAMIC ANALYSIS 
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N .1 INTRODUCl'ION 

In this chapter an advanced nmnerical implementation of the boundary 

element formulation for the periodic dynamic analysis of two-dimensional 

problems is described. In this implementation, isoparametric curvilinear 

boundary elements are used. The present analysis is capable of treating 

very large, multizone problems by substructuring and satisfying the 

equilibrium and compatibility conditions at the interfaces. With the help 

of this substructuring capability, problems related to layered media and 

soil-structure interaction can be analyzed. 

In the next few sections, the governing equations of elastodynamics 

are presented followed by a discussion on the boundary element formulation 

of elasto-dynamic problems in the transformed domain. Subsequently, 

materials pertaining to the numerical implementation and the solution 

algorithm are introduced. A number of numerical examples are finally 

presented to demonstrate the accuracy of the present implementation. 

N.2 GOVERNING EQUATIONS 

The governing differential equation of linear elastodynamics for 

homogeneous, isotropic, linear elastic bodies is called Navier-Cauchy 

equation. which is expressed as 

(c 2 2) 2 -
1 - c2 u. .. + c2 u. .. + b· = u· l,lJ J,ll J J 

where ui (z"T) is the displacement vector and 

(4.1) 

b. 
J 

is the body force 

vector. Indices i and j corresponds to cartesian coordinates; these 

ranges from 1 to 2 for two-dimensional problem and 1 to 3 for three-

dimensional problems. Commas indicate differentiation with respect to 

space, dots indicate differentiation with respect to time T, and repeated 
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indices imply the summation convention. 

The constants c1 and c 2 are the propagation velocities of the 

dilatation (P~ave) and distorsional (S~ave) waves, respectively, and are 

given as 

c/ = Il/p (4.2) 

where A and Il are Lam~ constants and p is the mass density. 

In equation (4.1) the displacement u· 1 
is assumed to be twice 

differentiable with respect to space and time, except at possible surfaces 

of discontinuity due to shock wave propagations. The kinematical and 

dynamical conditions related to the propagating surfaces of discontinuity 

are discussed in Appendix B. 

Finally, the consti tuti ve equations for the homogeneous, isotropic, 

linear elastic material are of the form 

where 

a .. 
1J 

222 = p[(c1 - 2c2 )u 5 •. + c2 (u .. + u .. )] 
1T\,m 1J 1,J J,l 

a •. 
1J 

5 .. 
1J 

is the stress tensor and 

is the Kronecker celta. 

rv.3 THE BOUNDARY-INITIAL VALUE PROBLEr1S OF EIASIPDYNAMICS 

(4.3) 

For a well posed problem, the governing differential equations (4.1) 

and constitutive equations (4.3) have to be accompanied by the appropriate 

boundary and initial conditions. Thus, the displacements ui (X,T) and 

tractions ti(X,T) must satisfy the boundary conditions 

(4.4) 
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where nj is the outward unit normal at the surface, 

Su is the part of the surface where displacements are specified, 

St is the part of the surface where tractions are specified and the 

bonding surface of the body is S = Su + St ' 

and the displacements and velocities satisfy the initial conditions: 

3~V+S 

~~V+S (4.5) 

In addition, the displacements and velocities have to satisfy the 

Sommerfeld radiation condition at infinity. 

The proof of the existence and uniqueness of the boundary-initial 

value problems of elastodynarnics was first provided by Neumann (1995) for a 

bounded region. Later, it is extended to the infinite domain by Wheeler 

and sternberg (1968). These proofs are discussed in detail in Miklowitz 

(1980, Secs. 1.11 and 1.12), Eringen and Suhubi (1974, Chapter V), 

Achenbach (1973, sec. 3.2) and Hudson (1980, Sec. 5.3). 

N.4 BOtJNDAEY INl'EGRAL FORMULATION 

In many practical applications,it is desirable to predict the dynamic 

response of structures under harmonic excitation. If we assume that enough 

time has elapsed after the initial excitation, the transient part of the 

response will vanish and we will be dealing only with the steady-state 

motion. This problem of steady-state motion can be formulated by taking 

the Fourier or Laplace transform of the equations of motion. 

In steady-state, the excitation and response both are harmonic, 

therefore, the displacement and traction will have the form 
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- -iwT t.(x,T} = t.(x,w}e 
1 - 1 -

where w is the circular frequency, 

ui is the amplitude of the displacement, 

ti is the amplitude of the traction, and 

i = ./-1 

Substitution of (4.6) into the governing differential equation (4.1) 

and cancellation of the common factor e- iwT yields the Helmholtz equation 

2 2 - 2- 2 -(c1 - c2 }u .. , + c2 u ... + pw u. = 0 
1,lJ J, II J (4.7) 

The time variable is thereby eliminated from the governing 

differential equation and the initial-value-boundary-value problem reduces 

to a boundary value problem only. In equation (4.7) the body force is 

assumed to be zero. 

Similarly, substitution of (4.6) in the constitutive equation (4.3) 

and cancellation of the common factor e- iwT yields: 

(4.8) 

where a .. 
1J is the stress amplitude, and is given by 

a .. = t. n 
1J 1 J (4.9) 

Similarly, application of Laplace transform to the governing equation 

(4.1) under zero initial conditions and zero body force, and to the 

constitutive equation (4.3) yields 
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2 2 - 2- 2-
(C1 - c2 )u. .. + c2 u. .. - s u. = 0 

1.lJ J. 11 J 
(4.10) 

2 - 2 -
2C

2
)u I) •• +c

2 
(u .. +u .. ) m.m 1.) 1..) ).1 

(4.11) 

(4.12) 

where the Laplace transform f(x.s) of a function f(~.T) with respect to 

T is defined as 

L{f{X.T)} = f(x.s) = f~ f{x.T)e-sTdt 

o 

where s is the Laplace transfonn parameter. 

(4.13) 

A comparison of equation (4.7)-(4.9) with (4.10)-(4.12) indicates that 

the steady-state. elastodynamic problem can be solved in the Laplace domain 

if the complex Laplace transform parameter s is replaced by -iw w 

being the circular frequency. It should also be noted that the transfonned 

t-.Tavier-cauchy equations are now elliptic. and thus more amenable to 

numerical solutions. 

The boundary integral equation in the Laplace transformed eomain can 

be derived by combining the fundamental. point-force solution of equation 

(4.10) with the Graffi's dynamic reciprocal theorem (GraffL 1947). as 

c .. (S)u. (s,s) 
1.J 1 = f - -

[Gij(X.~.S)ti(X'S) - Fij(X'~'S)Ui(x.S)]dS(x) 

s (4.14) 

In the above equation. t and x are the field points and source points. 

respectively. and the body force and initial conditions are assumed to be 

zero. The fundamental solutions G .. 
1J 

and F .. <Ref. Cruse and Rizzo. 
1.J 

1968) are the displacements and tractions at x. resulting from a unit 

harmonic force of the form e- iwT (or eST) at t and are listed in 
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Appendix Al. It can be seen that these fundamental solutions have rrodified 

Bessel functions embedded in them. The asymptotic series expansions of 

these functions for snaIl and large values of argument (i.e. frequencies) 

are also discussed in the Appendix Al. 

The tensor cij of equation (4.14) can be expressed as: 

c .. = 5 .. - ~ .. 
1J 1J 1J 

(4.15) 

where ~ij is the discontinuity (or jump) term and it has the following 

characteristics: (i) for a point ~ inside the body ~ij = 0 • (ii) for a 

point ~ exterior to the body ~ = 5ij , and (iii) for a point t on the 

surface it is a real function of the geometry of the surface in the 

vicinity of ~. For Liapunov smooth surfaces. ~ij = 0.5 5ij • 

Once the boundary solution is obtained. equation (4.14) can also be 

used to find the interior displacements; and the interior stresses can be 

obtained from 

ajk(s,s) = J [Gijk(A'~'S)ti(A'S) - Fijk(A'l'S)~i(A'S)]dS(A) 
S (4.16) 

The functions -a 
G. 'k 1J 

and -a 
F "k 1J 

of the above equation are listed in 

Appendix A3. 

The stresses at the surface can be calculated by combining the 

constitutive equations. the directional derivatives of the displacement 

vector and the values of field variables in an accurate matrix formulation 

(Ref. Sec. IV.S.H>. Also, the loads and moments on the elements can be 

obtained py numerically integrating the known tractions on the elements. 

The boundary integral formulation can also take account of internal 

viscous dissipation of energy (damping); this can be accomplished by 
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replacing the elastic parameters A and ~ (Lame constants) by their 

complex counterparts l* and ~* • 

l* = A(1 + 2i~) 

~* = ~(1 + 2i~) (4.17) 

leaving Poisson's ratio unaltered. By analogy with single degree-of

freedom systems. the damping ratio ~ is equal to 11111/2~. where 11 is 

the coefficient of viscOSity for a Kelvin-Voigt model. 

N. S NUMERICAL IMPLEMENl'ATION 

The boundary integral equation (4.14) cannot be solved analytically 

and therefore resort must be made to the numerical methods of sol uti on. 

The basic steps involved in a numerical solution process for the boundary 

element formulation are: 

(i) Discretization of the boundary into a series of elements over which 

the geometry and the variation of displacements and tractions are 

approximated by using a suitable set of shape functions. 

(ii) Application of the equation (4.14) in discretized form to each nodal 

point of the boundary and thereby evaluation of the integrals by a 

numerical quadrature scheme. 

(iii) Assembly of a set of linear algebraic equations by impoSing the 

boundary conditions specified for the problem. 

(iv) Finally. the system of equation are sol ved by standard methods to 

obtain the unknown boundary tractions and displacements. 

In the present work. the numerical tmplementation of the transformed 

boundary element formulation for two-dimensional problems of elastodynamics 

has the following aspects and features: 
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(A) Representation of GegmettY and Functions 

For the discretization of equation (4.14) the boundary S is 

approximated by using a series of elements whose geometry is defined using 

the quadratic shape functions of intrinsic coordinates proposed by 

Ergatoudis (1968). The boundary elements for two-d~ensional problems are 

shown in figure 4.1. On each element the variation of the cartesian 

coordinates xi (11) are approximated as: 

(4.18) 

where Xl. are the nodal coordinates of the element, and N are the 
c a a 

interpolation functions (Ref. Appendix e1). For a quadratic variation a 

ranges from 1 to 3, and for a linear variation it ranges from 1 to 2. 

Isoparametric shape functions are used to approximate the variation of 

displacements and tractions over each element. In some cases, the full 

quadratic variation of the field quantities is not required so the option 

of using the linear, the quadratic or a mixture of linear and quadratic 

interpolation functions for displacement and traction variation is 

provided. However, the boundary is always modeled using the quadratic 

shape functions. Using the interpolation functions, the displacement and 

traction at an arbitrary point of a boundary element are expressed in terms 

of nodal values of displacements and tractions by: 

(4.19) 

where 11 is the intrinsic coordinate which ranges from 0 to 1, and 

uia and tia are the values of the displacement and traction vectors 

at node a. 
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(B) Substructuring capability 

In the present implementation, the substructuring capability is 

provided. This is a very useful tool for solving problems related to 

piecewise homogeneous material, layered media and soil-structure 

interaction. This technique actually allows a problem geometry to be 

modelled as an assembly of several generic modeling regions (GMR). The 

GMRs are joined by enforcing appropriate compatibility conditions across 

corranon boundary elenents. 

(C) Numerical Integration 

Taking into account the boundary discretization and function 

representation, the transforme0, boundary-integral equation (4.14) can be 

written as: 

Q 

Cij(S)ui(S,S) = l [S [Gij(X(~)'S,S)Na(~)tiadS(X(~» 
q=1 Sq 

- J FiJ(X(~),~,S)Na(~)Uia(X(~»1 
Sq 

(4.20) 

In the above equation, Sq is the length of the qth elenent and Q is 

the total number of elements. In order to express dS(x) in intrinsic 

coordinates, we have 

dS(X) = IJI d~ ( 4.21) 

where IJI is the Jacobian which performs the transformation from the 

cartesian coordinate system (x,y> to the elements intrinsic coordinate 

system ~ , and is given by 
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(4.22) 

Therefore. in view of the above. the equation (4.20) can be written as 

Q A 1 

Cij(~)Ui(~'S) = 2 [2 t ia S Gij(K(~).~.S)Na(~)IJld~ 
q=1 a=1 0 

A 1 
- 2 uia S Fij(X(~).~.S)Na(~)IJld~ (4.23) 

a=1 0 

where A is the number 'of nodes in an element. 

The global system of boundary element equations is obtained by the 

usual nodal collocation scheme. Le .• by allowing field point &. in 

equation (4.23) to coincide sequentially with all the nodal points of the 

boundary. All the boundary integrals involved are calculated numerically. 

Essentially two types of integrals. singular and nonsingular. are involved. 

The integrals are singular if the field point for which the equatiOns being 

constructed lies on the element being integrated. Otherwise. the integrals 

are nonsingular although numerical evaluation is still difficult if the 

field point and the element being integrated are close to each other. 

In both singular and nonsingular cases a Gaussian quadrature scheme is 

used. The basic technique was first developed by Lachat (1975) and is 

discussed in detail by watson (1979) and Banerjee and Butterfield (1981). 

For the nonsingular case. an approximate error estimate for the integrals 

was developed by Lachat based on the work of Stroud and Secrest (1966). 

This allows the determination of element subdivisions and orders of 

Gaussian integration which will assure roughly uniform precision of 

integrations throughout the integration process. In the present work. this 

automatic choice of integration order and element subdivision has been 
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linplementea; where the order of integration points varies from 2 to 12 and 

the number of element subdivisions varies from 1 to 4. When the field point 

is very close to the element being integrated. use of a uniform subdivision 

of the element leads to excessive computing tline. Therefore. in order to 

improve efficiency while still retaining accuracy. a graded element 

subdivision is employed. This subelement division grows geometrically aWf3¥ 

from the point closest to the field point on the element being integrated. 

In the case of singular integration. which arises when the field point 

is on the element being integrated. the elementsis divided into 

subelements. The nature of this division depends on the node of 

singularity of the element. This division produces nonsingular behavior in 

all except one of the required integrals. Normal Gaussian rules are used. 

with orders 4 to 8. The integral of the traction kernel times the shape 

function which is 1.0 at the source point is still singular and cannot be 

nt.mterically evaluated with reasonable effiCiency and accuracy. Hence, this 

integral is evaluated indirectly by a scheme discussed in the next section. 

The integration of the surface integrals required for the calculation 

of displacement and stress at interior points are carried out in the same 

manner as that for boundary values (described above) except. in this case, 

all the integrals are nonsingular. 

(D) EValuation of the Diagonal Blocks of F Matrix 

The diagonal 2x2 block (or 3x3 block for three-dimensional problems) 

of the assembled EO matrix contains the tensor c.. as well as the Cauchy lJ 
principal value of the traction kernel integral. i.e. 

Dij = Cij + S FiJN1 d5 
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where: 

cij is the term which depends only on the geometry at the 

singular node, 
-D.. is the diagonal 2x2 (or 3x3 for 3D) blocks of the assembled 

lJ 

F matrix for the dynamic problem, 

Fij is the singular traction kernel for the dynamic problem, 

N1 is the shape function for the singular node, and 

S1 is the length of the singular element. 

S~ilarly for a static problem: 

D~j = cij + J F~jN1 dS 
S1 

(4.25) 

where the variables are the static counterpart of those of equation (4.24). 

From (4.24) and (4.25) we can obtain 

D .. = D~. + J lJ lJ 
- s 

(F •• - F .. )N
1 

dS 
1J 1J 

(4.26) 

S1 

In the above equation, the diagonal blocks ~j of coefficients of the 

traction matrix, for a static problem of the same geometry can be obtained 

by using the rigid body rootion, Le. 

~j = cij + J r1j N1dS 

S1 

A Q A 

= - [l J FrjNadS + l l J FrjNadS] 
a=2 S1 q=2 a=1 Sq 

(4.27) 

In addition, the integral involving the difference (Fij - F~j) is 

nonsingular, therefore, equation (4.26) can be used to obtain Dij • 
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Recently, a somewhat similar approach is used by Rizzo et al (1985) for 

three-dimensional problems. 

In almost all of the past works, the nonsingular integral of equation 

(4.26) has been neglected. This results in inaccuracy, particularly at 

high frequencies. However, for problems related to ground surface the 

above technique is not applicable. Thus, for halfspace problems a new 

scheme is developed to calculate the diagonal blocks of F matrix. This 

scheme is discussed in the following section. 

(E) Diagonal Blocks of F Matrix for Problems of Halfspace 
Having Corners and Edges 

The conventional approach of assuming 0.5& .. as the block diagonal 
l) 

terms of the F matrix does not hold true for cases where the geometry of 

the problem has corners and edges except for the case where the field 

variables are assumed to be constant within each element. Thus, for higher 

order variation of the field variables, one needs to have a general nethod 

for calculating the diagonal blocks of F matrix for halfspace problems. 

In the present work. a new technique to handle the above discussed problem 

in an approximate manner has been developed. To this purpose, this new 

technique uses special types of elements called 'enclosing elements' (Ref. 

figure 4.2). The basic assumption in this technique is that the 

displacements and tractions at the enclosing elements has negligible effect 

on the displacements and tractions at any point on the modeled boundary. 

Using this scheme, the diagonal blocks D~ 
l) of F matrix are 

obtained by the summation of nonsingular integrations of the static 

traction kernel over all the boundary elements as well as all the enclosing 

elements, i.e. 
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D~. 
1J 

A Q A 

= - [1 J F~.N dS + ' 'J F~.N dS 1J aLL 1J a 
a=2 S1 q=2 a=1 S q 

L A 

+ 1 l J F~jNadS] 
e=1 a=1 S e 

(4.28) 

where the third summation of the integrals corresponds to the enclosing 

element (L being the total number of enclosing elements). Once D~j is 

evaluated, the diagonal blocks Dij related to the dynamic problem can be 

easily found by using equation (4.26). 

In order to show the validity of the above technique, the dynamic 

response of a rigid strip on an elastic half space under vertical loading is 

analyzed by using this approach and other two approaches. The real and 

imaginary part of the vertical stiffness for two different frequencies were 

tabulated in table 4.1 obtained by using all the three approaches for 

calculating the block diagonals of F matrix. It can be seen that results 

obtained by using the enclosing element technique compares well with the 

correct results (method 1). However, method 2 which is invariably used by 

the past researchers gives erroneous result at high frequencies (e.g. 

compare the real part of the stiffness at non-dbnensional frequency ao = 

wb/c2 = 7.0) 

(F) Asserrbly of System Egyations 

Once the boundary collocation and integrations are completed, we have 

a set of coefficients which function as multipliers of field quantities, 

i.e. (Ref. Banerjee and Butterfield, 1981): 

[G]{t} - [F]{u} = {OJ (4.29) 

where: 
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[Gl is an unassembled matrix whose coefficients are the values 

obtained by the numerical integration of the product of the 

tensor G .. , the shape functions and the Jacobian. The 
1J 

size of matrix [Gl is dn x dm ; 

[Fl is an assembled (for nodes) matrix whose coefficients are 

obtained by the numerical integration of the product of the 

tensor F .. , the shape functions and the Jacobian. 1J 

size of matrix [Pl is dn x dn ; 

The 

{t} and {u} are the transformed traction and displacement 

vectors at the boundary of the problem, with size dIn and dn, 

resI=ectively: 

n is the total number of nodes: 
Q 

m = l Aq' where Q is the total number of elements and 
q=1 

Aq is the number of nodes in the qth element: and 

d is the dimensionality of the problem (i.e. for two

dimensional problems d = 2). 

Since some of the field quantities are known from the specified 

boundary conditions, during the assembly of the system equations the 

Goefficients related to the known and unknown variables are separated. For 

the case when the boundary conditions are specified in local coordinate 

system, the corresponding coefficients of the matrices [GJ and [FJ are 

multiplied by the appropriate local transformation matrix. Finally, 

boundary conditions are imposed including any required modification to the 

coefficient matrices for bonded or sliding contact between different 

regions (GMRs). The results of all the above operations is a linear system 

of matrix equations of the form: 
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where 

[AJ{x} = [BJ{y} = {b} (4.30) 

(4.31) 

(4.32) 

{y} and {x} are the vectors of known and unknown field 

quantitites, respectively: 

ruin } and {a} are the vectors of displacements and stresses at 

interior points, respectively. 

In any substructured (multi-zone) problem, the matrix [AJ in (4.3'0) 

contains large blocks of zeros because separate GMRs communicate only 

through common surface elements. In order to save both storage space and 

computer time, the matrix [AJ is stored in a block basis with zero blocks 

being ignored. Since interior results in any GMR involves only the 

boundary values related to that GMR, the matrices in (4.31) and (4.32) are 

also block diagonal. In addition, for added accuracy the system equations 

are scaled so that all the coefficients of matrix [AJ (and [BJ) are of the 

same magnitudes (for detail, Ref. Banerjee and Butterfield, 1981). 

(G) SOlution of Egyations 

Since the system equations (4.30) are complex it requires a complex 

sol ver. In the present work, an out-of-core complex solver is developed 

using softwares from LINPACK (Dongarra et aL 1979). In this solver in 

order to minimize the t~e requirements the solution process is carried out 

using block form of the natrix. Thus, this block banded solver operates at 

the submatrix level using software from LINPACK to carry out all operations 

on submatrices. The system matrix is also stored by submatrices on a 

direct access file. The first operation in the solution process is the 
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decomposition of the system matrix using the block form of it. This 

decomposition process is a Gaussian reduction to upper triangular 

(submatrix) form. The row operations required during the decomposition are 

stored in the space originally occupied by the lower triangle of the system 

matrix. Finally, the calculation of the solution vector is carried out by 

using the decomposed form of the system matrix from the direct access file. 

(H) calculation of Stresses on the BoundatY for 2D Problems 

Once the boundary solution is obtained, the stress and strain at any 

point on the boundary can be calculated without any integration by using 

the procedure outlined as follows. 

Let us assume that we are interested in finding stress and strain at a 

point P, which lies on a boundary element and has intrinsic coordinate 

llb. P..ecalling equations (4.19), we can write: 

A 

ui (llb) = 2 N (llb)Ui a a 
a=1 

A 
b 2 b ti (ll ) = Na<ll )tia (4.33) 

a=1 

where: 

A is the number of nodes in the element, 

N a is the shape functions, and 

uia and tia are the nodal values of ui and ti • 

In addition, we also have the following relationships: 

t. = a. ·n· 
~ ~J J (4.34) 
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where: 

Equations 

equation: 

n1 

0 

1 

0 

0 

0 

0 

u +u _ (k,l l,k) 
a ij - Cijkl 2 

u. = u .. X 1,'Il 1,J J,'Il 

A aN 

ui.'Il = 2 a'll~ Ui~ 
~=1 

(4.35) 

(4.36) 

(4.37) 

c ijkl is a tensor containing elastic constants, and 

X
J
. are the directional derivatives. ,'Il 

(4.34) , (4.35) and (4.36) can be combined to form a matrix 

0 ~ 0 0 0 0 all t1 

n2 nl 0 0 0 0 a22 t2 

0 0 -).-21-1 0 0 -). a
12 

0 

1 0 -). 0 0 -).-21-1 u1 ,1 = 0 

0 1 0 -1-1 -1-1 0 u2,l 0 

0 0 -n2 0 nl 0 ul,l ul,'Il 

0 0 0 -n2 0 nl u2,2 u 2,'Il (4.38) 

where nl and n2 are the unit normal on the boundary at point l? Le. 

Now, the stress and strain at point l? can be obtained by inverting 

the rratrix of equation (4.38) and then multiplying the inverted rratrix by 

the right-band-side vector. For .this FUrpose, the right band side vector 

is obtained by using equations (4.33) and (4.37). The procedure described 

above is valid for both plane stress and plane strain problems. However, 
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for plane strain problems the Poisson's ratio \) has to be replaced by v 
\) 

= 1+\) • 

N.6 EXAMPLES OF APPLICATIONS 

In order to demonstrate the accuracy and applicability of the present 

implementation. the detailed solution of three numerical examples are 

presented. In the first example. the forced oscillations of a massless 

rigid strip foundation on an elastic half space (plane strain) subjected to 

external dynamic forces is analyzed. The purpose of this example is to 

compare the response predicted by the present implementation to that 

available in the literature. The second example is that of a machine 

foundation embedded in an elastic halfspace (plane strain) and subjected to 

external dynamic forces. and the third example is a wall in an elastic 

half-space subjected to a time-harmonic lateral pressure distribution. 

These last two examples are intended to show the applicability of the 

present implementation to real engineering problems. In both examples. 

English tmits are used with foot (ft.) for length. PJund <lbf.) for force. 

and second (s) for time. 

Ca) Qynamic Response of a Rigid Strip on an Elastic Halfspace 

A large number of numerical results have been published for the rigid 

strip with vertical. horizontal and rocking vibrations (Karasudhi et al, 

1968; Luco et aI, 1974; Luco and Westrnann, 1972; Wickham. 1977; Hryniewicz. 

1981; etc.). However, most of them are limited to a small range of 

frequency parameter and are based on the assumption that one of the contact 

stress components is zero. For the purpose of comparison. a rigid strip 

footing on an elastic halfspace under relaxed boundary conditions is 

analyzed for vertical. horizontal and rocking vibrations. The rigid strip 
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footing and the boundary element mesh used are shown in figure 4.3 (this 

mesh was selected after a convergence study at a high frequency). In all 

cases, a homogeneous soil material with a Poisson's ratio v = 1/4 is 

considered. The dynamic stiffnesses obtained by the present method are 

compared with that reported ~ Hryniewicz (1981). He defines the vertical. 

horizontal and rocking stiffness coefficients ~ the following expressions 

respectively: 

P (4.39) =--

H --- (4.40) 

(4.41) 

where: 

P. H and M are the amplitudes of vertical force, horizontal force 

and moment. respectively; 

wo' Uo and 0
0 

are amplitudes of vertical displacement, horizontal 

displacement and rotation. respectively; 

K11 , K22 and K33 are the real parts of the stiffness coefficients; 

Cll , C22 and C
33 

are the imaginary parts of the stiffness 

coefficients: 

2b is the width of the footing; 

~ is the shear modulus of the soil: and 

i = J-1 

The real part of the stiffness coefficients are plotted against non

dimensional frequency (ao = wb/c2 • where w is the excitation frequency) 
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in figure 4.4. It can be seen that the present results are in good 

agreement with the results of Hryniewicz (1981) for low to medium 

frequencies. However, for higher frequencies the the agreement is not 

good, particularly for rocking stiffness. This difference is due to the 

fact that in the present work quadratic shape functions are used for 

representation of the variation in the boundary variables over each element 

whereas Hryniewicz assumes that the unknown contact stresses are constant 

within each element. This results in stress discontinuities at the 

interface of two elements. Therefore at high frequencies, Hryniewicz's 

method will produce correct results only when the foundation-soil interface 

is divided into a very large number of elements. Figure 4.5 shows the plot 

of imaginary part of the stiffness coefficients against the nondimensional 

frequency ao • A good agreement between the present results and the 

results due to Hryniewicz can be seen. Real and imaginary parts of 

vertical stiffness for a bonded rigid strip are also plotted in figures 4.4 

and 4.5. respectively. The imaginary part is identical to that of a 

frictionless rigid strip. 

Dynamic contact-stress distributions at the interface between the 

rigid strip and the halfspace are also presented. For the purpose of 

plotting. the contact stresses are defined as follows: 

For vertical vibration: 

(4.42) 
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For horizontal vibration: 

(4.43) 

For rocking: 

(4.44) 

where superscripts R and I represent real and imaginary parts, 

respectively. 

The real and imaginary parts of the contact stress distribution for 

vertical vibration are plotted in figures 4.6 and 4.7, respectively. 

Because of the singularity at the edge, the contact stresses on the element 

close to the edge are obtained in an average sense (by taking the average 

of nodal values) and are indicated by dashed lines. From the figures, it 

can be seen that the contact stresses are quite sensitive to variations in 

the frequency parameter ao • As frequency increases, the inaginary part 

of the contact stress distribution increases and the singularities at the 

erlge gets shaq:er for real and imaginarY parts. Figures 4.8, 4.9, 4.10 and 

4.11 shows the dynamic contact stress distributions for horizontal 

vibration and rocking. In all cases, the preceding comment about the 

Singularities at the edge holds true. 
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(b) Dj{namic Response of a Machine Foundat ion Embedded 
in the Elastic Halfspace 

In order to show the applicability of the present linplementation for 

sol ving real engineering problems. the dynamic stiffnesses of a machine 

foundation (made of concrete) embedded in the halfspace are computed. 

Dynamic contact stress distributions at the interface between the 

foundation and the soil are also presented. The rrachine foundation and the 

boundary element discretization for this problem are shown in figure 4.12. 

The discretization of the soil free-surface are the same as in figure 4.3. 

The substructuring technique is used in sol ving this problem. i.e •• the 

concrete foundation is modeled as one Gr1R (or region) and the halfspace as 

another GMP.. The contact between the foundations and the soil is assumed 

to be welded (or glued). and the weight of the foundation is considered 

automatically by the analysis. This problem has corners and edges. and 

therefore. enclosing elements are used to obtain the diagonal blocks of the 

F matrix. The conventional approach of using 0.50 ij as the diagonal 

blocks cannot be used for this type of problem which has corners and edges. 

The material properties are as follows: 

SOil: Elastic modulus. E = 8.64 x 105 
s 

Poisson's ratio. " = s 0.3 

Mass Density. Ps = 3.57 

Foundation: Elastic modulUS. Ec = 4.527 x 10 8 

Poisson's ratio. " = 0.17 c 

Mass density. Pc = 4.5 

In order to compute the foundation stiffnesses, unit displacements and unit 

rotation are prescribed on the top face of the foundation with zero 

traction conditions being linposed along the soil free-surface. Upon the 

solution of boundary equations. the tractions over the element at the soil-
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foundation interface are obtained. The resultant of these tractions for 

different rigid body motions gives the foundation stiffness coefficients. 

The real and imaginary parts of the stiffnesses (minus the inertial 

contribution of the foundation block) are plotted agail!st the frequency 

parameter ao in figures 4.13 and 4.14, respectively. It can be seen 

that, in general, the stiffnesses in this case are greater than that of a 

rigid strip. This is understandable, because the embedment reduces the 

maximum frequency response (Ref. Estorff and Schmid, 1984) and therefore 

increases the stiffness. Figures 4.15 and 4.16 show the real and imaginary 

parts of the contact stresses between the foundation and the soil for 

vertical vibration whereas figures 4.17 and 4.18 show the same for rocking 

of the foundation. It is obvious from the results, that at higher 

frequency the stresses at the edge are JIX)re severe. 

(c) Qynamic Response of a Wall on an Elastic balf-space 
SUbjected to a Time Harmonic Lateral Pressure Distribution 

A wall with its base embedded in an elastic half-spice is subjected to 

a time-harmonic lateral pressure distribution as depicted in figure 4.19. 

The dimensions of the wall and its base are shown in figure 4.19. The 

material properties of the wall. its base and half-space are the same as 

those of the machine foundation of example (b). 

The boundary element discretization of the wall consists of 20 

quadratic line elements, and its base is modelled by 17 quadratic line 

elements. The discretization of the soil free-surface is the same as in 

figure 4.3. Plane strain conditions are assumed for the present problem. 

The distribution of the appl ied lateral pressure is shown in figure 

4.19. It can be seen that it is a triangular pressure distribution with 

maximum pressure pet) = 600 psf at the free end of the wall. This 

problem is analyzed by using two different approaches to model the half-
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space, namely, (i) continuum model, and (ii) spring-dashpot model. For 

the spring-dashpot model, the values of stiffness coefficients are 

calculated by assuming the base of the wall to be rigid, and using the 

present dynamic algorithm by following a procedure similar to that 

described in example (a). The lateral displacements along the loaded face 

of the wall are plotted in figure 4.20. From this figure, it can be seen 

that the results obtained ~ using spring-dashpot model are almost similar 

to those obtained by using continuum model for the half-space. This 

example shows the usefulness of the present algorithm for obtaining the 

response of a structure partially embedded in a half-space in one single 

step or in two-steps, Le. by using spring-dashpot approach. 

In all of the examples presented in this section, the material damping 

is neglected because for half space problems the radiation damping is 

dominant and the material damping is negligible. However, the present 

implementation has the capability for the inclusion of material damping 

(Ref. Sec. IV.4). 

rv.7 CONCLUD:rn; REMARKS 

An advanced implementation of the direct boundary element method for 

dynamic analysis of two-dimensional problems in the frequency domain is 

presented. By comparing the results with those obtained ~ other methods, 

the accuracy and the stability of the present method is established. Since 

only the boundary of the region of interest has to be discretized instead 

of the whole domain, the proposed methodology is a better alternative to 

the conventional finite element method, particularly for the solution of 

soil-structure interaction problems. For soil-structure interaction 

problems the finite element method presents two restraints: (i) the model must 

be bounded at the bottom by rigid bedrock, and (ii) the soil away from 
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the vicinity of the foundation is represented by parallel layers unbounded 

on the horizontal direction. These two conditions are not always close to 

reality. On the other hand, ln Boundary element method, the fundamental 

solution satisfies the radiation condition at infinity and therefore no 

bounding surfaces are needed and only a small number of elements is 

necessary to model the problem. Furthermore, the numerical implementation 

employed here is one of the most general currently available and can be 

used in conjunction with substructuring technique to solve not only the 

problems of layered media and soil-structure interactions, but also any 

problem of two-dimensional solids of complicated geometry and connectivity. 

57 



Table 4.1. Vertical compliance of a rigid strip footing on half-space, 
by using three different methods to obtain the diagonal 
blocks of [P] matrix 

Real part of Imaginary part Real part of Imaginary part 
the stiffness of the stiffness the stiffness of the stiffness 

at at at at 
ao = 2.0 ao = 2.0 ao = 7.0 ao = 7.0 

Method 1 0.330 2.24 0.408 7.85 

Method 2 0.335 2.27 0.456 7.81 

Method 3 0.334 2.27 0.410 7.81 

Method 1: using 0.5 5 .. + J (P .. 
s as the diagonal blocks. - p. ')ds 

1J 1J 1J 
~ 

Method 2: using 0.5 5 .. as the diagonal block. 
1J 

Method 3: using enclosing elements. 
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0!APl'ER Y 

FREE VmRATION ANALYSIS OF 'IWO-DlMENSIONAL PROBLEMS 
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V.l n~UCTIQN 

In this chapter a new method for free-vibration analysis by BEr1 is 

presented. It util izes a fictitious vector function to approximate the 

inertia forces and then uses the well known concept of complementary 

functions and particular integrals to solve the resulting governing 

differential equations. This method not only reduces the problem of free

vibration to an algebraic eigenvalue problem but also saves the cOrnpltation 

time by having fewer matrix manipulations as compared to that of the domain 

integral transformed method <outlined earlier in III.4). Because of the 

general ized form proposed here it can be used for rnul ti -region problems and 

extensions to axi-syrnrnetric problems as well as those involving 

inhomogeneity and anisotropy are possible. Some example problems. such as 

a triangular cantilever plate. a square cantilever plate. a cantilever 

beam. a shear wall and a fixed elliptic arch are presented to establish the 

accuracy. efficiency and convergence of this new method. 

V.2 gJVERNIm EQUATION: 

The governing differential equation for free-vibration of an elastic. 

homogeneous and isotropic body can be written as: 

where: 

A and ~ are Lame's constants. 

u. = displacement amplitudes 
1 

p = mass density 

w = natural circular frequency. 
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V. 3 PARI'ICULM INI'OOEAL: 

The governing differential equation (5.1) can also be written in 

differential operator notation as 

2 
L(u.) + pw u. = 0 

1 1 
(5.2) 

The solution of the above equation can be represented as the sum of a 

complementary function u~ satisfying 
1 

c L(u.) = 0 
1 

and a particular integral u~ satisfying 
1 

(5.3) 

(5.4) 

However, equation (5.4) still contains the unknown displacement field 

u. within the domain, which can be eliminated by using an unknown 
1 

fictitious density function fJ and a known function C. exactly as in an 

indirect boundary element analysis (Ref. Banerjee and Butterfield. 1981). 

More specifically: 

where 

CD 

(5.5) 

is a fictitious density and 

Cik is a known function which can be selected as any linear 

function of spatial coordinates. 

The above approximation in the inertia term is a val id practice in other 

numerical methods such as the use of lumped mass matrix in finite element 

method. This is possible because the inertia term does not contain any 

derivative and, hence, it can be approximated by using slmPler functions. 

61 



A simple function which is selected for Cik in the present analysis 

has the form: 

(5.6) 

where: 

R = largest distance between two tx>ints of the body 

r = distance between X (field tx>int) and tn (source tx>int). 

On the basis of above assumption (5.5). equation (5.4) can be written 

as 

CD 

L(ul) + pw
2 l Cik(X.~m)~(~m) = 0 

m=1 

(5.7) 

Now. the p:lrticular integral ul can be chosen as arrj function which 

satisfies the differential equation (5.7). Accordingly it can be 

represented as: 

CD 

m=1 

The displacement field satisfying equation (5.7) is found to be 

where: m y. = x· - ~. 
111 

2(d+3) (1-\1)-1 

c = 1 18(3d-l) (1-\1) 
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1-2 \I 

2 [ (Hd) -2\1 dl 

1 
C

3 
= 

6(3d-1) (1-\1) 

\I = Poisson's ratio, and 

d = dimensionality of the problem (e.g. for 20 problems, d = 2). 

For 2-D analysis; 

2 
0l"k = e~ [ {(9-1.Q~ r - 1-2\1 R} 5

1
"kr2 - 1 Y Y r] (5.9) .. 90(1-\1) 6-8\1 30(1-\1) i k 

By comparing the functions Cik and 0ik (for 20) with the corresponding 

functions fm (eq. 3.6) and 1\ITi (eq. 3.10) of Nardini's method, it can be 

seen that even though the functions Cik and fm are similar, their 

displacement functions 0ik and 1/1 Ti are different from each other. One 

of the reasons for this difference is that the function 0ik satisfies the 

governing differential equation (5.7) but the function 1\ITi does not. 

Instead, the function 1/ITi satisfies the differential equation (3.8) which 

has the form: 

The surface traction ti related to the displacement ul can be 

determined using the strain-displacement relationship and constitutive 

equation and is given by: 

t~(}C) 
1 -

't"" 

= L 
m=1 

(5.11) 
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where: 

and: 

(d+3) 'J - 1 
C4 = 

3(3d-l) (1-'J) 

2'J 

c = 5 (1+d)-2'Jd 

(d+2)-(d+3)'J 
c =-----

6 3(3d-l) (1-'J) 

V.4 BQQNDARY BrIEMEN!' FORMUIATION: 

The boundary values of real displacements and tractions ui 

can be related to the complementary and particular integral 

c p u. = u. + U. 
111. 

t. = t<? + tJ? 
111 

via: 

(5.12) 

and t. 
1. 

(5.13) 

(5.14) 

The boundary integral equation related to the displacement function 

u<? can be written as 
1 

Cij(S)U~(S) = S [Gij(X.S)t~(~) - Fij(X.~)u~(x)1 ds(x) 

s 
(S.lS) 

where Gij(x..l) and Fij(x..&.) are the fundamental solution of equation 
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(5.3) (Ref. Banerjee and Butterfield, 1981)' i.e., G .. (x,&,) 
1J 

is the 

resulting displacement at any point X in direction i of an infinite 

medium due to a static unit force acting at a point &, in direction j, 

and F .. (x"s> is the resulting traction. 
1J 

By usual discretization of boundary S , we can express equation 

(5.15) in matrix form as 

Equation (5.16) can be solved once the displacements ui and the 

tractions t~ are expressed using equation (5.13) and (5.14) in terms of 

real displacement ui and traction t i , i.e. 

[GJft} - [FJ{u} = [GJ{tP } - [FJ{uP } (5.17) 

where vectors {tP} and {uP} can be obtained at boundary nodes from 

equations (5.8) and (5.11) as 

2 = PIJ) [DJ {01 (5.18) 

(5.19) 

Substituting these equations into equation (5.17), we obtain 

[GJ{t} - [FJ{u} = pIJ)2([GJ[TJ - [FJ[DJ){0} (S.20) 

Recalling that 

CD 

l &ij(R - rnm)0j (Sm) 
m=l 

where rnrn is the distance between the points xn and &,m, we can 

express this relationship between the displacements and the fictitious 
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density at all boundary nodes as: 

u~ = 0 .. prrrt,/ll} 
1 1J J 

6ff} = I) •• If!Ylu~ 
J 1J 1 

(5.21) 

where 

It should be mentioned here that we only have to invert a NxN matrix 

[P] instead of [Q] (as in the case of Nardini's method, eq. 3.12), a 

dNxdN matrix, where d = 2 and 3, respectively for two and three

dimensional problems and N is the total number of boundary nodes of the 

problem. 

We can now write (5.21) as 

{6} = [K]{u} (5.22) 

SUbstitutin; {6} from equation (5.22) into equation (5.20), we get 

[G]{t} - [F]{u} = pw2 ([G][T] - [F][D])[K]{u} (5.23) 

or [G]{t} - [F]{u} = pw2[M]{U} (5.24) 

Equation (5.24) can also be written in terms of known and unknown variables 

as 

[A]{x} - [B]{y} = pw2([M] {x} - [M*]{y}) (5.25) 

Since all the kncwn variables are zero, (i.e. sJ;eCified boundary conditions 

are either ui = 0 or ti = 0 ) equation (5.25) reduced to 

2 -[A]{x} = pw [M]{x} 
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The modified mass matrix [MJ contains zero in its sub-columns related 

to specified displacements (i.e. fixed boundaries). 

v.S EIGENVAWE EXTRACTION: 

Equation (S.26) is an algebraic expression for the eigenvalue problem 

which can be solved by using a eigenvalue extraction subroutine. It should 

be noted that both the matrices [AJ and Un are fully populated and 

nonsymmetric. There is no satisfactory eigenvalue extraction routine 

available for efficient determination of eigenvalues of such a system. In 

the present work the algorithm developed by Moller and Stewart (1973) was 

utilized. The necessary set of subroutines were developed by Garbow (1980) 

of Argonne National Laboratory. In general a nonsymmetric fully populated 

system such as (S.26) cannot be guaranteed to provide real eigenvalues. 

However. it will be seen from the examples presented in this chapter that 

the eigenvalues of (S.26) are in fact real. 

V.6 ADVANrAGES OF THE PROPOSED METHOD: 

In comparing this new method with that of Nardini's (1982). the 

following three important points need to be mentioned: 

(i) The final algebraic expression of Nardini's method 1S in terms of 

unknown displacements whereas that of this new method is in terms of 

unknown variables (both displacements and tractions). In a multi

region (piecewise homogeneous) problem both the displacements and 

tractions are unknown at the interface. Therefore. Nardini's 

assumption that at any node either the displacement or the traction is 

zero is not always valid. 

(ii) Nardini's approach involves too many matrix marllp.1lations which are 

costly and somewhat impractical for a realistic practical problem. 
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(iii) Because of the use of a well-established method of solving any 

nonhomogeneous differential equation by using complementary functions 

and particular integrals. we can now utilize a large number of 

particular integrals already in use in BEM for dealing with 

centrifugal forces. Many of these have already been developed for 

axi-syrrmetric and three-dimensional problems invol ving anisotropic 

materials and. with minor modifications. can be made to satisfy the 

governing differential equation (5.7). 

V.7 EXAMPLES OF APPLICATIONS: 

(a) Comparison with Nardini and Brebbia (1982) 

In order to provide a meaningful comparison between the present method 

and that described by Nardini and Brebbia. both methods were implemented. 

Tables 5.1 and 5.2 show the convergence studies of the first four modes of 

triangular and square cantilever plates of unit thickness under in plane 

vibration. The triangular plate had a 10-inch depth at the support and an 

8-inch span. The square plate was 6 inch deep and had a span of 6 inches. 

The material parameters were EI p= 104 and ,,= 0.2. Three-noded. 

isoparametric-conforming boundary elements were used to describe both 

geometry and functions. 

Both these problems were also solved by Nardini and Brebbia (1982). 

The results of the present implementation agree exactly with their quoted 

resul ts indicating that their analysis has been correctly interpreted. 

They do not. however. agree well with those given by the new method 

proposed in this paper for some modes. Specifically. for the triangular 

cantilever. there is a marked difference in the thlrd mode and small 

differences exist in all other modes. For the rectangular cantilever once 

again third-mode response differs significantly but the second mode agrees 
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quite well. 

(b) Comparisons with Finite Element and Beam Theory 

The finite element system MHOST (MARC-HOST) was used to analyze a 

cantilever beam. The beam has a length of 6.5 units and a square (1 x 1) 

cross section. The finite element mesh (using 8-noded isoparametric 

elements) was matched with the boundary element mesh to provide the same 

number of boundary nodes. The first four bending modes from BEM were 

(0.368, 2.214, 5.591 and 9.986 Hz) and those of the FEM were (0.378, 2.188, 

5.583 and 9.908 Hz), indicating good agreement between the two analyses. 

Further the mode shapes calculated using the two techniques are 

indistinguishable. The first and the fourth bending modes are shown in 

Figure 5.1. It should be noted that the fourth mode displays a nonzero 

slope near the fixed end. This real feature of the two-dimensional 

solution is absent in the beam theory with the imposed fixed end boundary 

conditions normally used in the beam theory. The material parameters for 

the beam are assumed to be EI p = 104 and v = 0 • 

In order to study the convergence of the results with an increase in 

number of boundary elements, a similar cantilever having a span of 6.0 

inches was analyzed. Figure 5.2 shows the convergence of the first six 

modes plotted against the boundary mesh numbers. 'lbtal number of boundary 

elements is equal to 2x(Mesh number + 2) (Ref. Fig. 5.3). The convergence 

is excellent for the first six modes. Since this analysis is fully two

dimensional rather than based on beam or colUIlUl theory, it provides both 

the axial and flexural rrodes. In addition, some of the higher modes (not 

shown here) have mixed responses. As expected. a finer discretization is 

required for higher modes of vibration. Even the most slowly convergent 

case. the fifth (the fourth flexural) mode required only 8 boundary 

elements. This indicates that the present analysis could be further 
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developed to provide a powerful analytical tool for free vibration 

analysis. 

Figure 5.2 al so shows the beam theory resul ts for modes 1. 2 and 4 

(the first three flexural modes). The increasing departure of the results 

from the beam theory is due almost entirely to the neglect in beam theory 

of shear distortio~ Approximate modifications of the beam theory results 

for a simply supported beam (Ref. Clough and Penzien. 1975) to account for 

this effect indicate frequency reductions of approximately the magnitude 

observed. 

(c) An Example of a Shear Wall 

In order to compare the results obtained from the proposed method with 

those from the Finite element method and Nardini's BEM. a shear wall with 

four square openings was analyzed for in-plane vibration. The boundary 

element and the finite element meshes (Ref. Nardini and Brebbia. 1982) are 

shown in Figure 5.4. The material parameters were E/p = 104 and 

" = 0.2. 

Table 5.3 shows free-vibration periOds for the first eight modes. The 

first mode is identically same as that obtained by FEM. The present 

results for 2nd. 3rd and 5th modes are also close to the FEM results. The 

results from the present analysis agree well with those reported by Nardini 

for 4th. 6th. 7th and 8th modes. However. they do not agree well for the 

rest of the modes. 

(d) An Example of an Arch with Sgyare Openings 

An arch in plane stress and fully fixed at the supports was analyzed 

(Figure 5.5) for in-plane vibration. Four different cases involving the 

full arch with or without openings and symmetric halves with or without 

openings were considered. The material parameters were E/ p = 107 and 
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" = 0.2 • 

Table 5.4 shows the natural frequencies of the full arch with and 

without o~nings. In general the natural frequencies are reduced due to 

the presence of openings which affects some modes more than others. 

Similar results for the symmetrical half of the arch are shown in Table 

5.S. In this latter case, of course, some of the nonsyrrmetric modes of the 

full arch are absent. Modes 1 and 6 of the full arch are identical to the 

first two modes of the ~etric half. 

V.8 CONCLUOIOO REMARKS: . 
A new method based on the we 11 known technique of so 1 v ing a 

nonhomogeneous differential equation by complementary function and 

particular integrals for the analysis of free vibration problems by 

boundary element is presented. The method has been compared with that of 

Nardini and Brebbia (1982) and found to yield different results for some of 

the higher modes of vibration. It has also been compared with MARC-HOST 

finite element analysis and was found to yield essentially similar results 

for a cantilever beam problem. vfuen the beam theory is corrected for the 

shear deformation, the analytical results tend to agree well with those of 

the present analysis. 

The present analysis can be easily extended to axi-syrnrnetric and 

three-dimensional problems involving inhomogeneity and anisotropy by 

utilizing a number of particular integrals already in use in boundary 

element analysis. 
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TABLE S.I: 

Number 
of 

Elarents 

3 
6 
9 

12 
IS 
18 

TUne Periods of Free Vibration of a Triangular Cantilever Plate 

Mode 1 Mode l Mode 3 Mode 4 
Nardini's New Nardini's New Nardini's New Nardini's New 
method method method method method method method method 

0.41S 0.432 0.216 0.207 0.174 0.138 0.089 0.081 
0.41S 0.430 0.223 0.212 0.200 0.180 0.097 0.09S 
0.416 0.430 0.22S 0.212 0.206 0.189 0.108 0.104 
0.416 0.430 0.226 0.212 0.210 0.191 0.113 0.109 
0.416 0.430 0.226 0.212 0.212 0.192 0.119 0.111 

0.430 0.212 0.192 0.112 



-..J 
w 

TABLE 5.2: Time Periods of Free Vibration of a Square Cantilever Plate 

Nurrber 
of 

Elenents 

4 
6 
8 

10 
12 
16 

Mode 1 Mode 2 Mode 3 Mode 4 
Nardini's New Nardini's New ~~rdini's New Nardini's New 
method method method method method method method method 

0.536 0.561 0.232 0.235 0.195 0.172 0.109 0.107 
0.545 0.568 0.234 0.237 0.214 0.179 0.118 0.116 
0.559 0.581 0.236 0.238 0.210 0.185 0.127 0.122 
0.562 0.581 0.236 0.238 0.209 0.187 0.129 0.123 
0.563 0.584 0.237 0.238 0.209 0.187 0.131 0.125 

0.585 0.238 0.187 O.12S 



TABLE S.3: Time Periods of Free Vibration of a Shear Wall 

~bdes 1 2 3 4 5 6 7 8 

FEM 3.029 0.885 0.824 0.526 0.409 0.342 0.316 0.283 
(SAPIV) 
--------------------------------------------------------------------------------
Nardini '5 3.022 0.875 0.822 0.531 0.394 0.337 0.310 0.276 
BEM 

New 
..... Hethod 3.029 0.878 0.823 0.533 0.400 0.337 0.311 0.276 
~ 



TABLE 5.4: Free vibration modes of full arch without and 
with openings (Hz) 

r-t>des Without openings Wi th openings 

1 87.8 78.9 
2 124.1 113.5 
3 177 .4 146.8 
4 230.9 212.4 
5 275.7 235.0 
6 380.7 265.5 
7 428.1 401.1 
8 506.1 537.1 
9 622.0 590.9 

10 648.0 595.2 

TABLE 5.5: Free vibration modes of the symmetric half of the arch 
without and with openings (Hz) 

r-bdes Without openings Wi th openings 

1 123.9 113.4 
2 378.9 264.4 
3 429.3 395.7 
4 649.4 590.5 
5 820.1 670.6 
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CHAPl'ER VI 

ADVANCED 'mREE-DIMENSIONAL Sl'EADY-STATE DYNAMIC ANALYSIS 
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VI.1 INl'RODUcrION 

In this chapter, an advanced implementation of the direct boundary 

element method applicable to the steady-state dynamic analysis of problems 

involving three-dimensional solids of arbitrary shape and connectivity is 

presented. Isopararnetric curvilinear surface elements are used for napping 

geometry and for approxinating variation of the field variables. In the 

present implementation. substructuring capability is incorporated for 

solving problems involving piecewise-homogeneous materials such as problems 

of layered media and soil-structure interaction. Also provided is a 

feature called built-in-synunetry; this allows one to solve the problems 

having geometric and loading symmetry by modelling only a part of the 

actual geometry. In this chapter, the discussion starts with the boundary 

element formulation for steady-state dynamics followed by techniques 

related to the numerical implementation. The assembly and solution 

algorithms for general three-dimensional problems are the same as those for 

two-dimensional problems (Ref. Sees. IV.4.G and IV.4.H>' and therefore they 

are not repeated in this chapter. Finally. a number of numerical examples 

are presented to demonstrate the accuracy and applicability of the present 

implementation. This dynamic analysis technique seems to provide an 

accurate and efficient tool for solving truly three-dimensional problems 

and particularly those relevant for problems of soil-structure interaction. 

where it has clear advantages over existing finite element solutions. 

VI.2 BOUNDARY INl'mRAL FORMULATION 

The boundary integral equatlon for three-dimensional problems of 

steady-state elastodynamics is the same as that of two-dimensional problems 

(eq. 4.13) and it can be expressed as: 
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Cij(~)~i(~IW) = f 
S 

- -
[G .. (~,~,W)t. (~,W) - F. 0 (~.~.w)u. (Alw)]dS(~) 

1J 1 1J 1 
(6.1) 

The above equation is identical to equation (4.13). except that here 

the field variables and the fundamental solution are functions of circular 

frequency w rather than that of the Laplace parameter s. This is 

possible because sand ware interchangeable (s = -iw). The 

fundamental solution Gij and Fij are listed in Appendix Al. It should be 

noted here that al though the functions G. 0 and F. 0 becomes identical to 
1J 1J 

their static counterpart as s tends to zero. it is important to evaluate 

this limit carefully because of the presence of s in the denominator. 

Once the boundary solution is obtained. the stresses at the boundary 

nodes can be calculated by combining the const1tutive equations. the 

directional derivatives of the displacement vector and the values of the 

field variables at the boundary nodes in an accurate matrix formulation 

<Ref. Sec. VI.3.G). Also the loads and moments can be obtained by 

numerically integrating the known tractions on each element. 

For displacements at interior txnnts. equation (6.1) can be used with 

appropriate 

obtained from 

C .. 
1J 

The functions 

Appendix A3. 

tensor (Ref. Sec. IV.3),: and the interior stresses can be 

(6.2) 

-a -a 
G. Ok and F 0 Ok 1J 1J in the above equation are listed in 

The consti tuti ve equations and boundary eondi tions are the same as 

described in Chapter IV <Ref. Sees. IV.1-IV.3). This boundary integral 

formulation presented above can also take account of viscous damping (Ref. 

IV.3). 
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IV.3 NUMERICAL IMPLEMENI'ATION: 

Since the basic governing equations for dynamic analysis in the 

transformed space (either in ttl or s space) are similar to the 

corresponding equations for the static analysis. the numerical 

implementation developed for the static case can be used to extract 

solution for the dynamic problem for one value of the Laplace transform 

parameter s or frequency parameter ttl. The current numerical 

implementation of the boundary integral equation for three-dimensional 

problems of steady-state dynamics has the following aspects and features. 

(A) Representation of Geometry and Field Variables 

The boundary integral equation (6.1) represents an exact formulation 

involving integrations over the surface of the domain. Therefore. if one 

does not make grossly simplified assumptions in the spatial variations of 

the boundary quantities. accurate solutions can be obtained. To this 

purpose. each surface is discretized in a number of elements with each 

element defined in terms of several geometric nodes. All surface-element 

types employed represent surface geometry using quadratic shape functions. 

Three sided elements. defined using six rather than eight geometric nodes. 

are used for mesh transition purposes. The terms quadrilateral and 

triangle are normally used to refer to the eight and six noded elements 

although the real geometry represented is. in general. a nonplanar surface 

patch in three dimensions (Ref. Fig. 6.1). Over each element the variation 

of field variables can be defined using either the linear or quadratic 

shape fUnctions. Linear and quadratic elements can share a common side 

which is then constrained to have linear displacement and traction 

variation. 

In addition to the element types mentioned above. elements which 

extend to infinity are provided. These elements are designed to allow 
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modeling of structures connected to the ground and automatically 

incorporate appropriate decay conditions. The characteristics of the 

various element types are sumnarized below (Ref. Appendix C2). 

Element t;yJ;e Geometry Nodes 

Linear Quadrilateral 
Linear Triangle 
Quadratic Quadrilateral 
Quadratic Triangle 
Quadratic Infinite 

8 
6 
8 
6 
8 

Field variable Nodes 

4 
3 
8 
6 
3 

The cartesian coordinates Xi of an arbitrary point P on a surface 

element are given in terms of the nodal coordinates x, as: 
1(l 

x' (p) = N (n.)X, 
1 (l 1(l 

(6.3) 

where i = 1.2.3 and (l = 1.2 ••••• A. with A the number of nodal points 

necessary to describe the element. Furthermore. N are the shape 
(l 

functions defir.ed in the local or intrinsic coordinate system ("'1''''2). The 

Jacobian matrix relating the transformation from the cartesian coordinate 

system (x.y.z) to the element's intrinsic coordinate system (11 1 .112) is 

J
1
, J' = (aN I all ' ) X, 

(l J 1(l 
(6.4) 

where j = 1.2 and the summation convention is again Unplied for repeated 

indices such as (l. 

The field variables are also represented ~ the same shape functions. 

Le. 

and 

t1' (x) = N (n)T, 
(l 1(l 

(6.S) 
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where U. and T. are nodal values of the displacements and tractions, 
III III 

respectively, in the transformed domain. 

Infinite elements, which are essential if problems involving the half

space are to be solved, can be constructed by modifying the eight-node 

quadrilateral as shown in Fig. 6.3. The intrinsic coordinate along the 

dimension of the quadrilateral that we want extended to infinity (say ~1) 

is modified as 

This way the original interval (-1,1) is napped into (-1,+""). It should be 

noted that only the three nodes on the side of the infinite element that is 

adjacent to a surface element belonging to the 'core' region contribute to 

the system equations. The original shape functions Nil for these three 

nodes are then modified by the ratio d = [(xCzi)(xCzi)/(YCzi)(Yi

Zi)]l/2 for the displacement kernel and d2 for the traction kernel where 

Xi are the cartesian coordinates of the integration points, Yi their 

projection on the common side with the core, and Z. 
1 

an arbitrary 

reference point. This type of stretching of a quadrilateral results in a 

Jacobian determinant equal to 4/(1-~1)2 that must be included in the 

kernel integrations. The infinite element thus obtained reproduces the 

correct spatial decay of the fundamental singular solutions as r -> "" • 

(B) Built-in §ymmetry and SUb-structuring Capabilities 

In obtaining the numerical solutions, the built-in symmetry cap;ibil ity 

allows one to solve the problems having geometric and loading symmetry by 

modeling only a part of the actual geometry. The major steps in this 

procedure are briefly explained as follows. If the geometry and the 

boundary condition are symmetric with respect to a plane (or a number of 

planes), then only that portion of the boundary which lies on the one side 
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of the plane (or planes) is modeled. The symmetry can be with respect to 

y-z plane (half-symmetry). y-z and x-z planes (quadrantal symmetry>. or y

z. x-z and x-y planes (octan symmetry). The effect of the unrnode1ed part 

of the boundary is included according to the following scheme: For all the 

field points. the contribution of the unmode1ed portion to the matrices of 

coefficients Fij and G .. 
1) 

are accounted for by reflecting the modeled 

surface elements with respect to the plane (or planes) of synmetry and then 

integrating over the reflected elements (with proper normals). For the 

source nodes on the plane (or planes) of symmetry the contributions are 

added up directly whereas for all other source nodes the correct Signs of 

the contributions are determined by the directions associated with the 

field variables with respect to the plane (or planes) of symmetry. By 

avoiding the calculation of identical quantities. this procedure shortens 

the time required to evaluate the matrices. In addition. it reduces the 

time required to solve the set of linear equations. because the system 

matrix will have fewer rows and co1t.nnns. 

The substructuring capability allows a structure to be modeled as an 

assembly of several generiC model ing regions (GMR). The GMRs. each of 

which must be a complete portion of the structure. are joined by enforcing 

appropriate compatibility conditions across common surface patches 

(elements). This feature can also be used to solve piecewise inhomogeneous 

problems because the GMRs can have different material properties. 

(C) twnerica1 Integration 

In view of the surface elements introduced in the previous section. 

Eq. (6.1). when integrated over the surface of the problem in question. assumes 

the following form: 
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Q 

Cij(l)ui(l) = 2 {f Gij(X(n)'l'S)Na(n)dS(A(n)T~a 
q=1 Sq 

- f Fij(X(n)'~'S)Na(n)dS(x(n»Uia} 
Sq 

(6.7) 

In the above equation. Sq is the surface of the qth element and Q is the 

total number of elements. The global system of boundary element equations 

at a given value of s is obtained by the usual nodal collocation scheme. 

i.e •• by allowing point £. to coincide sequentially with all the nodal 

~ints of the boundary. 

With the exception of strongly singular traction integrals. all 

surface integrals in the numerical implementation have been calculated 

numerically. Since this is the most time consuming portion of the 

analysis. it is essential to optimize this effort. Essentially two types 

of integral s. singular and nonsingu1ar. are invo1 veda The integral s are 

singular if the field ~int for the equations being constructed lies on the 

element being integrated. Otherwise. the integrals are nonsingu1ar 

although numerical evaluation is still difficult if the field ~int and the 

element being integrated are close together. 

In both the singular and nonsingu1ar cases, Gaussian integration is 

used. The basic technique is developed in Banerjee and Butterfield (1981) 

and was first applied in the three-dimensional boundary element method by 

Lachat and Watson (1976). In the nonsingu1ar case an approximate error 

estimate for the integral s was developed based on the work of Stroud and 

Secrest (1966). This allows the determination of element subdivisions and 

orders of Gaussian integration which will retain a consistent level of 

error throughout the structure. Numerical tests have shown that the use of 
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3x3 , 4x4, and 5x5 Gaussian rules provide the best combination of accuracy 

and efficiency. In the present implementation the 4x4 rule is used for 

nonsingular integration and error is controlled through element 

subdivision. Typical element subdivisions into three-node triangles and 

four node quadrilaterals are shown in Fig. 6.4. The distance R that 

controls the subdivision process is measured fram the field point to the 

point closest to the field point on the element being integrated. In 

general, higher values of s require lower integration tolerance leading 

to more element subdivision. If the field point is very close to the 

element being integrated, use of a uniform subdivision of the element can 

lead to excessive computing time. In order to improve efficiency while 

still retaining accuracy, a graded element subdivision is employed. Based 

on one-dimensional tests, it was found that the subelement divisions could 

be allowed to grow geometrically away from the origin of the element 

subdivision. NUmerical tests on a complex three-dimensional problem have 

shown that a mesh expansion factor as high as 4.0 can be employed without 

Significant degradation of accuracy. 

In the case of singular integration, which arises when the field point 

is on the element being integrated, the element is first divided into 

triangular sub-elements. The integration over each sub-element is carried 

out in a polar coordinate system with the origin at the field point. This 

coordinate transformation produces nonsingular behavior in all except one 

of the required integrals. Normal Gaussian rules can then be employed. 

The integral of the traction kernel times the isoparametric shape function 

which is 1.0 at the source point is still singular and cannot be 

numerically evaluated with reasonable efficiency and accuracy. Its 

calculation is carried out indirectly as discussed in Chapter IV, Section 

4.0. It has been found that subdivision in the circt.nnferential (angular) 
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direction is required to preserve accuracy in the singular integration. A 

rnaxllnum included angle of 15 degrees is used. Subdivision in the radial 

direction has not been found necessary. This process is illustrated in 

Fig. 6.5 for a quadrilateral element. 

The surface integrals required for calculation of displacement and 

stress at interior points are of the same type as those involved in the 

boundary problem with the exception that only nonsingular integrals are 

invol ved. In general, the integrals appearing in the surface integrals are 

continuously differentiable and solution accuracy can, therefore, be 

llnproved by use of increased integration order. 

(D) calculation of Stresses on the Boundaey for 3D Problems 

Once the boundary solution is obtained, the stress and strain at any 

FOint on the boundary can be calculated without any integration, by using 

the procedure outlined as follows. 

Let us assume that we are interested in finding stress and strain at a 

!=Oint P, which lies in a boundary element and has intrinsic coordinates 

b b 
("1'''2)· 

where: 

Recalling equations (6.S) • we can write 

A 
b b 

ui <"1 '''2) = 2 b b 
Na<"1'''2)uia 

a=l 

A 
b b 

t i <"1'''2) = l b b 
Na("1'''2)tia 

a=l 

A is the number of nodes in the element. 

N a is the shape functions. and 

uia and tia are the nodal values of ui and ti • 

In addition, we also have the following relationships: 
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where 

t. = a • . n. 
1 1J J 

u +u _ (k,l l,k) 
aij - cijkl 2 

u. = u .. X. 
1,11 1,J J.ll 

cijkl is a tensor containing elastic constants, and 

Xj ,l1 are the directional derivatives. 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

Equations (6.9), (6.10) and (6.11) can be combined to form a matrix 

equation: 

[S] {p} = {q} (6.13) 

where [S] is a 1Sx1S matrix which contains unit normals. a 3x3 unit 

matrix and material constants; {p} is the unknown vector of a .. and 
1J 

au./ a 1;. ; and {q} is a vector containing the tractions t
1
· and local 

1 J 

derivatives of the displacements at point P. 

Finally.the stress and strain at point P can be obtained by 

inverting the matrix of equation (6.13) and then multiplying the inverted 

matrix by the right-hand-side vector. For this purpose. the right hand 

side vector is obtained by using equations (6.8) and (6.12). 

VI.4 EXAMPLES OF APPLICATIONS 

A number of representative problems were solved in order to test the 

steady-state solution. In all cases. English units are used with foot (ft) 

for length. pound Ubf) for mass. and second (s) for time. 
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(a) Cantilever SUbjected to End Shear 

A uniform beam with a rectangular cross-section is completely fixed at 

one end and a uniformly distributed traction ~ = 1000 eiOT, with n = 314 

rls, is applied at the other end. Traction-free conditions hold along the 

sides. The dimensions of the beam are L = 10 , w = 1 , and d = 3. The 

material properties are as follows: modulus of elasticity E = 1.16 x 107 

and mass density p = 2.0. In order to reproduce the one-dimensional 

characteristics the Poisson's ratio is assumed to be equal to zero. This 

cantilevered beam is modelled by 18 quadrilateral surface elements 

. resulting in 56 nodes. In reference to Fig. 6.6, it is observed that the 

surface elements are arranged closer to the loaded end. This is so because 

the displacement function varies more sharply at the loaded end than at the 

fixed end. The same figure plots the absolute value of the vertical 

displacement uy along the length of the beam at a frequency II) equal to 

the forcing frequency n. The results are in very good agreement with the 

analytical solution for a flexural beam which was developed from Clough and 

Penzien (1975). 

(b) Cantilever SUbjected to Harmonic Transverse Load 

The same model discussed in (a) was subjected to a time harmonic patch 

load as shown in Fig. 6.7. The agreement between the three-dimensional 

calculation and beam theory (Clough and Penzien, 1975) was, once again, 

excellent. 

(c) Vertical Compliance of a Rigid Sgyare Footing 

A rigid square foundation of side length 2b = 2 is resting on the 

surface of a homogeneous halfspace under relaxed boundary conditions (i.e., 

there is no friction between soil and foundation). The halfspace has a 

shear modulus ~ = 1.0. ~ = 1/3 , and p = 1.0. The foundation is 
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subjected to a uniform harmonic vertical displacement Uz of amplitude 

equal to unity. The surface of the halfspace is traction free. The 

traction distribution under the foundation obtained by the BEM is 

integrated to give the total vertical load Pz • The foundation's 

normal ized compl iance in the vertical direction is obtained as Cvv = 

Ilbu IP • The two meshes shown in Fig. 6.8 are used for modelling the z z 
foundation as well as surface of the halfspace. Since the transformed 

domain BEM computer program can take advantage of symmetry, only 1/4 of the 

problem needs to be discretized. The coarse rresh uses 4 and 12 elements to 

model the foundation and the halfspace, respectively. Note that the 

outermost 4 elements are infinite elements. This discretization results in 

44 nodes. The finer mesh uses 6 and 12 elements for the same purpose. 

There are 2 infinite elements here and 65 nodes. 

This problem was originally solved by Wong and Luco (1976). They 

numerically integrated the vertical displacement at the surface of a 

homogeneous halfspace due to a unit point load over the foundation, which 

was discretized into small squares. This problem was recently revisited by 

Rizzo et al (1985) using a BEM approach. In their work (Rizzo et al), both 

frictionless and welded cases are considered and two approaches are used: 

The exact one employs the halfspace kernels (Lamb's solution) and the 

approximate one uses the fullspace kernels (Stoke's solution). In both 

cases, only the rigid foundation is discretized and these two approaches 

are practically indistinguishable except at the very low frequency range. 

All three solutions mentioned are plotted in Fig. 6.9, along with the 

vertical compl iance obtained by the present method using the fine mesh. 

The good agreement between the present results and that of Rizzo et al 

(1985) should be noticed. However, the major difference between Wong and 

Luco's results and the boundary element results is due to the fact that 
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quadratic shape functions are used for representation of the variation in 

the field variables over each element in the present work as well as that 

of Rizzo et al whereas Wong and Luco assumed that the unknown contact 

stresses are uniform within each element which is a crude approximation. 

Finally, the difference in results obtained by both coarse and fine meshes 

is contrasted in Table 6.1. 

VI.S CONCLUDING REMARKS 

An advanced algorithm based on the direct boundary element method for 

the steady-state dynamic analysis of structures behaving elastically or 

viscoelastically has been presented. The numerical implementation employed 

is one of the most general presently available and can be used in 

conjunction with substructuring to treat three-dimensional solids of 

complicated geometry and connectivity. The algorithm is stable and capable 

of producing very accurate results except perhaps at high frequencies in 

which case finer meshes are required for better accuracy. Nevertheless, 

the present method is a viable alternative to algorithms based on finite 

element methodology. Specifically for halfspace problems, the present 

method does not require discretization of the domain of the halfspace and 

the use of energy absorbing elements as is required by the finite element 

method. 

The present method can very easily be extended to sol ve time-harmonic 

wave scattering problems by simply adding the displacements due to the 

incident field on the right hand side of the final system equation. 
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Table 6.1: COmparison of vertical compliances obtained by using 
two different meshes 

Re{Cvv(ao} Im{Cvv(ao ) } 

wb ao 
=- ---- --------------------------

C2 Coarse Mesh Fine Mesh Coarse Mesh Fine ~.esh 

0.5 0.118 0.117 -0.057 -0.058 

1.0 0.064 0.069 -0.083 -0.081 

1.5 0.032 0.034 -0.076 -0.070 

2.0 0.021 0.018 -0.059 -0.052 

2.5 0.015 0.015 -0.052 -0.048 

3.0 0.010 0.012 -0.036 -0.037 

3.5 0.005 0.006 -0.035 -0.032 

4.0 0.004 0.004 -0.027 -0.027 
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CHAPl'ER VII 

TRANSIENT DYNAMIC ANALYSIS BY LAPLACE TRANSFORM 
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VII.1 INTRODUCTION 

In this chapter, an advanced Dmplernentation of the transformed domain 

boundary element formulation appl icable to transient dynamic problems 

involving two and three-dimensional solids of arbitrary shape and 

connectivity is presented. Using the correspondence principle (Lee, 1955), 

the transient dynamic problem is first solved in the Laplace transform 

space and then time danain solutions are obtained by numerical transform 

inversion. The transformed governing equations and the transformed 

boundary element formulation are presented in Chapter IV (Sec. 4). The 

materials pertaining to the fundamental Singular solutions and the 

numerical implementation of the boundary integral equation for one value of 

Laplace transform parameter are discussed in Chapter IV (Secs. 4-5) and 

Chapter VI (Secs. 2-4) for two and three-dimensional problems, 

respectively. This chapter starts with a discussion on the Laplace 

transfonned equations of elastodynamics followed by numerical inversion of 

Laplace transform. Numerical examples are finally presented an~through 

comparisons with available analytical and numerical results, the stability 

and high accuracy of this dynamic analysis technique are established. 

VII.2 IAPIACE TRANSFORMED EgJATIONS OF EI.AS'1'ODYNAMICS 

The governing differential equation of linear elastodynamics in 

Laplace transform domain can be written as: 

2 2 - 2- - 2-(c1 - c2 )u ... + c2 u· .. + b. - s u· + U· + sUo = 0 (7.1) 
1.lJ J ' II J J JO JO 

with the assumption of zero initial condition and absence of body 

force, the above equation reduces to: 
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2 2 - 2- r 
(C

l 
- C2 )u ... + C

2 
u ... - s u. = 0 

l, lJ J, 11 J 
(7.2) 

Since the boundary condition and the constitutive equations do not 

involve time derivatives, their Laplace transforms are simply: 

u. = q. (X,s) 
1 1 

- - -t. = (1 •• n.:, = p. (X,s) 
1 lJ J 1 

- 2 2- 2--
(1 •• = P [(C

l 
- 2C

2 
)~~ 6 .. + C

2 
(u .. + u .. )] 

lJm,m lJ l,) ),l 
(7.3) 

Finally, the boundary integral equation in Laplace transform domain 

has the form 

= J - - -
[Gij(x,~,s)ti(X'S) - Fij(x,~,s)ui(X'S)] dS(X) 

S (7.4) 

The main advantage of casting the equations in the Laplace transform 

domain is that the equations of motion become elliptic partial differential 

equations, and as such are more amenable to numerical solutions than their 

hyperbolic counterparts in the time domain. The numerical solution of the 

transient elastodynamic problem in the Laplace-transform domain essentially 

consists of a series of solutions to a static-like problem for a number of 

discrete values of the transformed parameter s. The final solution is, 

of course, then obtained by a numerical inversion of the transformed domain 

solutions to the time domain. 

VII.3 DIRECT IAPlACE TRANSFORM OF BOUNDARY CONDITIONS 

In order to sol ve equation (7.4), the boundary conditions have to be 

transformed to the Laplace domain. As the input boundary conditions are 
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piecewise linear in time. a numerical scheme is used to transform the 

boundary conditions from time domain to Laplace domain. The formula used 

for thlS purpose is exact for the forcing functions (Le. boundary 

conditions in our case) which are piecewise linear in time. and is given by 

N-1 

f(X.s) = ~ ~~T (AF(e 
-sT -sT -sT-sT 

n _ e n+1) + S~T(Fne n - F e n+1)} 
n+l 

n=1 s 

where: 

Fn = f(x. Tn) = value of f at time Tn' and 

AF = Fn+1 - Fn 

(7.S) 

The above formula is tested for a number of trial functions (such as 

coswt. e-T• 10gT. etc.) for N = 20 and N = so. The average error for 

N = so is O.S percent and that for N = 20 is 1.2 percent. Therefore. 

(7.S) can also be used for taking Laplace transform of any arbitrary 

loading function. 

VII.4 NUMERICAL INVERSION OF TRANSFORM OOMAIN SOLUTION 

After numerically integrating equation (7.4) over the surface and 

imposing known boundary conditions. the final system equations can be 

assenbled to the form 

[Al {X} = [Bl {Y} (7.6) 

All expressions in the above equation are dependent on the transform 

parameter s. Therefore. for a transient dynamic problem. the above 

equation is formed and solved for {Xl for a spectrum of values of the 

transform parameter. 
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Finally. all that remains to be done is to invert the solutions back 

to the real time domain. In general. transformation from the Laplace 

transform domain back to the time domain by analytical methods is 

impossible except for stmple functions. Therefore. numerical evaluation of 

the inverse Laplace transform is ~rative. The inverse Laplace transform 

can be defined as 

i = ./-1 (7.7) 

where y ( ) 0) is arbitrary but greater than the real part of all the 

singularities of f(x.s) and s is a complex number with Re(s) 2.., ) o. 

The various methods available for numerical inverse Laplace 

transformation may be grouped (Ref. Narayanan. 1982) as follows: (a) 

Interpolation-collocation methods. (b) methods based on expansion of 

orthogonal functions. and (c) methods based on numerical Fourier 

transforms. 

In this work, Durbin's (1974) method is used because of its high 

accuracy (Ref. r~anolis et aL 1981; and Ahmad et aL 1985). Durbin's 

method is classified under group (c) and combines both the Fourier sine and 

the cosine transforms to arrive at the inversion formula: 

where 

f(X.T.) 
J 

. AT N-l 
eJY [- \: = 2<---T.---) - 0.5 Re£f(x • .,)} + Re £ L 

N n=o 

TN = total time interval of interest. 
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L 
A(n) = 2 Re{f(x..r + Un + 1N) 27t) } and 

TN 
1=0 

L 
B(n) = 2 Im{f(x..r + Un + 1N) 27t)} 

TN 
1=0 (7.9) 

Thus. the numerical values of f(x..T) are computed at N equally 

spaced time points Tj = jL1T • j = 0.1.2 •••.• N-l. For best results. it 

is suggested that the product LxN must range from 50 to 5000 and rTN 

from 5 to 10. The computations invo1 ved in equation (7.8) are performed 

by employing the Fast Fourier algorithm of Cooley and Tukey (1965). In 

case of the Fourier transform (s = -iw). the above algorithm is equivalent 

to a Fourier synthesis. 

The above algorithm was tested for a number of trial functions (Ref. 

Ahmad. 1983). For L = 1. N = 200. and rTN = 6 the numerical inversion 

results were highly accurate. Using N = 20 and neglecting the results for 

very early time steps (up to t = 0.05T) and for late time (after t = 0.7 5T) 

introduces a maximum error of only 2-3 percent and an average error of 0.6 

percent. Since use of N = 20 results in very substantial savings in 

computation time. this option is employed for three-dimensional problems 

and the resu1 ts are plotted up to 15 time steps (i.e. T = 0.7 5TN). 

However. for two-dimensional problems both N = 20 and N = 50 are used. 

VII.5 EXAMPLES OF APPLICATIONS 

In order to demonstrate the range and accuracy of the transformed 

domain solution with the numerical inverse transformation. a series of 

examples are presented ranging from a simply supported beam to a cavity in 

infinite space. The accuracy of the technique developed is canpared to the 

available analytical and numerical results. In all cases, English units 
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are used with foot (ft) for length, pound <1bf.) for force, and second (s) 

for time, except otherwise specified. 

(A) Two-dimensional Applications 

(a) Simply-supported beam subjected to step loading: 

A simply supported beam with a rectangular cross-section is subjected 

to a uniformly distributed step pressure as shown in figure 7.1. The 

dimensions of the beam are, length L = 30, depth d = 2, and width w = 1-

The material properties are, modulus of elasticity E = 3 x 107, Poisson's 

ratio ,,= 0.3, and mass density p = 0.733 x 10-3 • The purpose of this 

analysis is to compare the solution predicted by the present method with 

that reported by Bathe et al (1974) by using NOOSAP. The Boundary element 

mesh as well as the finite element mesh are also shown in figure 7.1. 

Figure 7.2 shows the resJ;X>nse <i.e. deflection at midspan) calculated 

using BEl-I and that from NONSAP. The time step used in the finite element 

solution to obtain the same results from the Wilson 9 and the Newmark 

integration schemes was !J.T = 0.5 x 10-4 sec; whereas, the time step used 

in the present analysis is !J.T = 0.5 x 10-3 sec. In spite of the larger 

time step, the present analysis produces results identical to that reported 

in NONSAP. This help confirm the high accuracy and stability of the rrethod 

presented in this chapter. 

(b) Half-space under prescribed tjme-dependent stress distribution: 

In this application, the results obtained by the present transfor.med 

domain. transient, dynamic formulation are compared against the solutions 

from finite difference by Tseng et al (1975) and those from time-domain 

Boundary elements by r1ansur and Brebbia (1985). 

The problem to be analyzed is depicted in figure 7.3(a). The half

space was initially at rest and then a part of its surface is disturbed by 
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a vertical pressure which is continuous in roth time and space. Tseng used 

a transmitting boundary along with a generalized lumped parameter model to 

analyze this problem. His finite difference grid is shown in figure 

7.4(a). The boundary element discretization is shown in figure 7.4(b). 

The material properties of the half-space are, modulus of elasticity 

E = 200 ksL Poisson's ratio \) = 0.15 and mass density 

p = 1.9534 x 10-41b-sec2/in4• For this problem, the time increments used 

by Tseng and Mansur and Brebbia was AT = 1 msec and AT = 3.65 rnsec , 

respectively whereas, in the present analysis, a much larger time 

increment, AT = 6 msec , is used. 

The time history of the vertical displacements plotted in figures 

7.3 (b), 7.5, 7.6 and 7.7 are in reasonably good agreement with the previous 

results, even though a larger time-increment is used in the present 

analysis. The major difference in the results are in the displacements of 

point G(150,-10). In Tseng's work, this point is located on the 

transmitting boundary hence the finite-difference displacements at this 

point are not accurate. Similarly, in the case of boundary element 

analysis by Mansur, this point is located just belcw a boundary node which 

is a very difficult point to calculate interior displacements In the 

present analysis, none of the above mentioned problem is present and thus 

the displacements obtained in the present work is more accurate. The 

difference between the displacements, at point F(80,-60) obtained by 

Mansur and Brebbia and present analysis is probably caused by the error due 

to numerical integrations. The present analysis uses a more sophisticated 

integration scheme than that used by Mansur and Brebbia and hence the 

results obtained by the present analysis should be more accurate. 

The time history of stresses at points A(45,-75), B(75,-75) and 

C(5,75) are plotted in figures 7.8, 7.9 and 7.10, respectively. It can be 
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seen that the results from the present analysis are in very good agreement 

with the results reported by Tseng during earler times. and are in good 

agreement with those reported by r1ansur and Brebbia during later times. 

The difference at short times is due to an approximation used by Mansur and 

Brebbia in the calculation of interior stresses. i.e.. the stress at a 

interior point is obtained by calculating the stresses on a triangular cell 

with the specified point as its centroid. whereas. the difference at later 

times is caused by errors generated at the transmitting boundaries used by 

Tseng. Finally. it should be noted that the results from the present 

analysis are in reasonably good agreement with the finite difference and 

the time-domain. boundary element solutions. 

(c) Semi-infinite beam subjected to a suddenly-applied 
bending moment: 

A semi-infinite beam simply supported along its edge is subjected to a 

suddenly applied bending moment M = MoH(T-Q). as shown in figure 7.11. 

The beam is considered to be under a plane-stress condition and the Poisson 

ratio is taken as v = 1/3 • 

A finite element analysis of this problem was carried out by Fu 

(1970). and a boundary element analysis was carried out by Mansur and 

Brebbia (1985). Boley and Chao (1958) obtained the results for the same 

problem using beam theory. Transverse displacements along the axes of the 

beam obtained by the above researchers and the present method are shown in 

figure 7.12. This displacements plotted in figure 7.12 refer to T = 5r/co 

where r is the radius of gyration of the beam cross section and Co is 

the one-dimensional wave propagation speed. 

In the present analysis two types of boundary conditions are used. In 

the first case. the beam is fixed from transverse movement by incorporating 

zero transverse displacement at the midpoint of the finite end of the beam, 
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and in the second case, zero transverse displacements are incorporated for 

all the nodes along the finite end of the beam. The displacements obtained 

by incorporating the first boundary-condltion case are in good agreement 

with finite element results whereas the displacements obtained by using the 

second boundary-condition case are in good agreement with the beam theory 

and Mansur's solutions. Therefore, the difference in the results of 

Mansur and FU are essentially due to end boundary conditions. 

(B) Three-dimensional Applications 

(a) cantilever Beam subjected to time-harmonic axial tension: 

A uniform beam with a rectangular cross-section has a modulus of 

elasticity E = 1.16 x 107 , a Poisson's ratio " = 0.0 , and a mass 

density p = 2.0. It is fixed at one end and a uniformly distributed 

axial tension p = 1000 sin!lT , 0 = 0.628 rls , is applied at the free end. 

Traction-free conditions hold along the sides. The dimensions of the beam 

are length L = 4 , depth d = 2 , and width w = 1. The beam is modelled 

by six quadrilateral elements resulting in 20 nodes, as shown in Fig. 7.13. 

The same figure plots the axial displacement at the free end as a function 

of time along with the analytiC solution developed from Clough and Penzien 

(1975). Agreement is very good considering that only 20 points were used 

in the Laplace transform domain and that the sinusoidal load was 

represented by straight line segments for the purpose of the direct Laplace 

transformation, Eq. (7.5). 

(b) Spherical cavity in infinite space: 

A spherical cavity is embedded in an infinitely extending medium with 

E = 8.993x106, ,,= 0.25 , and p = 2.Sx10-4• The radius of the cavity is 

a = 212 and its surface is discretized into 3 triangular elements per 

octant for a total of SO nodes, as shown in figure (7.14). The 

characteristic times required for the pressure and shear waves to travel a 
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cavity radius are 0.00102s and 0.00177s. respectively. Two cases are 

considered: 

(i) Spherical cavity under sudden radial pressure: A radial pressure 

p = 1000 is suddenly applied and maintained at the cavity surface. Figure 

7.15 shows the radial displacement history obtained by using the inverse 

Laplace transform algorithm with only 20 data points. The response is 

obtained for two different time steps. AT equal to 0.0005s and 0.00035s • 

Concurrently plotted is the exact solution (Ref. Tirnoshenko. 1970). In 

general. the numerical results are in good agreement with the analytical 

solution. These is some oscillation in the Laplace transform solution 

towards the end of the total time so that about 851\ of the time spectrum 

obtained is actually plotted. 

(ii) Spherical cavity engulfed by a pressure wave: A propagating 

plane pressure wave whose front is perpendicular to the Z-axis first 

impinges on the pole with coordinates (0.0.212). The resulting non-zero 

incident stresses are O'z~i) = -1000 H(T-To) • and O'x~i) = O'rii) = 

("/(1-"»0' (i). where H is the Heaviside function and To the time zz 

required for the wave to reach the station in question. This wave 

propagation type of problem is solved by superposition (Ref. Eringen. 

1975). A three-quadrilaterals-per-octant mesh resulting in 74 nodes (Ref • 
. 

figure 7.14) is used here in conjunction with the numerical inverse 

transformation utilizing 20 data points. Figure 7.16 shows the hoop 

* * stresses 0'00 and 0'00 normalized by the magnitude of the incident stress 

O'z~i) versus the non-dimensional time 't* = aT/c1 • The plots are for 

three locations on the surface of the cavity: the two poles (0 = O.n) and 

the equator (0 = n/2). Concurrently plotted are the analytic results 

(Ref. Pao and r.low. 1973). Good agreement is observed between the two 

solutions. 
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VII.6 CONCLUOOO REMARKS 

An advanced algorithm based on the transformed domain boundary element 

formulation for transient dynamic analysis has been presented. The 

numerical implementation employed is one of the most general currently 

available and can be used in conjunction with substructuring to treat two 

and three-dimensional solids of complicated geometry and connectivity. 

Interior. exterior and halfspace problems can all be solved by the present 

algorithm. The current implementation is also capable of handling sliding 

interfaces in the soil-structure interaction problems. Thus. the algorithm 

presented is a viable alternative to that based on finite element 

methodology. 
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rnAPl'EB VIII 

TIME OOMAIN TRANSIENl' DYNAMIC ANALYSIS 
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VII!. 1 :rnrnooocrION 

The work described in this chapter is based on the numerical 

implementation of the direct boundary element method for time-domain. 

transient analysis of three-dimensional solids in a most general and 

complete manner. The present formulation employs the space and time 

dependent fundamental solution (Stoke's solution) and the Graffi's dynamic 

reciprocal theorem to formulate the boundary integral equations in the time 

domain. A time-stepping scheme is then used to solve the boundary-initial 

value problem by marching forward in time. Interpolation functions in 

space and time are used to approximate the field quantities. and a 

combination of analytical (time-integration) and numerical integration is 

then carried out to form a system of linear equatlOns. At the end of each 

time step. these equations are solved to obtain the unknown field 

quantities at that time. 

In the following sections. a description of the proposed methodology 

is presented in detail. The materials related to the representation of 

geometry. spatial variation of field quantities. numerical integration and 

solution of equations at each time step are simllar to those already 

described in Chapter VI for one value of transform parameter s except for 

the fact that. in the present case. all the quantities are real. The 

matrix equation solver used for the present case is a real-variable version 

of the out of core complex solver described in Chapter IV. Sec. 4.G. The 

built-in symnetry and substructuring capabilities described in Sec. VI.3.B 

are also included in this implementation. A number of numerical examples 

are finally presented to demonstrate the stability and accuracy of this 

dynamic analysis technique. 
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VIII.2 TAANSIENl' BOUNDARY INl'EGRAL FORMULATION 

The direct boundary integral formulation for a general, transient, 

elastodynamic problem can be constructed by combining the fundamental 

point-force solution of the governing equations (4.1) (Stoke's solution) 

with Graffi's dynamic reciprocal theorem. Details of this construction can 

be found in Banerjee and Butterfield (1981). For zero initial conditions 

and zero body forces, the boundary integral formulation for transient 

elastodynamics reduces to: 

where: 

Cij(S)Ui(S,T) = S [Gij(K'S,T)*ti(K,T) 
S 

T 
G· ·*t· = S G·· (K,T;s,·dt. (K,'t)d't 

1J 1 1J 1 
o 

T 
Fij*Ui = f Fij(K,T;~,'t)ui(K,'t)d't 

o 

(8.1) 

(8.2) 

are Riemann convolution integrals and ~ and X are the space positions of 

the receiver (field point) and the source (source point). The fundamental 

solutions Gij and Fij are the displacements and tractions at a point X 

and at a time T due to a unit force vector acting at a point ~ at a 

time 't. These functions are listed in a compact form in Appendix A4. 

Fquation (8.1) represents an exact formulation involving integration 

over the surface as well as the time history. It should also be noted that 

this is an implicit time-domain formulation because the response at time T 

is calculated by taking into account the history of surface tractions and 

displacements up to and including the time T. Furthermore, equation 

(8.1) is val id for both regular and unbounded domains. 
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Once the boundary solution is obtained, the stresses at the boundary 

nodes can be calculated without any integration by using the scheme 

described in Sec. VI.3.D. For calculating displacements at interior FOints 

equation (S.l) can be used with c .. = 5 .. and the interior stresses can 
1J 1J 

be obtained from 

ajk(s,T) = S [G~jk(X,s,T).ti(X,T) - F~jk(X,s,T).ui(X,T)ldS(X) 
S (S.3 ) 

The functions G~'k and F~'k of the above equation are listed in 
1J 1J 

Appendix AS. 

The constitutive equation and the boundary and initial conditions are 

described in Chapter IV <Ref. Sees. IV.l and IV.2). 

VIII.3 TIME STE?PThN SCHEME 

In order to obtain the transient response at a time TN' the time 

axis is discretized into N equal time intervals, i.e. 

N 

~ = 2 naT (S.4) 

n=l 

where AT is the time step. 

Utilizing equations (S.4) and (S.2), equation (S.l) can be written as: 

S [G. ·t· - F. ·u· ldSd't 
1J 1 1J 1 

':N-l 
= f f [G .. t. - F .. u. ldSd't 

1J 1 1J 1 
(S. S) 

't=O S 
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where the integral on the right hand side is the contribution due to past 

dynamic history. 

It is of interest that equation (8.S) like equation (8.1) still 

remains an exact formulation of the problem since no approximation has yet 

been introduced. However, in order to solve equation (8.S), one has to 

approximate the time variation of the field quantities in addition to the 

usual approximation of spatial variation. For this pJrpose two types of 

interpolation functions are used which are described with the resulting 

time-stepping algorithms as follows. 

(A) Constant Time Interpolation 

In this case, both displacements and tractions are assumed to remain 

constant during a time step, i.e., 

N 

ui (X,'d = l U~(X)0n('d and 

n=l 

N 

ti (X,d = l t~(X)0n('d 
n=l 

where 

0n ('t') = 1 for (n-l)AT i 't i naT • and 

= 0 otherwise; and 

(8.6) 

U~(x) and t~(x) represents the spatial variation of ui and ti • 

respectively, at time Tn' 

For illustrative pJrp:>ses, first consider the form of equation (8.S) 

for the first time step; Le. 

Tl 
cijUi (l,T1 ) - J J [G .. t. - F. ·u. ldSch 

1J 1 1J 1 
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The time integration in (8.7) is done analytically (Ref. Appendix 01) and 

the surface integration is performed in the usual manner (i.e. 

numerically). After the integrations and the usual assembly process, the 

resul ting system of algebraic equations is of the form: 

(8.8) 

where A and B are coefficient matrices, Y and X are the known and 

unknown components of the boundary tractions and displacements 

resr:ectively, and the sur:erscript pertains to the time step. 

i.e. ; 

Now consider the boundary integral equation for the second time step, 

c· ·u· (s.,T2) 
1J 1 

[G .. t. - F .. u.] dSd"t' 
1J 1 1J 1 

J [G .. t· - F. ·u· ldSd"t' 
1J 1 1J 1 

(8.9) 

If the time interval (T2-T1) is same as (T1-To) the resulting 

coefficient matrices of the left hand sides of equations (8.7) and (8.9) 

become identical. This is so because the time translation properties of 

the fundamental solutions G.. and F.. (Ref. figure 8.1), contain time 
1J 1J 

functions with arguments (T-~) and therefore the convoluted integral 

corresponding to the interval T1 ~ "t' ~ T2 with T = T2 is identical to 

that of the interval T < "t' < T1 with T = T1 . 0- -

The right hand side of equation (8.9) is evaluated at time T = T2 

with the time integration over the interval To to T1 and thus provides 

the effects of the dynamic history of the first time interval on the 

108 



current time node (i.e. T2). Now, the resulting system equation for this 

time node (T2) is of the form: 

( 8.10) 

where superscripts on X and Y pertains to the time nodes and superscripts 

on A and B denote the time step in which they are calculated. 

Using equations (8.8) and (8.10)' equation (8.5) can be written in an 

assembled form as: 

N 
[Al] {XN} = [El] {yN} _ ~ [[An]{XN- n+l } _ [Bn]{yN-n+l}} 

n=2 ( S.lla) 

or [Al]{XN} = [El] {yN} + {RN} (8.llb) 

where RN is the effect of the past dynamic history on the current time 

node. 

The above equation can be solved to find the unknown xN at time TN" 

It may appear at first glance that a prodigious coefficient calculations 

are involved. P.owever. a closer examination will reveal that: 

(i) If the time step size is constant. the Al and Bl matrices do 

not change from time step to time step. 

(ii) For each time step. a new RN needs to be formed. This 

involves the evaluation of a new set of coefficients An and Bn involving 

the effects of the dynamic history of the first time interval on the 

current time node. Eventually. however. this contribution to RN reduces 

to zero and from that point onwards no new coefficients need to be 

evaluated. 
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In the present implementation, the representative values of the 

displacements and tractions during a time stepping interval is obtained by 

averaging the values of these quantities at two time nodes of that 

interval. 

(B) Linear Time Interpolation 

In this case, both displacements and tractions are assumed to vary 

linearly during a time step, i.e. 

N 

u. (x.,·d 2 - n-1 - n 
= [M1U i (x.) + M2U i (x.) 1 

1 

n=1 

N 

ti (x.,·d 2 [M1 tr
1 (x.) 

- n 
= + M2ti (x) 1 (8.12) 

n=1 

-
where M1 and M2 are the time functions, and are of the form: 

(8.13) 

Again for illustration proposes, consider the boundary integral equation 

for the first time step, i.e. 

[G. ·t. - F. ·u· ldSd't' = 0 
l) 1 l) 1 

( 8.14) 

The time integration in equation (8.14) by utilizing (8.12) is done 

analytically (Ref. Appendix D2). After the usual numerical integration and 
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assembly process. the resulting system equation is of the form: 

(8.15a) 

where: 

A and B are the matrices related to the unknown and known field 

quantities. respectively; 

X and Yare the vectors of unknown and known field quantities. 

respectively: 

for X and Y superscript denotes the time: 

for A and B supercript denotes the time step at which they are 

calculated. and the subscript denotes the local time nodes (1 or 

2) during that time-stepping interval. 

Since all the unknowns at time T = 0 are assumed to be zero. 

equation (8.1Sa) reduces to 

(S.15b) 

For second time step. the assembled system equation has the form 

(S.16a) 

Similar to the constant time variation scheme. only the matrices on the 

right hand side of equation (S.16a) need to be evaluated. However. one 

needs to integrate and assemble four matrices at each time step as compared 

to two in the case of constant time variation. This can be done with only 

a small increase in computational time by integrating all the kernels 

together and then assembling all the matrices together. Equation (S.16a) 

can be rearranged such that: 
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(S.16b) 

In the above equation, all the quantities on the right hand side are known. 

Therefore the unknown vector x2 at time T2 can be obtained by solving 

the above equation. 

Thus, for the present case, the boundary integral equation (S.S) can 

be written in a discretized form as: 

N 

[~] £XN} - [B~] {YN} = - 2 [[~+~-1] £XN- n+1} 

n=2 

(S.17) 

or 

(S.lS) 

The discussion in the previous section regarding the causal properties 

of the fundamental solution holds true for the present case also. 

It is of interest to note that, if time interpolation functions M1 

and M2 are replaced by I11 = M2 = 0.5 0n (.r) , the time stepping scheme 

for linear variation can be used for the case of constant variation with 

averaging between the local time nodes. 

VIII.4 SOME ASPE.'Cl'S OF NUMERICAL IMPLEMENrATION 

The numerical implementation of the boundary integral equation for 

time-domain, transient elastodynamics is essentially similar to that 

described in Chapter VI for steady-state elastodynamics, except for the 

following: 

(1) All the quantities involved in the time domain analysis are reaL 

instead of complex as in the case of steady-state dynamics. 

112 



(ii) There is a ftmdamental difference between static or steady-state 

dynamic analysis and time-domain transient analysis when it carnes to the 

numerical integration schemes outl ined in Chapter VI. In the static or the 

steady-state case, the integrands in all of the nonsingular surface 

integrals are infinitely differentiable and solution accuracy can, 

therefore, always be improved by the use of increased integration order. 

In the transient case, however, the point load solutions are only 

continuous. Physically this corresponds to the fact that the disturbance 

at some later time due to an impulse applied to a spatial location at a . 
given time (past) is only present in a finite portion of the space (Ref. 

figure 8.19). This means that the kernel function may be nonzero over only 

part of a given surface element. While the integrand is infinitely 

differentiable within both the zero and nonzero regions considered 

separately, its overall continuity over the entire element is only Co. 
I 

The use of higher order quadrature rules is, therefore, of little use in 

improving accuracy. Based on these observations, a revised integration 

strategy was adopted for the transient case. All surface elements are 

subdivided into a relatively large number of subelements and relatively 

low-order (usually 2nd or 3rd) quadrature rules together with the usual 

distortion in mapping (so that the kernel shape functions and Jacobian 

products remain well behaved) are used over each subelenent. This has led 

to much ~roved accuracy in the transient analysis. 

(iii) In the case of singular integration, the subelements are 

subdivided in the radial direction also. This subdivision has been found 

to increase both the accuracy and the stabil ity in the time domain 

approach. 

(iv) In time domain analysis, the fundamental solution as well as the 

field variables are functions of real time T and therefore the system 
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equation at each step corresponds to a time T rather than to a 

transformed parameter s as in the case of Laplace domain analysis (Ref. 

Chapter VII>. 

(v) All the matrices related to the past convolution are stored on 

sequential tapes. and at each time increment they are used along with the 

boundary excitation history (of tractions and displacements) to calculate 

the effect of the past dynamic history on the current time node. 

(vi) The natrix Bl (Ref. eq. 8.11) is stored on a sequential tape arid 

at each time increment it is used to calculate the contribution to the 

right hand side due to the known field quantities at the current time. 

(vii) During the solution process at the first time increment. the 

decomposed form of the system matrix A1 (Ref. eq. 8.11) is stored on a 

direct-access file for later use. After that. at each time step. all of 

the known tractions and displacements are multiplied by appropriate 

coefficient natrices to form a new right-hand-side vector. The decomposed 

form of the system natrix is then used with the new right hand side vector 

to calculate the unknown displacements and tractlons at the current tUne. 

This process of repeated solution by using the decomposed form of the 

system natrix is highly efficient and thus results in considerable saving 

in solution time. 

VIII. 5 NUMERICAL ACCURACY. STJ\BILITX AND CONVERGENCE OF sowrION 

In order to investigate the accuracy. stability and convergence of the 

proposed numerical technique. the problem of the radial expansion of a 

spherical cavity in an infinitely extending medium. subjected to suddenly 

applied and naintained internal pressure [p(T) = 1000] was studied. The 

naterial properties were as follows: E = 8.993x106 psf. v = 0.25 • and p 

= 2.5X10-9 Ib-sec2/ft4. The radius of the cavity was taken as R = 212 ft 
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and three different meshes shown in figure 7.11 were used to discretize the 

cavity surface. Using buil t-in symmetry capabil ities, this problem was 

modeled by one octant only. The first mesh has one six-noded triangular 

element, the second has three triangular elements (total of 10 nodes), and 

the third has three eight-noded quadrilateral elenents (total of 16 nodes). 

In figures 8.2-8.4 the radial displacement ur (r = R, T) normal ized 

by the static value is plotted against time for a total of nine different 

time steps. Concurrently plotted is the exact solution (Ref. Timoshenko, 

1970). These results conclusively demonstrated the unconditional 

stability of the BEM formulation. The accuracy is highest when the time 

step is between 1/3 to 3/4 of the characteristic time R/c
1

• In all 

cases the results approach the static response without exhibiting any 

supurious oscillations. 

The effect of the surface discretization is demonstrated in figure 

8.5, where the time variation of ur (R,T) is plotted for all three meshes 

for the same time step ~T = 0.00035 s. It is observed that the errors 

in the dynamic response are consistent with the average error committed in 

the static response which is 12% for the first mesh, 3% for the second 

mesh and 1.5% for the third mesh. Thus, the numerical technique presented 

here converges to the actual results with finer discretization of the 

surface of the boundary. 

VIII. 6 EXAMPLES OF APPLICATIONS 

A number of representative problems are chosen to test the accuracy 

and the stability of the time-stepping solution. In all cases, English 

units are used with foot (ft) for length, pound (lbf) for force, and 

second (s) for time. 
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(a) Bar SUbjected to a Transient End Load. 

(i) Sgyare cross-section: A bar with square cross-section is held 

along its sides by lubricated rollers and is fixed at one end. The free 

end is subjected to a suddenly applied and maintained uniform compression 

t z = 1000. The dimensions of the bar are L = 8.0 and b = 2.0. In view 

of the material properties, the characteristic time required for the 

compressive wave to reach the fixed end is 0.03578 sec. Figure 8.6 shows 

the discretization and the numerical results for the normal stress a • zz 
in which the results from the time domain algorithm for two different time 

steps ~T are compared with the exact analytical solution for one

dimensional stress wave propagation (Ref. Timoshenko, 1970). Although the 

numerical results are in good agreement with the analytical solution, it is 

clearly very difficult to reproduce the sharp jump in the stress as the 

disturbance reaches the point initially and when the reflected stress wave 

returns to the same location. This difficulty has been observed elsewhere 

as well (Ref. Belytschko et aL 1976). 

The axial displacement history at the free end is shown in figure 8.7. 

The displacements are normalized by static displacements and the time is 

normalized w.r.t the characteristic time required for the compressive wave 

to reach the fixed end. It can be seen that the numerical results are in 

good agreement with the analytical solution. The differences are mainly 

due to the three-dimensional nature of the simulated problem. 

(ii) Circular-cross-section: In order to investigate the effects of 

the cross-section on the numerical results, a bar with cirCUlar cross-

section having the same material properties and boundary conditions as 

described in the last example was analyzed. The boundary element mesh for 

this problem is shown in figure 8.8. The bar has a length L = 5 and 

diamater d = 1. Thus, the characteristic time required for the 
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compressive wave to reach the fixed end is 0.02236 sec. The time step used 

in this example is A.T = 0.004475 sec. 

Figure 8.9 shows the numerical results for the normal stress C1 zz at 

the midspan of the bar against a one-dnnensional analytical solution. As 

mentioned in the last example. the sharp jumps in stress are diffused in 

the numerical results. However. by using more elements and smaller time 

steps. the rumerical results in the vicinity of the jumps will agree roore 

closely with the analytical solution. 

The time history of the normalized axial displacements at the free-end 

is plotted in figure 8.10 against the one-dimensional analytical solution. 

The results are in good agreement. except for the peak displacements. The 

numerical peak values are less than that of the analytical solution and 

this results in an increase in the difference between the two solutions at 

later times. The difference. once again. is mainly due to the three

dimensional nature of the problem under consideratio~ 

(b) Spherical Cavity. 

A spherical cavity is embedded in an infinitely extending medium with 

E = 8.993x106• ,,= 0.25 • and p = 2.5x10-4• The radius of the cavity R = 

212 and three different meshes for its surface discretization are shown in 

figure 7.11. Using the built in SYIml1etry capabilities. this problem is 

modeled by one octant only. The characteristic times required for the 

pressure and shear waves to travel a cavity radius are 0.00102s and 

0.00177s • respectively. Four cases are considered: 

(i) Spherical cavity under sudden radial expansion: A radial 

pressure p = 1000 is suddenly applied and maintained at the cavity 

surface. Figure 8.11 shows the time variation of deviatoric stress at the 
. 

cavity surface obtained by the time domain algorithm. Concurrently plotted 

is the result reported by Hopkins (1960) based on the work of Hunter 
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(1954). In general. the numerical results are in good agreement with the 

analytical solution. The transient. time-dornain solution remains stable 

and reaches the expected static solution at larger times. It can be ssen 

that the maximum deviatoric stress for the transient case is 1.77 times the 

applied pressure whereas for static case it is 1.54 times the applied 

pressure. 

(ii) Spherical cavity subjected to a rectangualr pulse of radial 

pressure: A triangular pulse of radial pressure. as shown in figure 8.12 

is applied at the cavity surface. This example is solved by using linear 

time interpolation functions and two different time steps. The radial 

displacements at the cavity surface are plotted in figure 8.12. The 

numerical results from both the time steps are almost identical. Thus, 

this example once again demonstrates the stabil ity of the present 

algorithm. 

(iii) Spherical cavity subjected to a rectangular pulse of radial 

pressure: A rectangular pllse of radial pressure as shown in figure 8.13 

is applied at the cavity surface. This example is also solved by using 

linear-time interpolation functions and two different tlme-increments. 

Figure 8.13 shows the time history of the radial displacement of the 

cavity. By comparing this results with those due to a triangular pulse 

(i.e. fig. 8.12), it can be seen that. in general. displacements at any 

time interval due to the rectangular pulse are twice that due to the 

triangular pulse. This is because the response depends upon the total 

impulse and the total impulse due to the rectangular pulse is double that 

due to the triangular one. Hence. the displacement amplitude response due 

to the rectangular pulse is also approximately double that of the 

triangular pulse. In addition, since the energy input is the same in both 

problans, the response curves for both cases have the same shape. 
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(iv) Spherical...£ayity engulfed by a pressure waye: A propagating 

plane pressure wave whose front is perpendicular to the Z-axis first 

impinges on the pole with coordinates (0,0,212). The resulting non-zero 

incident stresses are a (i) = -1000 a (i) = a (i) = (vl(l-v»a (i). 
zz ' xx yy zz 

This wave propagation type of problem has been solved by superposition 

(Miklowitz, 1978). The three quadrilaterals per octant mesh is used here 

in conjunction with the time-domain approach. Figure 8.14 plots the hoop 

* * stresses arM> and aee normalized by the rragnitude of the incident stress 

az~i) versus the non-dimensional time 't* = RT/c1 • The plots are for 

three locations on the surface of the cavity: the two poles (<6 = O,n) and 

the equator (<6 = nI2). Concurrently plotted are the analytic results (Pao 

and Mow, 1973; Norwood and Miklowitz, 1967), obtained by analytical 

inversion of the Fourier transformed solution. Good agreement is observed 

between the two solutions. Finally, figure 8.15 plots the radial 

displacement time history at the same three locations as before. 

(c) Transient point load on halfspace. 

This example is Lamb's problem for an impulsive vertical point force 

on the surface of a semi-infinite solid (Pekeris, 1955). The modelling 

difficulty encountered here is that the point load must be represented by a 

finite (yet small) area, and hence the complicated mesh shown in figure 

8.16. There are 7 co-centric rings, with four elements per ring, resulting 

in a total of 85 nodes. However, by using the syrrmetry only one quarter of 

the mesh is modeled as a input geometry data. Uniform vertical tractions 

t z = 1000 are prescribed on the triangular elements of the inner ring 

which has an outer radius of 0.05. The outer ring has an inner radius of 

3.0 and is modelled by infinite elements. Obviously the small circular 

load solution behaves differently from the analytical. point-force solution 

(labelled solution A). The static solution showed that the results agree 
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well at a radial distance of 0.2 where there is a 4.5~ and a 1.01!!! 

difference in the horizontal and vertical displacements, respectively. 

Therefore. the results from the time domain algorithm shown in figure 8.17 

are for the normalized horizontal displacements at r = 0.2. When the 

exact solution (Pekeris, 1955) is used to calculate the superimposed 

effects of multiple point forces to reproduce a finite area loading 

(labelled as analytic solution B), good agreement with the BEM results is 

obtained. 

(d) Sgyare flexible footing on half-space. 

In this example, a square flexible footing on half-space is subjected 

to a time dependent vertical tractions. The mesh for this problem is shown 

in figure 6.8(a) and is the same as that used for calculating vertical 

compliance for rigid square footing. The side of the footing is B = 2b = 

2 , and the material properties of the half-space are: elastic modulus E 

= 2.6, Poisson's ratio ,,= 0.3 and mass density p = 1.0. The time step 

used for this analysis is AT = 0.2. The time history of the applied 

pressure and the vertical displacements at the center and corner of the 

loaded area are plotted in figure 8.18. It can be seen that the vertical 

displacement at the center of the footing converges to the static value 

after 2.4 seconds. Whereas the vertical displacement at the corner of the 

footing seems to be converging to its static value at a later time. The 

mesh used for this problem gives a maximum error of 2~ for static 

analysis. hence the results obtained for the present problem are supposed 

to be reasonably accurate. Finally, this example shows the usefulness of 

the present algorithm for transient dynamic analysis of half-space 

problems. 
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VIII.7 COtamIOO REMARKS 

An advanced algorithm based on the direct boundary element formulation 

for time-dependent elastodynamic analysis of three-dimensional SOlids has 

been presented. The algorithm is an unconditionally-stable, implicit, 

time-marching scheme and is capable of producing very accurate results. 

However, for better accuracy, it is recommended that the time step should 

remain smaller than L/c! ,L being the smallest distance measured along 

the surface between two corner nodes of an element. This algorithm is a 

viable alternative to that based on the finite element methodology. 

particularly for soil-structure interaction problems. 
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rnAPI'ER IX 

NONLINEAR TRANSIENT DYNAMIC ANALYSIS 
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IX.1 INTBQDUcrION 

In this chapter. a direct boundary element formulation and its 

numerical implementation for nonl inear transient dynamic analysis of 

three-dimensional deformable solids of arbitrary shape and connectivity is 

presented. The formulation is based on an initial stress approach, and is 

the first its type in the field of Boundary Element technique. The 

nonlinearity considered in this analysis is that due to the nonlinear 

constitutive relations, i.e. material nonlinearity. The boundary integral 

equations are cast in an incremental form, and thus, elasto-plastic 

relations of the incremehtal type are used for material description. These 

equations are solved by using a time-stepping algorithm in conjunction with 

a iterative solution scheme to satisfy the constitutive relations. The 

resulting algorithm is an unconditionally stable implicit scheme. However, 

the size of the time step that can be used is restricted by the size of the 

elements used for roodelling the surface of the problem under consideration. 

In the present analysis, the geometry and the field variables are 

represented by higher-order isoparametric shape functions to model complex 

geometries and rapid functional variations accurately. In this chapter, 

the discussion first focuses on the formulation of the method, followed by 

the numerical technique for discretization and spatial integration of 

volume integrals. For discretization and spatial integration of surface 

integrals, the numerical integration techniques developed in earlier 

chapters (Ref. Sees. VI.3 and VIII.4) are used. The material pertaining to 

the time-stepping scheme along with the iterative solution algorithm are 

presented next. Numerical examples are finally presented to demonstrate 

the accuracy and applicability of the present method. 
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IX.2 BOUNDARY INl'EGRAL FORMULATION FOR DYNAMIC PIAS!'ICIT'I 

The direct boundary integral formulation for a nonl inear transient 

dynamic problem, based on an initial stress approach, can be constructed by 

following a procedure similar to the one that has been used for a nonlinear 

static problem (Ref. Sec. 12.4(b), Banerjee and Butterfield, 1981). Under 

zero initial conditions and zero body forces, the boundary integral 

equation for nonlinear transient dynamics is of the form 

Cij(S)Ui(S,T) = J [Gij(x,s,T).ti(x,T) - Fij(x,s,T).ui(x,T)]dS(x) 
S 

+ J Bilj(X'S,T).a~1 (x,T)av(x) 
V 

where • denotes convolution (Ref. Sec. VIII.2): 

(9.1) 

s and X are the space positions of the receiver (field point) and 

the source (source point), respectively: 

a~l is the initial stress tensor: 

V denotes the volume of the body: and 

the fundamental solutions are I isted in 

Appendices A4 and A6. 

Assuming all the field quantities to have a zero value at time T = 0, 

the boundary integral equation (9.1) can be written in an incremental form 

as follows: 

Cij (S) 4ui(s,T) = S [Gij(X,~,T).~ti(x,T) - Fij(X,~,T).~ui(x,T)]dS(x) 
S 

+ J Bilj(X'S,T).~a~I(X,T)av(x) 
V 

where ~ ~enotes the incremental quantity. 

( 9.2) 

The stress increment at an interior point ~ can be obtained by 
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taking derivatives of equation (9.2) and using the constitutive 

relationships (~a •• = D .. kl~ekl - ~i?) as: 
1J 1J 1J 

~ajk(l,T) = S [Gijk(K,l,T).~ti(K,T) - Fijk(X'l,T).~Ui(X,T)]dS 
S 

(9.3) 

The functions Gijk' Fijk' Biljk and J iljk are defined in Appendices AS 

and A6. 

In equation (9.3), the volume integral must be evaluated in the sense 

of (V - Ve) with limit Ve -) 0 and the tensor J ilJk is the Jump term 

arri ving from the analytical treatment of the integral over V . This 
e 

jump term is the same as that of static plasticity and is independent of 

the size of the exclusion V provided the initial stress distribution is e 

locally homogeneous (Ref. Banerjee and Davies, 1984; Raveendra, 1984; 

Banerjee and Raveendra, 1985). 

The equations for incremental stresses cannot be constructed at the 

boundary points by taking the field point (~) in equation (9.3) to the 

surface due to the strongly singular nature of the integrals involved. 

However, the equations for incremental stresses at boundary J;X>ints can be 

constructed by using a scheme similar to that described in Sec. VI.3.D. 

Using this scheme, the incremental stresses and the global deri vati ves of 

the incremental displacements at a boundary J;X>int lb can be obtained by 

coupling the following set of equations: 

b ~a . . (l ,T) 
1J [ b b b] 0 b A&l·J·~~,m(l ,T) + !1{~u. ·(r ,T) + ~u .. (l ,T)} - ~a. ·(l ,T) 

II1 1,J J,l 1J 
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where 11 is a set of local axes at the field p:>int (s,.b) • a. 

(9.4 ) 

The above equations can be combined together and written in a matrix 

fom as 

[S] {p} = {q} (9.5) 

where [S] is a 15x15 matrix which contains unit normals. a 3x3 unit 

matrix and material constants; p is the unknown vector of Aa .. 
1J and 

aAu i , a ~j ; and q is a vector containing the tractions Ati and local 

derivatives of the displacements AU .• 
1 

By making use of equation (6.S). the right hand siee of equation (9.5) 

can be written as 

{q} = [E]{g} (9.6) 

where [E] is a 15x48 matrix of shape functions and derivatives of shape 

functions; and g is a vector of incremental nodal tractions and 

displacements over all of the local element nodes. 

Inverting matrix [S] and util izing equation (9.6). the set of 

equations (9.5) can be rearranged to form 

(9.7) 

It should be noted that the above equation is free of any integration and 

time convolution. 
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IX.3 CONm'rrorIVE MODEL 

In dynamic plasticity, the choice of an appropriate constitutive model 

depends largely on the material properties and the loading conditions of 

the problem in hand. For this reason various constitutive models have been 

used for dynamic plasticity. However, for simplicity in the present 

analysis, the Von Mises model with isotropic variable hardening is used. 

In this model, the behavior in the elastic and plastic region is 

governed by the stress-strain relations: 

where 

!:..a •• 
1J 

!:..a •. 
1J 

- ep . 1 - DiJkl!:..ekl = 1ncrementa stress tensor, 

D~3kl = incremental elastoplastic material modulus, 

~ = elastic shear modulus, 

(9.8) 

H = plastic-hardening modulus, the current slope of the uniaxial 

plastic stress-strain curve. 

The present llnplementation is SUGh that any other constitutive model 

can be included without any difficulty. 

IX.4 DISCRETIZATION AND SPATIAL INrEGBATION OF THE VOLUME INI'EX2RALS 

(A) Discretization 

Equations (9.2) and (9.3) provide the formal basis for developing the 

dynamic plasticity algorithm. However, the initial stresses !:..a? defined 
1J 

in equations (9.2) and (9.3) are not known a priOri and have to be 
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determined by satisfying the constitutive relations discussed in Section 

IX.3. Thus, equations (9.2) and (9.3) and (9.8) can be regarded as a 

coupled system of nonlinear equations. In the present implementation, 

equation (9.3) and (9.7) are used to calculate the stresses at interior and 

boundary points and the nonlinear naterial rrodel is then used to evaluate 

the inelastic stresses. Since the volume integrals of inelastic stress 

vanish except in regions of nonlinear naterial resp:mse, approximations of 

geometry and field quantities are required only where nonlinearity is 

expected. In the present work, isoparametric (quadratic) volume cells are 

used for approximating the geometry and the variation of initial stresses 

such that: 

where 

o -0 
a •. = Mn (n.)a. 'n 

1) .. 1) .. 

x. are carterian coordinates, 
1 

XiJ3 are nodal coordinates of the volume cell, 

Ma is a quadratic shape function for the volume cell, 

a represents the nodal points of the volume cell, and 

denotes nodal quantities. 

A typical volume cell is shown in figure 9.1. 

(9.9) 

The volume integral of equation (9.2) can be then represented as 

(9.10) 
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where: 

s.b 1S the field pnnt on the ooundary (boundary node), 

xm(n) is the point in cell m, 

-0 rn 
Aail /3 are the nodal values of incremental initial stress of the 

rnthcelL 

Vrn is the rnth volume celL and 

L is the total number of cell in a single region. 

Similarly, the volume integral of interior stress equation (9.3) can 

be expressed as 

T J S Biljk(X,T;s.,~)Aail(x,~)dVd~ 
o V 

( 9.11) 

in which the time integral is treated analytically as before. 

(B) Spatial Integration 

The nonsingular, spatial integration of volume integrals of equations 

(9.2) and (9.3) are evaluated numerically by applying the Gaussian 

quadrature technique of the transformed integral as 

111 J B[x(n),s.] M/3(n)dVrn = J J J B[x(n),s.]M/3(n)J(n)d~1d~2d~3 
Vrn -1 -1 -1 

ABC 

= l l l wVwca [x, (~abc),~] MJ3 (~abc)J(~abc) (9.12) 

a=1 b=1 c=1 
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where the Jacobian is defined by 

and is given explicitly as 

For singular volume integrals, the volume cell can be transformed to a 

unit cube and the cube is subdivided into tetrahedra through the field 

point, as shown in figure 9.2. Using a local spherical polar coordinate 

system (r,e,<6) with its origin at the field point, the integral of the sub

cell can be transformed by the Jacobian as 

dVI = Jdrd<6de = r 2sina drd<6de 

The integrand involving the Bilj kernel is singular of the order l/r2 and 

therefore the integral is bounded in the transformed domain. However, the 

volume integral a 
B iljk is singular of the order 11 r3 and in the 

transformed domain the behavior is approximately of the order l/r. The 

integral. however, is made bounded by excluding a sphere and mapping the 

remainder of the tetrahedra to a unit cube as shown in figure 9.3. The 

integration is computed by applying the Gaussian quadrature to the 

transformed domain. A series of numerical trials with different sizes of 

the spherical exclusion led to the surpriSing conclusion that it could be 

set to zero for the most accurate three-dimensional analysis. 

The above described volume integration scheme is based on the work of 

Mustoe (1984), Bajernee and Davies (1984), Raveendra (1984) and Banerjee 

and Reveendra (1985). 
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lX.S TIME-S'rEPPOO AND ITERATIVE SOLUTION ALGORITHM 

(A) Time-stepging 

In order to obtain the nonlinear transient response at a time TN' the 

time axis is discretized into N equal time intervals. i. e. 

N 

~ = L nAT (9.13) 
n=l 

where AT is the time step. 

Using equation (9.13). the integral equation (9.2) can be written as 

c .. Au . (s. TN) 
lJ 1 J [G· .At· - F .. Au.]dSd~ 

lJ 1 lJ 1 

T 

= fN-
1 J [G .. At. - F .. Au. ]dSd~ 

lJ 1 lJ 1 
~=o .s 

(9.14) 

For the present case. the linear time interpolation scheme described in 

Sec. VIII.3.B is used to approximate the time variation of the field 

quantities during a time step because the same scheme can also be used for 

constant time interpolation with averaging. 

Thus. after the usual discretization and integrations (time and 

spatial both). the integral equations (9.14) are transformed into an 

assenbled system equation of the form 

N 

= - 2 [[~+A~-l]{AXN-n+l} - [B~+B~-lJ{~N-n+l} 

n=2 
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(9.15) 

or 
o 

= [Bil{ayN} + [Cil{aaN} + {RN} (9.16a) 

or (9.16b) 

where A and B are the matrices related to the unknown and known 

incremental displacements and tractions; 

C is the matrix related to the initial stresses; 

~ and aY are the vectors of unknown and known incremental 

displacements and tranctions; 
o 

for ~, aY and aa, superscript denotes time, Le. ~n = Xn - x n- 1 
; 

for A, Band C matrices, superscript denotes the time step when 

they are calculated, and the subscript denotes the local 

time node (1 or 2); 

RN is the effect of p;1st dynamic history 

&b = [Ail , and 

Similarly, the integral equation for stresses can be written in,a 

discretized form as 

(9.17a) 

or (9.17b) 
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where ,_, indicates that the rratrices are related to the stress equation.: 

(B) Iterative SOlution Algorithm for Dynamic Plasticity 

The algorithm described here provides the solution of system equations 

given by equations (9.16) and (9.17>. The solution of these system 

equations requires complete knowledge of the initial stress distribution 
o 

ASl.N within the yielded region that is induced by the imposition of the 

current increment of boundary loading. This, unfortunately, is not known a 

priori for a particular load increment and therefore an iterative process 

must be employed within each time step. 

This incremental algorithm can be described as follows: 

(i) Obtain the transient elastic solution for an arbitrary increment of 

boundary loading Ax,N during the time interval Tn- 1 to TN I as 

and 

where N is the time step number. 

If the material has not yielded yet, accumulate X-vectors, i.e. 

"ll.N = X N-l + A"ll. N • 

(ii) If the rraterial was yielded before go to step (vi). 

(iii) Check whether any node has yielded during the current time step. If 

the rraterial has not yielded yet, accumulate stress and strain, and go 

back to step (i). 
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(iv) calculate the value of 0'0' equivalent stress by using g"T = g"N-1 + 

~!!.N as the stress chnages and compile a list of yielded nodes. For 

elastic nodes accumulate the stress and strain. i.e.. !!.N = g"T and !iN 

= JLN- 1 + [De] -1 ~!!.N. Calculate the correct stress at the elasto

plastic nodes by using the elastoplastic stress-strain relations ~!!.ep 

= Uep~JL and using the elastic strain increments as a first 

approximation. Modify the stress history for yielded cells !!.N = !!.N-1 

ep 0 T N 
+~!!. • calculate initial stress ~!!. = g" -!!. • 

(v) Assume ~bbN = 0 and ~QO'N = 0 and using the generated initial 

stress ~g,,0 calculate a new qN by using equation (9.16b) and ~!!.N 

by using equation (9.17b). calculate the equivalent stresses by using 

the history !!.T = g"N + ~!!.N and compile a list of yielded nodes. For 

elastic nodes. accumulate the stress !!,.N = !!.T and strain. For the 

elastoplastic nodes calculate the currect stress ~g"ep = Uep~!i. The 

initial stresses generated are ~!!.o = ~!!.N - ~!!.ep. Modify the stress 
o 

history for the yielded nodes g"N = 5!N + ~5!ep. Accumulate llAN and ~O'N 
o 0 

(Le. ~N = ~N + A&N and ~gN = ~gN + ~go). so that they can be used 

in the next time step for past convolution. 

(vi) Check if the initial stresses ~!!.o are less than the acceptable norm 

and if so go to step (i) and if not go back to step (v). If the 

ru.mber of iteration exceeds. say. so then it is reasonable to assume 

that collapse has occurred. 

IX.6. EXAMPLE OF APPLICATION 

In order to demonstrate the accuracy and applicability of the proposed 

nonlinear transient dynamic analysis algorithm. a presentative problem is 

analyzed. Engl ish units are used with foot (ft) for length. pound (lbf) 

for force. and seconds (s) for time. 
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(a) Bar subjected to a step end load. 

A bar with circular cross-section is held along its sides by 

lubricated rollers and is fixed at one end. The free end is subjected to a 

suddenly applied and maintained uniform compression t = -333 which z 
exceeds the yield stress of the bar (i.e. yield stress of the bar is Y = 

300). In this example. the bar has dimensions and material properties 

identical to that of example VIII.6.b<iii). The discretization of the bar 

is similar to the one shown in figure 8.8 except. in the present example. 

the full cross-section of the bar is modeled instead of one-quarter of it. 

The volume of the bar is discretized by using five 20-noded. volume cells 

of equal dimensions. A bilinear stress-strain relation as shown in figure 

9.4. is assumed to describe the rod's material property. The time step 

used for this example is aT = 0.004473. In figure 9.4, the elasto-plastic 

response of the bar at time T = 0.8 Te (where Te = c 1 TIL. Le. the time 

taken by the compression wave to reach the fixed end of the bar) is plotted 

against the one-dimesnional analytical solution <Ref. Garnet and Armen. 

1975). In this. the normal stress a zz are normalized by the elastic 

modulus and the distance along the bar is normalized by the length of the 

bar. The numerical results are in reasonable agreement with the analytical 

solution except for the sharp jumps in the stress which are diffused by the 

numerical analysis. The major differences in the results between the two 

solutions can be attributed to the three-dimensional nature of the present 

example. As the bar is on lubricated rollers. in addition to longitudinal 

stress. lateral stresses also exist in the bar. Simple one-dimensional 

theory considers longitudinal stress only and thus. the difference between 

the two solutions. 
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IX.7 CONCLUPOO REMARKS 

A direct boundary element formulation and its numerical implementation 

for nonlinear transient dynamic analysis of three-dimensional isotropic 

homogeneous or piecewise homogeneous solid has been presented. Due to the 

lack of available solutions for three-dimensional nonl inear transient 

dynamic problems. it was found impossible to compare resul ts for a real 

three-dimensional problem. However. the present algorithm is found to 

produce very accurate results for three-dimensional static nonlinear 

problems by using large time steps. (i.e. when the loading is done slowly). 

Similarly. when a large value of yield stress is selected. the incremental 

nonlinear transient algorithm is found to produce results identical to that 

produced by the linear transient algorithm. This new formulation provides 

a numerical tool for solving three-dimensional transient problems involving 

material nonlinearity which are now impossible to solve by any other 

method. 
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ClJAPl'ER x 

GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR Ftll'URE WJEK 
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X.1 GENERAL CO~KLUSIQNS 

A complete and general numerical urplementatlon of the direct boundary 

element method applicable to free-vibration, periodic vibration, and linear 

as well as nonlinear transient dynamic problems has been presented. The 

developed methodology is applicable to problems involving two or three

dimensional, isotropic, piecewise-homogeneous solids of arbitrary shape. 

Since all of the prop:>sed analyses are based on the boundary element method 

(BEM), they have all the advantages of the BEM over the Finite Element and 

Finite Difference methods such as. discretization of only the boundary of 

the domain of interest rather than the whole domain. ability to solve 

problems with high stress concentrations, accuracy and the ease of solution 

in infinite and semi-infinlte mediums. 

The real-variable BEM formulation presented in this dissertation 

provides a numerical tool for free-vibration analysis of solids with 

complex geometries. This method has been compared with MARC-HOST Finite 

element analysis and was found to yield essentially similar results for a 

cantilever beam problem. 'lbus. the proposed method is a viable alternative 

to algorithms based on Finite element schemes. In addition. it needs only 

the boundary discretization of the problem rather than the whole domain. 

The advanced implementation of the BEM for steady-state dynamic 

analysis of two and three-dimensional, visco-elastic solids. presented in 

chapters rJ and VI. are one of the roost general numerical implementation 

presently available. By comparing the results obtained by the present 

implementation with those by other methods. the accuracy and stability of 

the present method is establ ished. For half-space problems. the prop:>sed 

methodology is a better alternative to the conventional finite element 

method. For half-space problems Finite element presents two restraints: 

(i) the model must be bounded at the bottom by a rigid bedrock. and (ii) 
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the soil away from the vicinity of the foundation is represented by 

parallel layers unbounded on the horizontal direction. These two 

conditions are not always close to reality whereas, in BEM, the fundamental 

solution satisfies the radiation condition at infinity and therefore no 

bounding surfaces are needed and only a small number of elements are 

necessary to model the problem. 

The transformed-domain boundary element formulation presented in 

chapter VII is capable of providing accurate solutions to transient e1asto

dynamic problems. The accuracy and stability of the present nnp1ementation 

are established by comparing the results obtained against the available 

solutions from Finite element, Finite Difference and Time-domain Boundary 

element methods. However, the transformed domain formulation suffers from 

the following defects. 

(i) The transform solution is essentially a superposition of a series 

of steady-state solutions and is therefore applicable only to linear 

e1asto-dynamic problems. For nonlinear problems, the solution must be 

obtained in the real tine domain. 

(ii) Since the Laplace/Fourier transform casts the entire problem in 

the complex domain, the computer time and storage requirements are 

considerably increased. 

The time-domain boundary element formulation for 1 inear and non1 inear 

transient dynamics presented in chapters VIII and IX eliminate the above 

mentioned problems. The proposed time domain methodology, in conjunction 

with the direct step-by-step integration, provides the transient response 

directly and thus it has been extended for nonlinear problems by using an 

iterative algorithm. Using this method, the transient phenomena during 

early response times, preceding the harmonic steady-state motion, can be 

captured while frequency domain methods are incapable of detecting them at 
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all. In addition, approximations related to the value of Poisson's ratio 

and to the number of modal shapes required in frequency synthesis are 

eliminated. 

The versatility of the proposed time-domain methodology is evicent in 

view of the results presented in this dissertation for various three

dimensional transient problens. Due to its general character, it can be 

used for solving more sophisticated problems. This algorithm is an 

unconditionally stable impl icit time marching scheme and is capable of 

producing accurate results. However, for better accuracy, it is 

recommended that the time step should remain snaller than L/c
l

; where L 

being the smallest distance measured along the surface between two corner 

nodes of an element and c l being the propagation veloclty of pressure 

wave. 

By taking the material nonlinearity into account, the proposed 

methodology for time-domain nonlinear transient analysis has the potential 

to provide a numerical tool for solving soil-foundation problens in a more 

realistic manner which cannot be accomplished by using the available 

transform domain algorithms. 

X.2 RECOMMENDATIONS 

In order to facilitate future research based on the findings of the 

present work the following are recommended: 

1. The stability of the time-domain transient dynamic algorithm has 

been established for simple problems by analyzing the problem of 

radial expansion of a cavity in an infinite space for different time 

steps and meshes. However, to insure the stability and convergence of 

this algorithm for more sophisticated problems, further investigation 

by using a complex problem is recommended. 
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2. As mentioned earlier, the transformed domain dynamic analysis 

yields erroneous results when the forcing frequency happens to be one 

of the natural frequencies (or fictitious eigenfrequencies in the case 

of exterior problems) of the structure under consideration. To 

eliminate this problem, a computationally feasible modification of the 

transformed domain algorithm is needed. 

3. In the present work, for nonlinear dynamic analysis. the Von 

Mises constitutive relations are used to model the material behavior. 

However. for materials I ike soils. a more real istic material model 

needs to be included to model the nonlinear material behavior during 

dynamic loadings and unloadings. Moreover. only a simple test problem 

has been solved in the present work. However. for solving realistic 

engineering problems further work is needed. 

4.· The problems of soil-structure interaction during an earthquake 

excitation is of considerable importance to civil engineers. This 

problem can be tackled in a deterministic way by modifying the present 

formulations. For this purpose, extension of the present algorithms 

to solve the general wave scattering problems by including the 

effects of incident waves in the formulation is recorranended. 

s. The proposed time-domain transient formulation involving 

convolutions provides accurate results, but it is computationally 

expensi ve. However, for certain class of problems such as those 

related to structural dynamics. an approximate and computationally 

inexpensive boundary element formulation can be developed. This can 

be achieved by extending the method proposed for free-vibration 
, 

analysis to linear and nonlinear transient dynamic analysis of solids. 
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6. In practice. inhomogeneity and anisotropy are present in most 

engineering problems. Whilst the inhomogneity can be handled by 

substructuring. it is of extreme importance to develop appropriate 

fundamental solutions for dynamic analysis of problems involving 

anisotro~. 

7. Same of the dynamic problems such as non-destructive testing of 

materials involve material nonlinearity as well as geometric 

nonlinearity. Therefore. extension of the present nonlinear transient 

dynamic formulation to include geometric nonlinearity is desirable. 
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Figure 8.19 
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Three-dimensional volume cell 

Flgure 9.1 
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APPENDIX Al 

BOUNDARY KERNELS FOR 'IID-DIMENSIONAL STEADY-STATE DYNAMICS 

The tensors GiJ and Fij in the transformed domain are of the form: 

where 

1 
G~J'(X'~'w) = 2-11 [A6 •. - Br ·r .J 

... ..... ~J • ~ • J 
(Al.l) 

1 ar 
F1'J'(X.~.w) = 2- [P(6 .. --a + r .n.) .. 1J n .J 1 

ar ar 
+ Q(r .n· - 2r ·r . --a + Rr ·r . --a + Sr ·r .J 

.~ J .~.J n .~.J n .1 .J 
(Al.2) 

P = aA/ar - Blr 

Q = - 2B/r 

R = - 2aBlar 

n = normal vector (Al. 3) 

Ko' Kl and K2 are the ~lodified Bessel functions of second kind. 

having the following recursive properties: 

A-l 



K~(Z) = - K1 (Z) 

where the bar denotes the differentiation w.r.t. z • 

Using the recursive formulas (Al.4) the tensors G.. and F.. can be lJ lJ 
expressed in terms of Modified Bessel functions of the second kind of 

orders zero and one. These functions are given below along with their 

expansions for small and large arguments. 

Modified Bessel Function of Second Kind 

Zero order: 

Z2 /4 (z2 /4 )2 
= [In(zI2) + y]Io(z) + -- + (1 + 1/2) 2 

(11)2 (21) 

(A1.5) 

(Al.6) 

where y = 0.5772156649 

First order: 

CD 

~ (z2 /4 )m 
K1 (z) = (lIz) + In(zI2)I1 (z) - z/4 L [~(m+l) + ~(m+2)] ml(m+l)I 

m=o 
(Al. 7) 
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CD 

Il(Z) (z/2) l 
(Z2/)m 

== ml r(m+2) 
m=o 

where 'lI (1) == - "( , and 

n-l 

'" (n) == - y + l -1 m for n12 

m=l 

Small argument expansion: 

If Z -) a (i.e. abs(z) < 10-S) 

Large argument expansion: 

If z is large (i.e. abs(z) ) 3.5) 

~ [ 
(1)2 (3)2 

Ko(z) = 1f
2Z 

e-z 1 - - + -~-
Sz 21 (Sz) 2 

Kl(Z) == J1f
2Z 

e-z [1 + 3
sz 

_ 3xS + 3xSx21 
2l(Sz)2 3l(Sz)3 

However, for abs(z) ) 100 , Ko(z) == Kl(z) 0.0 

A-3 

(AI. S) 

(A1.9) 

(A1.10) 

(A. 11 ) 

] (Al.12) 

(A1.13) 



APPENDIX A2 

BOUNDARY KERNELS FOR THREE-DIMENSIONAL STFAPY-STATE DYNAMICS 

The tensors Gij and Fij in the transfooned domain are of the foon: 

Gij (X,s,s) = -t- [Al;' . 1f1l 1J 
- Br .r .] ,1 , J 

and 

Fij(x,s,s) = ~ [P(l) .. 
ar a + r .n.) 

1f 1J n ,J 1 

Q( ar) ar ] 
+ n·r· - 2r ·r . an + Rr ·r . --a + Sr ·r . J ,1 ,1 ,J ,1,J n ,J,l 

where s is the Laplace transform parameter. In addition, 

and 

where e is the ext=Onential function. Furtheonore, 

P aA B Q 2B R = _ 2 aB , 
= ar - r ' = - r . ar 

and 
c2 

S = ( ~ _ 2 ) ( aA _ aB _ 2B ) 
c2 ar ar r 

2 

A-4 

-sr/c1 e 

(A2 .1) 

(A2.3) 

(A2 .4) 

(A2.S) 



APPENDIX A3 

INl'ERIOR STRESS KERNELS FOR STEADy-srATE DYNAMICS 

The interior tensors Gijk and F ijk for two-dimensional steady

state dynamic analysis are of the form: 

(A3 .1) 

(A3 .2) 

where 

aGij 1 [aA aB ] = - - 0 - r - - r r·r . - B(r ·r k + r ·r 'k) a~k 211'11 ij ar ,k ar ,k,l,J ,l ,J ,J ,l 
(A3 .3) 

ar ar 
+ R(r 'kr . -a + r .r 'k -a + r ·r ·r mkn ) • ~ • J n . ~ • J n . ~ . J. -11\ 

(A3.4) 

where the functions A,B,P,Q,R and S are listed for two and three-

dimensional problems in Appendix Al and A2 , respectively. 
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APPENDIX A4 

BOUNDARY KERNELS FOR 'mANSIEm' DYNAMICS 

The tensors G.. and F.. are of the form: 
1J 1J 

G .. (K,T:,£,,'c:) = -4
1 

[(3a .. -b .. ) 
1J JtP 1J 1J 

1/C2 J AIHv-Ar)dA 

l/cl 

where v = T - ,;0 

and 

y. = x. - ~. 
1 1 l 

l/c2 
1 [ 2 F •. (X,T:,£",;o) = -4 -6c2(Sa •. -b .. ) 

1J Jt lJ lJ 
J A5(v-Ar)dA + 

l/cl 

where v = T - ,;0 

b .. = c·· + d .. 
1J 1J 1J 

A-6 

(12a .. -2b .. ) 
lJ 1J 

(A.4.l) 

(A4.2) 



APPENDIX AS 

INl'ERIOR Sl'BESS KERNELS FOR 'mANSIEN!' DYNAMICS 

The tensors G~ ok and F~ ok are of the form: 
1J 1J 

where v = T - or 

S 
ao Ok = yoyoYk/r 1J 1 J 

3 
Co ok = oOkYo/r 1J J 1 

a P [ 4 Fo °k(X,T;s,or) = - -4 l2c2 (3Sa o °k-Sbo °k+c o ok) 1J 7T 1J 1J 1J 

A-7 

l/c2 J i..o(v-i..r)di.. 

lIc
l 

(AS.l) 



where v = T - 't' 

3 e. 'k = I) 'kn,/r 
1J J 1 

S 
f ijk = £Yiyjnk + YiYknj + Ym~(l)ikYj+l)ijYk)}/r 

9ijk = (I)ijnk+&iknj>lr 

bOOk = d, 'k + f. 'k 1) 1J 1) 

3 

A-8 

(AS.2) 



APPENDIX A6 

VOLUME KERNELS FOR 'mANSIEN!' DYNAMICS 

The tensors B aa ilj , Biljk and J ilJk are as follows: 

Bil' (X,TiS,,'t") = -4
1 

[-Clsa'l,-3bil , ) J np 1 J J 

l/C2 f A6(v-Ar)dA + l/Ci(6ailj -bilj ) 

1/cl 

where v = T - '1: 

5 
ailj = YiYIy/r 

Cilj = (6 ijYl + 61jYi)/r
3 

3 
bilj = Cilj + 6ily/r 

A-9 

(A6.1) 

A6(v-Ar>dA 



where 

For 3-D: 

v = T - ~ 

7 
ailjk = YiYIYjYk/r 

di1jk = (oijYIYk + 0ljYiYk + 0ikYIYj + °lkYiYj)/r
S 

Ciljk = eiljk + giljk 

A-tO 

(A6.3 ) 



APPENDIX B 

PROPAGATION OF WAVEFRONl'S AS SURFACES OF DISCONI'INUITY' 

When a body is disturbed from a quiescent state by excitation at a 

portion of the boundary or within a restricted domain inside the body. 

neighboring domains are soon set in motion and put into states of 

deformation. The moving surface which separates the disturbed from the 

undisturbed part of the body is called the wavefront. At wavefronts. the 

field quantities and/or their derivatives may be discontinuous. However. 

if the material remains coherent and does not fracture. the displacements 

will certainly be continuous in both space and time. In many situations. 

involving very sudden loadings. the particle velocities and/or stresses 

will have sudden variations (discontinuities) at the wavefront over a very 

small interval of space and time. These variations at the wave fronts can 

be quite closely approximated by finite jump3 based on the basic techniques 

developed towards the end of last century for the study of propagating 

surfaces of discontinuity in continuum mechanics. 

Love (1904) sets down the following basic kinematical and dynamical 

conditions that must hold at a propagating surface of discontinuity in an 

elastic sol ide 

Kinematic conditions: 

COnsider a surface of discontinuity S. propagating in an unbounded 

medi~ The situation is shown in figure B.l. for a fixed instant of time. 

It is assumed that S propagates into region (2). leaving a region (1) 

behind it. and moves normal to itself with velocity c. i.e •• each point 

P(x) of S propagates with velocity c. along the outward unit normal 

vector n to S at that point. If one supposes the components of a .. 
1J 

are discontinuous across S. the jumps will be denoted by the standard 

bracket notation. 
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s 

Reg10n (2) 

Flgure B.1 

[a .. ] = (a. )2 - (a. )1 1J 1J 1J 
(B.1 ) 

where the subscript 1 denotes the value of the field variable on S when 

S is approached through region (1), and the subscript 2 is employed to 

denote the value when S is approached through region (2). 

As mentioned earlier, since the material should maintain its integrity 

at the wavefront, the jump in the displacement comp:ments at S is zero, 

i.e. 

[u.] = 0 
1 

(B.2) 

Moreover, if the strains and velocities at a wavefront are discontinuous 

(i.e. shock waves), the finite jumps in them must satisfy the following 

kinematic relations • 

. 
[u. ] 1 + c[u .. ]n. 1,J J = 0 

[U. ] + c[aui/an] = 0 1 
. 

[ui ]nj + C [U. .] = 0 (B.3 ) 1,J 
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However, if the first derivatives of the displacements across S are 

continuous but the second derivatives are discontinuous (acceleration 

waves), then the following kmematic relation has to be satisfied at the 

wavefront. 

. 
[(u.) .] + cq.n. = 0 

1 ,J 1 J 

2 [u.] - c q. = 0 
1 1 

(B.4) 

where qi is an unknown function. 

Qynamical conditions: 

The dynamical conditions, which has to be satisfied at the moving 

surface of discontinuity S, are determined by considering the momentum 

changes of a thin slice of the medium adjacent to S and the corresponding 

impulse-momentum equation. It has the form 

[cr .. In. + pc[u.] = 0 
1J J 1 

(B.5) 

For acceleration waves, the jumps in the second derivatives of y should 

satisfy the linear momentum equation, i.e. 

A.[u .] +J1[u ... +u ... ] =p[u.] 
m.llIl 1,JJ J,lJ 1 

(B.6) 

The fundamental singular solution of transient elastodynamics. for the 

displacements generated ~ a suddenly applied concentrated load at a point 

of the unbounded elastic medium was first developed by Stokes (1899). 

Love (1903) performed an extensive study of Stokes' solution for initial 

value problem with arbitrary initial values. and related wavefront 

discontinuities. He pointed out that Stokes' formula yields correct 

B-3 



results only when the input field quantities are continuous at the 

wavefront. He also found that the Stokes' formula satisfies the necessary 

continuity conditions on the displacements (eq. B.2), the kinematical 

conditions on the velocities and strains (eq. B.3) and the dynamical 

conditions on the stresses and velocities (eq. B.S), provided the input 

function is continuous. Thus, if the input excitation is a step loading, 

it has to be modeled as a ramp loading in the first time step. Also, a 

very small time step cannot be used for this purpose, because it will 

result in non-vanishing dilation and rotations at the wavefronts. 
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APPENDIX Cl 

ISOPARAMm'RIC BOUNDARY ELEMENl'S FOR 2-D PROBLEMS 

Both the three noded quadratic and two noded linear elements were 

depicted in figure 4.1. The shape functions for the three noded quadratic 

elements are: 

Nl(~) = 2(~ - 1/2)(~ - 1) 

N2(~) = -4~(~ - 1) 

N3(~) = 2~(~ - 1/2) 

where ~ is the intrinsic coordinate (0 i ~ i 1). 

'lbe shape functions for two noded linear element are: 

Nl(~) ::I 1 - ~ 

N2(~) ::I ~ 

(C1.l) 

(C1.2) 

The normal unit vectors along the FOsitive x and y axes are defined as: 

nl = (ayla~)/IJ(~)1 

n2 = (-ax/a~) IJ(~) I (C.1.3) 

where IJ(~) I is the nagnitude of the determinant of the Jacobian natrix 

(Ref. Sec. IV.4). 
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APPENDIX C2 

ISOPARN1ETRIC BOUNDARY ELEMENI'S FOR 3-D PROBLEMS 

Both the six node triangular and the eight node rectangular surface 

elements were depicted in figure 6.2. It is worth noticing that these 

intrinsically planar elements becomes curved in three-dimensional space. 

The shape functions for the six node triangle are: 

N = a 

if a = 4.5.6 with ~ = a - 3 

and '1 = a - 2 (C2.1) 

where ~1 and ~2 are two linearly independent coordinates and ~3 = 

1-~1-~2 • 

The shape functions for the eight node rectangle are: 

O.25(1+~O)(1~O)(~O~O-1) if a = 1.3.5.7 

N = O.50(1-~2)(1~o) if a = 2.6 a 

O.50(1+~o)(1~2) if a = 4.8 (C2.2) 

where ~o = ~ ~a and ~ ~a • with ~ and ~ being the two linearly 

independent coordinates and (~a'~a) the coordinates of node a. 

Two base vectors along the intrinsic coordinates ~.~ (or ~1'~2) can 

be defined as 

ax d . ~ d . az d Ir 
~1 = a~ ~ ~ + a~ ~ ~ + a~ ~ A 

ax d . av d . az d Ir ~ =- ~~+~ ~~+- ~A 2 a~ a~ a~ 
(C2.3) 

where i. i. and k are unit vectors along the x. y. and z coordinates. 
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respectively. Their cross product 

<C2.4) 

is a vector normal to the surface of the element and its magnitude is equal 

to the value of the determinant of the Jacobian matrix. 
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APPENDIX Dl 

ANALYTICAL TEMPORAL INI'EGRATION OF THE 'mANSIEN!' 
DYNAMIC KERNELS FOR CONsrANr TIME INI'ERPOIATION 

For constant time interpolation the field variables are expressed as 

where 

N 

f(X.~) = l fn(X)0n(~) 
n=l 

~n(~) = [H(~ - (n-l)AT) - H(~ - naT)] : 

(D1.1) 

fn (X) represents the spatial variation of the field variable 

f(x.~) at time Tn (= naT) • 

N is total number of time steps. and 

H is heaviside function. 

Each of the transient dynamic kernels listed in Appendices A4. AS and A6 

has one or more of the following time functions: 

(1) 5(T - ~ - rIc) 

l/c2 
(2) J A5(T - ~ - r/c)dA 

l1c1 

(3) 5(T - ~ - rIc) 

(4) 5(T - ~ - rIc) 

(01.2) 

(01.3 ) 

CD 1. 4) 

CD1. S) 

where c is either pressure wave velocity c1 or shear wave velocity c2; 

and 5 is the delta function. 

Using equation (01.1). the time integrals related to the above time 

functions can be expressed as 

T J geT - ~ - r/c)f(x.~)d~ 
o 
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naT 

J geT - ~ - r/C)0n(~)d~] 
(n-l)AT 

(01.6) 

The time integrals on the right hand side of equation (01.6) are 

evaluated analytically as follows. 

Time function 1: 

naT 

J &(T - ~ - r/c)0n(~)d~ = 0n (T - rIc) 
(n-l)AT 

Time function 2: 

naT l/c2 J J A&(T - ~ - Ar)dA0n(~)d~ 
{n-l)AT l1c

1 

naT 
J A&{T - ~ - Ar)0n{~)d~dA 

(n-l)AT 

I/cZ 
= J 10n (T - lr)dl = 

llc l 

(01. 7) 

(01. 8) 

An important character istic of the transient dynamic kernels is the 

time translation property (Ref. Chapter VIII and Appendix A4). Because of 

this characteristic. at each time step only the effects of the dynamic 

history of the first time interval on the current time node needs to be 

evaluated.: i.e. at each time step the analytical time integrations has to 

be done only for n = 1. Thus. equations (01.7) and (01.8) reduce to 

o (01.9) 
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(01.10) 

where 

if T < rlc l . 

r 1 =--- if T > r/cl and T < r/c 2 

1 1 =--- if T > r/c 2 
(01.11) 

The second term on the right hand side of equation (Dl.9) can be 

obtained in a similar manner by replacing 'T' by 'T-AT' in equation 

(01.11) • 

Time function 3: 

The time integrals involving time function (3) are approximated by 

using a backward finite difference scheme. i.e. 

nAT 

J S(T - ~ - r/c)f(x.~)d~ 
(n-1)AT 

nAT 

= J S(T - ~ - r/c)f(x.~)d~ 
(n-1)AT 

0-3 
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APPENDIX 02 

ANALYTICAL TEMroFAL INI'EGRATION OF THE TRANSIENl' DYNAMIC KERNELS 
FOR LINEAR TIME INl'ERroLATION 

Assuming the field variables to vary linearly during a time step, a 

field variable f(x,'r) can be expressed as: 

N 

l [M1f n- 1 (x) + ~fn(x)] 
n=1 

(02.1) 

where M1 and ~ are the temp:>ral shap functions, and are of the form: 

(02.2) 

As rrentioned in Appendix 01 and Chapter VIII (Section 3), at each time 

step only the effects of the dynamic history of the first time interval on 

the current time node needs to be calculated. Therefore, for n = 1 <i.e. 

(02.3 ) 

The analytical titre integrations related to 0 1 ('1:') are same as those 

described in Appendix 01 and the time integrations related to '1:'01 ('1:') are 

presented as follows. 
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Time-function 1 (eq. 01.2): 

~T&(T _ ~ _ r/C)~01(~)d~ = (T - r/C)01(T - rIc) 

o 

Time-function 2 (eg. 01.3): 

1/c2 
= J A(T - Ar)01(T - Ar)dA 

1/c1 

1/c2 1/c2 
= J TA01 (T - Ar)dA - J rA201(T - Ar)dA 

llcl I llcl 

(02.4) 

(02.5) 

where the term is evaluated in the same way as 

described in Appendix 01. and the second term is evaluated as follows. 

(02.6) 

where 
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if T < rlc1 

T3 1 =--- if T > rlc1 and T < r/c2 

1 1 =--- if T > r/c2 (02.7) 

The second term on the right hand side of equation (02.6) can be 

obtained in a similar manner. 

Time function 3 (eg. 01.4): 

(02.8) 

Time function 4 (eq. 01. S) .. 
The temp:>ral integrations involving the time function 4 (i.e. 5CT - 'I: 

- rIc» are approximated by using a backward finite different scheme as 

follows: 

naT 
J &(T - 'I: - r/c)f(x,'I:)d'l: 

(n-1)4T 

naT 
= J &(T - 'I: - r/c)f(x,'I:)d'l: 

(n-1)4T 

0-6 
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