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ABSTRACT

Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We
investigate this possibility about fully 3D null points.
Aims. We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its
propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode.
Methods. A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoa-
coustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved
using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coor-
dinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of
the WKB method.
Results. An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for
both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the
equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by
the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point.
Conclusions. Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we
conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.
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1. Introduction

An abundance of observational data from solar instruments in-
cluding SOHO (e.g. Ofman et al. 1997; DeForest & Gurman
1998), TRACE (e.g. Nakariakov et al. 1999; De Moortel et al.
2000) and Hinode (e.g. Ofman & Wang 2008) confirms the
existence of magnetohydrodynamic (MHD) wave motions in
the coronal plasma (see also reviews by De Moortel 2005;
Nakariakov & Verwichte 2005; Ruderman & Erdélyi 2009;
Goossens et al. 2011; De Moortel & Nakariakov 2012). MHD
wave theory suggests that the corona potentially supports a wide
variety of distinct classes of wave motions, namely the Alfvén
wave, and fast and slow magnetoacoustic waves. However, the
applicability and appropriateness of such classifications has re-
cently provoked intense discussion, for instance reports of hav-
ing observed Alfvén waves in the corona (Tomcyzyk et al. 2007;
De Pontieu et al. 2007) are contested by, e.g., Erdélyi & Fedun
(2007) and Van Doorsselaere et al. (2008).

The “classic” terminology of MHD waves originates in the
analysis of modes supported by magnetically-unidirectional, ho-
mogeneous plasmas of infinite extent which consider either
plane wave solutions or utilise the method of characteristics
(viz. Riemann decomposition; examples of such analyses can
be found in, e.g. Friedrichs & Kranzer 1958; Lighthill 1960;
Cowling 1976; Goedbloed & Poedts 2004). Here, three distinct
modes are permitted, the Alfvén mode, and the fast and slow
magnetoacoustic, and their behaviour and nature is well under-
stood. For a low-β plasma, it is found that the Alfvén wave is
a transverse, purely-magnetic wave, propagating at the Alfvén

speed, guided by the magnetic field. The fast magnetoacoustic
wave is found to propagate roughly isotropically at the fast speed

(cF =

√

c2
A
+ c2

S
, cF ≈ cA where β ≪ 1), and can travel along

and across magnetic fieldlines. The slow magnetoacoustic wave
propagates longitudinally along the magnetic fieldlines, roughly
at the sound speed.

However in the solar corona, effects including gravitational
stratification, inhomogeneous density profiles and multiple-
source magnetic field geometries call into question whether
these three, classical modes are still valid. The departure to inho-
mogeneity typically introduces a variety of phenomena such as
resonant absorption (in the corona see, e.g., Ionson 1978, 1982,
1983; Hollweg 1984; Ruderman & Roberts 2002) and phase
mixing (e.g. Heyvaerts & Priest 1983), all of which blur the dis-
tinction between these separate modes (see also, e.g., Bogdan
et al. 2003; McDougall & Hood 2007; Sousa & Cunha 2008;
Cally & Hansen 2011; Hansen & Cally 2012).

Typically theorists preserve the concept of the three MHD
modes and introduce the concept of conversion and coupling be-
tween the constituent modes as waves encounter certain inho-
mogeneous features. However, as highlighted by Goossens et al.
(2011), we must take care to understand that realistic plasmas,
strictly speaking, do not support three “classic” wave modes but
rather that a propagating MHD pulse encounters situations in
which it assumes transient properties that qualitatively corre-
spond to one (or more) of the homogeneous modes. Conversely,
it should also be possible to locally determine hyperbolic char-
acteristics corresponding to the fast, slow and Alfvén waves
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for any ideal MHD system via Riemann decomposition (for
an overview see, e.g., Goedbloed et al. 2010) although, as dis-
cussed in Goedbloed & Poedts (2004), this is not always analyt-
ically possible for fully inhomogeneous cases (in particular for
non-unidirectional magnetic fields).

As such, it is unclear whether or not the classic MHD modes
exist in the solar atmosphere as discrete entities or if such mode
separation requires specific geometries. For example, as dis-
cussed by Parker (1991), the existence of true Alfvén waves as
per Alfvén (1942) is dependent upon special magnetic geome-
tries, which contain invariant directions. Despite this uncertainty,
a theoretical framework which involves them conceptually is not
necessarily obsolete. Mode interpretation and analysis that re-
lates MHD wave behaviour in inhomogeneous, realistic plasmas
to the comparatively simple, classic waves still has the potential
to be a useful framework.

In this paper, we are specifically interested with the be-
haviour of MHD waves in the vicinity of the 3D magnetic null
point (e.g. Parnell et al. 1996; Priest & Forbes 2000). Null points
are topological features of coronal magnetic fields, predicted by
magnetic field extrapolations such as Beveridge et al. (2002)
and Brown & Priest (2001). At these magnetic null points, the
magnetic induction is zero. Hence, approaching a magnetic null
point, the coronal plasma is highly inhomogenous. In the so-
lar atmosphere, null points have been identified as playing key
roles in many processes, for example; in CMEs (in the magnetic
breakout model, e.g. Antiochos 1998; Antiochos et al. 1999),
magnetic reconnection (e.g. Priest & Forbes 2000) and oscil-
latory reconnection (reconnection driven by wave-null interac-
tions, see McLaughlin et al. 2009; McLaughlin et al. 2012) all
of which are thought to play a role in coronal heating. As both
waves and null points are ubiquitous in the corona (Close et al.
2004; Longcope & Parnell 2009; and Régnier et al. 2008, give a
rough estimates of 1.0−4.0 × 104 null points) wave-null interac-
tions are inevitable and thus are arguably a fundamental plasma
process in the solar atmosphere. Hence, our present research is
specifically concerned with the extension of classic MHD wave
theory about null points, which in a broader sense contributes
to both the theory of MHD wave behaviour in inhomogeneous
media and the understanding of fundamental aspects of coronal
physics.

MHD wave behaviour in the neighbourhood of magnetic null
points have been extensively studied in 2D models. Bulanov
& Syrovatskii (1980) performed the first investigation of MHD
behaviour about a 2D null and noted that in a 2D geometry
the motions governing the Alfvén mode and the fast magnetoa-
coustic modes are decoupled, permitting analysis that considers
the modes separately. The transient features of fast and Alfvén
waves in various 2D null point geometries within a β = 0 plasma
were studied extensively in a series of papers by McLaughlin
& Hood (2004, 2005, 2006a). Again, these authors found the
two modes decoupled and identified key propagation features for
each mode. The fast wave propagates isotropically (at the same
characteristic speed both across and along magnetic field lines),
with behaviour dictated by the Alfvén-speed profile, propagating
from regions of high to low Alfvén speed resulting in a refrac-
tion effect which focuses the wave energy into the null point.
Meanwhile, the Alfvén wave is confined to follow magnetic
fieldlines, thus leading the wave energy to accumulate along the
separatrices. Due to the resulting current build-up in these re-
gions, these papers concluded that magnetic null points are likely
locations for localised heating events in the corona. β � 0 and
nonlinear behaviour has also been investigated by McLaughlin
& Hood (2006b) and McLaughlin et al. (2009) respectively.

A comprehensive overview of the whole topic is given in the
review paper of McLaughlin et al. (2011a).

Of course, 2D models only give an initial grounding in the
physics of realistic null points and for a full understanding we
must turn to 3D models (as singularities, null points are in-
escapably 3D and any 2D X-point configuration in fact only
captures the physics of a null line of infinite extent). It is not
clear to what extent the characteristics and behaviour of waves
about 2D null points transfer to the fully 3D case, and surpris-
ingly few papers have been written that address MHD wave be-
haviour about a fully 3D null point. Most papers have focused on
the dynamics of current accumulation over time (in an attempt to
locate regions where reconnection is most likely to occur) rather
than focus on the transient propagation features of the individual
modes.

Galsgaard et al. (2003) consider a proper, β = 0 null point
and introduce a twist wave (what they call an Alfvén wave)
which is generated about the spine and eventually accumu-
lates on the fan (perhaps analogous to Alfvén waves behaviour
around 2D null points). In addition, they observe a small amount
of current accumulation at the null itself, which they suggest is
due to nonlinear generation of a fast wave. No linear coupling
between wave modes is observed, and in their linear analysis
they find that the wave equations for the fast and Alfvén modes
decouple. However, this is not surprising since their proper 3D
null has azimuthal symmetry, and so the system is actually 2.5D,
not fully 3D.

Pontin & Galsgaard (2007), Pontin et al. (2007) and
Galsgaard & Pontin (2011a,b) performed numerical simulations
in which the spine and fan of a proper 3D null point are sub-
jected to rotational and shear perturbations. They found that rota-
tions of the fan plane lead to current density accumulation about
the spine, and rotations about the spine lead to current sheets
in the fan plane. In addition, shearing perturbations lead to 3D
localised current sheets focused at the null point itself. Again,
this is in good agreement with what we may expect for MHD
wave behaviour from the 2D studies, i.e. current accumulation
at specific, predictable parts of the magnetic topology.

The first study of MHD wave behaviour in the neighbour-
hood of a fully 3D null point was investigated by McLaughlin
et al. (2008). These authors examine the fast and Alfvén waves
about both proper (i.e. 2.5D) and improper (fully 3D) null
points. The authors utilise the WKB approximation to deter-
mine the transient properties of the modes in a linear, β = 0
plasma regime. Their findings strongly suggest that the features
of MHD waves about 3D nulls are not that different to the 2D re-
sults: the fast wave propagates across magnetic fieldlines accord-
ing to the Alfvén-speed profile and the Alfvén wave is confined
to magnetic field lines, leading to the waves accumulating in par-
ticular topological regions of the null point. However, their im-
plementation of the WKB method is unable to address the ques-
tion of whether modes couple in the fully 3D geometry, since
their first-order WKB solution implicitly precludes the possibil-
ity and constrains the waves to see the magnetic field as locally
uniform.

Thus, as it stands the question of what is the true behaviour
of MHD waves in the neighbourhood of fully 3D magnetic null
points remains unanswered. Specifically, what is the nature of
the propagation and evolution of each MHD wave and, critically,
what is the efficiency of mode-coupling and/or conversion due to
the magnetic geometry and/or due to nonlinear effects?

This paper investigates the behaviour of fast magnetoacous-
tic waves about fully 3D null points via numerical simulations
and looks for evidence of coupling to the Alfvén mode in any
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Fig. 1. Left: the azimuthally symmetric proper 3D null point (ǫ = 1). Right: an improper 3D null point where fieldlines are predominantly aligned
with the x-axis (ǫ = 0.5).

form (e.g. linear, nonlinear and due to the 3D magnetic geom-
etry). The paper is structured as follows: Sect. 2 outlines the
specifics of the model and is subdivided into sections on the
structure of the null points considered (Sect. 2.1), the mathe-
matical model (Sect. 2.2), the method for isolating individual
wave modes (Sect. 2.3), the specifics of the numerical solution
(Sect. 2.4) and a brief outline of the supporting WKB solution
(Sect. 2.5). Sections 3 and 4 present the results of the simula-
tions for the improper and proper radial null points respectively,
and the conclusions are presented in Sect. 5.

2. Mathematical model

2.1. Magnetic null points

In this paper, we investigate MHD wave behaviour about 3D po-
tential magnetic null points. In Cartesian coordinates, these null
points take the form:

B =
[

x, ǫy,− (ǫ + 1) z
]

(1)

where the parameter ǫ is related to the eccentricity of the mag-
netic field lines, controlling the direction in which they predom-
inantly align. Parnell et al. (1996) investigated and classified the
different types of linear magnetic null points that can exist (our
ǫ parameter is called p in their work). For Eq. (1), the null point
itself, i.e. B = 0, occurs at the origin.

Priest & Titov (1996) identified two key topological features
present near any 3D null point: the spine and the fan plane. The
spine is an isolated fieldline that approaches, or leaves, the null
point along the z-axis. In this paper, we only consider ǫ > 0 to
restrict our attention to positive null points, and as such the spine
represents fieldlines approaching the null from above and below
the z = 0 plane. Thus, the z = 0 plane, known as the fan, consists
of radial field lines, confined to the z = 0 plane and pointing
radially away from the null point.

The eccentricity parameter ǫ alters the field topology as
follows:

• For ǫ = 1, the magnetic null point has azimuthal symmetry
about its spine, with no prefered direction for fieldlines, and
is known as a proper null. Thus, as mentioned above, this is
actually a 2.5D null point.
• Null points which deviate from this cylindrical symmetry

are known as improper nulls. For 0 ≤ ǫ ≤ 1 the fieldlines
curve to run parallel to the x-axis, and for ǫ ≥ 1 curve to run
parallel to the y-axis.

• For ǫ = 0, we recover the simple 2D null point in the
xz-plane, with a null line running through x = z = 0.

See Parnell et al. (1996) for more comprehensive information on
the classification of different types of 3D null.

In this paper, we seek to determine the behaviour of
fast MHD waves about potential 3D null points in the most
general terms possible. However, analytical progress is unlikely
when considering a completely general null point so we con-
sider two different, specific null points that capture the range
of topologies possible. The left panel of Fig. 1 shows the mag-
netic field line structure of our first choice: the proper ǫ = 1 null
point (chosen for its azimuthally-symmetric fieldlines, which
are (below) exploited in analytical approaches). The right hand
panel shows the second: an improper null defined by ǫ = 0.5.
Here fieldlines are predominantly aligned parallel to the x-axis,
and by comparison we address the question of how MHD wave
behaviour alters with the field topology and eccentricity.

2.2. Governing MHD equations

The three-dimensional, nonlinear, ideal, adiabatic MHD equa-
tions are solved numerically for a β = 0 plasma. In most of the
solar corona the plasma-β is very low, (β≪ 1, Gary 2001) and so
the β = 0 approximation is arguably valid. Here, we are specif-
ically concerned with addressing whether the 3D magnetic field
about realistic null points introduces behaviour absent in pre-
vious 2D models. Hence, in this study we utilise the β = 0 ap-
proximation intentionally to prohibit the introduction of the slow
mode and restrict our attention to the behaviour of fast magne-
toacoustic wave and its interplay with the Alfvén mode, on the
understanding that the results presented are a first step towards
understanding how waves behave at realistic null points in the
corona; which are both 3D and have β � 0.

Thus, the governing equations are as follows:

ρ

[

∂u

∂t
+ (u · ∇) u

]

=

(

∇ × B

µ

)

× B,

∂B

∂t
= ∇ × (u × B),

∂ρ

∂t
= −∇ · (ρu),

∂p

∂t
= −u · ∇p − γp∇ · u. (2)
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Here, standard MHD notation applies: u is plasma velocity,
p is plasma/thermal pressure, ρ is density, B is the magnetic
field/induction, γ = 5/3 is the adiabatic index, and µ is the
magnetic permeability.

We consider an equilibrium state of ρ = ρ0, p = p0 (where ρ0

and p0 are constants), u = 0 and equilibrium magnetic field
B = B0. Finite, small perturbations of amplitude α ≪ 1 are
considered in the form ρ = ρ0 + αρ1(r, t), p = p0 + αp1(r, t),
u = 0 + αu(r, t) and B = B0 + αb(r, t) and a subsequent nondi-
mensionalisation using the substitution u = vu∗, ∇ = ∇∗/L,
B0 = B0B

∗
0
, b = B0b

∗, t = tt∗, p1 = p0 p∗
1

and ρ1 = ρ0ρ
∗
1

is per-

formed, with the additional choices v = L/t and v = B0/
√
µρ0.

The resulting nondimensionalised, governing equations of the
perturbed system are:

∂u

∂t
= (∇ × b) × B0 + N1

∂b

∂t
= ∇ × (u × B0) + N2

∂ρ1

∂t
= −∇ · u + N3

∂p1

∂t
= −γ∇ · u + N4

N1 = (∇ × b) × b − ρ1

∂u

∂t
− (u · ∇) u

N2 = ∇ × (u × b)

N3 = −∇ · (ρ1u)

N4 = u · (∇p1) − γp1 (∇ · u) (3)

where terms Ni are the nonlinear components correct to O(α2).
The star indices have been dropped, henceforth all equations are
presented in a nondimensional form. The equations are merged
into one governing PDE:

∂2
u

∂t2
= {∇ × [∇ × (u × B0)]} × B0 + N

N = {∇ × [∇ × (u × b)]} × B0

+ {∇ × [∇ × (u × b)]} × b + (∇ × b) × [∇ × (u × B0)]

+ (∇ · u − u · ∇) (∇ × b) × B0

−ρ1 {∇ × [∇ × (u × B0)]} × B0

− [(∇ × b) × B0 · ∇] u. (4)

The first term dominates the linear regime of O (α) and the
terms N represent nonlinear terms of O(α2).

This study utilises numerical solutions of the full nonlin-
ear MHD Eqs. (2), using the numerical method detailed in
Sect. 2.4. In conjunction, analytical treatment of wave Eq. (4)
derived via second-order perturbation theory is used to create a
special coordinate system that will isolate and identify individual
wave modes (Sect. 2.3), create a WKB approximation (Sect. 2.5)
and to seek analytical confirmation of observed phenomena in
the numerical simulations where possible (Appendix A).

2.3. Isolating MHD modes

This paper investigates the transient MHD mode behaviour
about a general 3D null point as well as the possible mode
coupling/conversion that may occur. To do so, it is necessary
to construct a novel coordinate system that allows individual,
pure MHD wave modes to be generated, identified and tracked.
In turn, such distinction requires a clear definition of the possible
modes that can occur.

As outlined in Sect. 1, the concept and terminology of the
three classes of MHD wave (Alfvén, fast and slow) that orig-
inated within a homogenous MHD plasma description still re-
mains valid and useful in describing inhomogenous media, al-
though distinguishing between the individual modes can become
increasingly difficult depending upon the exact nature of the
inhomogenity. The β = 0, uniform density, 3D magnetic null
points under consideration in this paper are very specific exam-
ples of plasma inhomogenity, namely that of a nonuniform mag-
netic topology. Hence, the behaviour of the two linear waves sus-
tainable here (Alfvén and fast) is solely due to the Lorentz force,
and as such we find that the most appropriate and useful defini-
tions of, and distinctions between, the two modes are purely in
these terms.

The nondimensionalised Lorentz force:

F = (∇ × B) × B = (B · ∇) B − ∇
2

(B · B) (5)

is the sole driving force in our β = 0 system, and is denoted F.
The first term of the right hand side of Eq. (5) can be interpreted
as magnetic tension, and the second term is a gradient in mag-
netic pressure. We note that the force has no term parallel to the
magnetic induction (F · B = 0) and it follows that no β = 0
MHD wave can be driven by or associated with perturbations in
this direction, i.e. they are all perpendicular perturbations rela-
tive to total magnetic field. Thus, we define our two waves as
follows:

1) the (linear) Alfvén wave is driven only by magnetic tension.
This results in a wave that propagates anisotropically as a
transverse wave, confined to and guided along the magnetic
fieldlines;

2) the (linear) fast magnetoacoustic wave is driven both by
magnetic tension and magnetic-pressure gradients. It prop-
agates isotropically via a mixture of transverse and longitu-
dinal motions (due to both magnetic tension and magnetic-
pressure gradient respectively).

These definitions are used for the specific purpose of creat-
ing a special orthogonal coordinate system that can be used
to distinguish between these two modes. Note that this will
not be valid along the spine or along the fan plane, as here
the waves are degenerate: at these locations both the fast wave
and Alfvén wave propagate only as transverse, tension-driven
waves. Elsewhere, such a coordinate system can be obtained by
exploiting a mathematically-invariant direction.

For instance, if we consider initial perturbations to the equi-

librium magnetic field (B̂0) in an invariant direction denoted êi,
then due to ∂/∂êi = 0, the magnetic-pressure gradient is elim-
inated. As such, this direction is inextricably linked with the
Alfvén mode as per our definition, i.e. perturbations in this di-
rection give rise to waves driven only by magnetic tension that
propagate as transverse waves along magnetic field lines. The
existence of an invariant direction is just as much a physical re-
quirement for the existence of Alfvén waves as it is a convenient
mathematical method for isolating them. Various authors have
stated that in the absence of such an invariant coordinate, only
the magnetoacoustic waves can exist, and hence only certain spe-
cial topologies permit the Alfvén mode (see, e.g., Parker 1991;
Van Doorsselaere et al. 2008; Goossens et al. 2011).

Alternatively, we can consider perturbations in a direction
that is perpendicular to both B0 and êi. Here both magnetic
pressure and magnetic tension can be present and thus we as-
sume this direction is associated with the fast mode as per our
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definition. That is to say, both magnetic tension and magnetic-
pressure gradients sustain an isotropic wave that propagates via
longitudinal and transverse motions.

To reiterate: in this paper we aim to construct a special co-

ordinate system, for the 3D null, of the form B̂0, êi and êi × B̂0,
such that motions in the êi-direction correspond to the Alfvén

mode and that motions in the êi× B̂0-direction correspond to fast
mode.

Similar special coordiante systems have been previously
utilised in various 2D MHD models, an example of which is the
coordinate system used by McLaughlin & Hood (2004, 2005,
2006a) to drive pure fast and Alfvén modes at a 2D X-point.
In fact, the essence of any 2D mathematical model is to im-
pose an obvious invariant direction, and thus facilitating the cre-
ation of such a coordinate system. However, for a fully 3D null
point (ǫ � 0, ǫ � 1), there is no obvious invariant direction
and, unlike 2D models, there is no clear way to discern which
of the directions perpendicular to B0 would be associated with
unique MHD wave modes.

We look for clues in the proper (ǫ = 1) null case, which has
obvious azimuthal symmetry. Considering the proper null point
in cylindrical polar coordinates reduces the problem to 2.5D. We
first seek to find the coordinate system which corresponds to
unique wave modes in this specific case, then look for a gener-
alised system (of which this would be a specific case) that would
work with any 3D null point.

The equilibrium magnetic field with ǫ = 1 rephrased in
cylindrical polars is B0 = [r, 0,−2z] where r2 = x2 + y2. Under
our definition, the Alfvén wave will be associated with the in-
variant direction θ̂. Thus, it follows that the fast wave is asso-
ciated with the direction that completes the orthogonal set, i.e.

θ̂ × B0. Considering the linear components of the wave Eq. (4)

parallel to the orthogonal vectors θ̂, B0 and θ̂×B0, in cylindrical
polars for ǫ = 1 leads to three decoupled wave equations govern-
ing the linear Alfvén, fast and slow (absent) mode respectively:

∂2
u

∂t2
· θ̂ =

[

−1 + r
∂

∂r
+ r2 ∂

2

∂r2
+ 4z

∂

∂z
+ 4z2 ∂

2

∂z2
− 4rz

∂2

∂r∂z

]

vθ

∂2
u

∂t2
·
(

θ̂ × B0

)

= −
(

r2 + 4z2
)

[(

4
∂

∂z
+ 2z

∂2

∂z2
− 2z

r2
+

2z

r

∂

∂r

+ 2z
∂2

∂r2

)

vr +

(

3
∂

∂r
+ r
∂2

∂r2
+ r
∂2

∂z2

)

vz

]

∂2
u

∂t2
· B0 = 0. (6)

This treatment offers a clear demonstration of (linearly) decou-
pled waves for this specific case and provides confirmation that

perturbations in θ̂ will be associated with the Alfvén wave and

perturbations in θ̂ × B0 with the fast wave. Such a treatment in
cylindrical polars has been used in previous studies of proper
magnetic null points, for example Galsgaard et al. (2003) utilised
a symmetric helical motion (in our terminology, a perturbation

in θ̂, to study an Alfvén wave propagating about a proper, ǫ = 1
null point). However, it is not obvious how this method would
transfer to the more general improper null case.

2.3.1. Special coordinate system: A, B0 and C = A × B0

The flux function/magnetic vector potential is defined such that
B0 = ∇×A. For any simple, single potential null set-up, the mag-
netic helicity is zero (i.e. A ·B0 = 0) and hence A is aligned with
the invariant direction. Thus, we hypothesise that about potential

Fig. 2. Fieldlines of magnetic induction B0 (blue) and the field C (red)
perpendicular to both the magnetic induction and the flux function,
in the case ǫ = 1 for the y = 0 plane. Due to azimuthal symmetry
other such planes have identical fieldline structure. The flux function A

(green) in this case is azimuthal about the spine, running antiparallel to θ̂

above the fan plane and parallel to θ̂ below (⊗ corresponds to a vector
directed towards the point of view, and ⊙ away). These vector fields are
everywhere perpendicular thus suitable for forming an orthogonal coor-
dinate system, although fields C and A are undefined on the spine and
fan plane.

null points the (linear) Alfvén wave is always associated with
the flux function direction. For the ǫ = 1 null, we find the flux
function, and thus the special coordinate system, would be (in
cylindrical polars):

B0 = [r, 0,−2z]

A = [0,−rz, 0] ∝ θ̂
C =

[

2rz2, 0, zr2
]

∝
(

θ̂ × B0

)

(7)

and we confirm that the vectors form an orthogonal set A · B0 =

A · C = B0 · C = 0. Thus, to generate and isolate a pure Alfvén

mode, we consider perturbations in the Â-direction only, and
similarly for the pure fast wave, we must consider perturbations

in the direction Ĉ, where C = A × B0. The system for ǫ = 1 can
be considered a special case of cylindrical polars that changes
about the fan plane, and is sufficiently similar to be consistent
with the decoupled linearised wave equations for the cylindrical
polars (6). Figure 2 illustrates the vector fields for the ǫ = 1 case.

By determining the flux function for general ǫ, we extend
this to create an orthogonal, curvilinear coordinate system that
is based on the equilibrium magnetic field (B0), the flux func-
tion (A) and their cross product (C = A × B0). These general
vector fields are found to take the Cartesian form:

B0 =
[

x, ǫy,−(ǫ + 1)z
]

A =
[

zy,−ǫxz, (1 − ǫ)xy
]

C =
[

Cx,Cy,Cz

]

Cx = x
[(

ǫ2 − ǫ
)

y2 + (ǫ + 1) z2
]

Cy = y
[

(1 − ǫ) x2 + (ǫ + 1) z2
]

Cz = ǫz
(

x2 + y2
)

(8)

with unit normals B̂ = B/|B|, Â = A/|A| and Ĉ = C/|C|. Note
that on the line of the spine (x = y = 0) and the fan plane (z = 0),
the identity B = ∇ × A no longer holds, rendering the system
locally invalid. As such, the spine or fan cannot be used to drive
pure modes under this coordinate system. However, there is a
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good physical explanation for this, due to a degeneracy between
the fast and Alfvén modes on the fan plane and spine, i.e. a wave
propagating along the spine or along one of the fieldlines on the
fan plane is driven by tension only, as a transverse oscillation,
and so along these specific/particular fieldlines the fast mode is
degenerate with the Alfvén mode.

This special coordinate system (Eq. (8)) is at the heart of
the work presented in this paper. It is used in the following
manner: Initially, it is employed to introduce a pure, linear, fast
magnetoacoustic wave at a computational boundary by driving

a velocity pulse in the direction Ĉ. Numerical experimentation
(Sects. 3 and 4) confirm that this special orthogonal coordinate
system successfully isolates the fast mode. The coordinate sys-
tem is then used to seek evidence of linear and/or nonlinear
coupling to the Alfvén mode, i.e. if we drive a pure fast wave
(u

Ĉ
� 0, u

Â
= 0) and mode conversion occurs then under our

coordinate system velocity components in the direction Â will
become manifest.

2.4. Numerical solution

Nondimensionalised versions of the governing nonlinear MHD
Eqs. (3) are solved using the LARE3D numerical coe (a
Lagrangian-Eulerian remap scheme for MHD, see Arber et al.
2001) with magnetic equilibria corresponding to both proper and
improper 3D null points. Each scenario introduces a pure, planar
fast magnetoacoustic wave pulse along the upper z-boundary, by
driving the following sinusoidal profile:

u
Ĉ
= α sin (2πt), u

Â
= 0, u

B̂0
= 0 for 0 ≤ t ≤ 0.5. (9)

Numerical tests determined that the amplitude α = 0.001 was
sufficiently small relative to other parameters to generate a lin-
ear wave and for the rest of this paper we set α = 0.001. The
other boundary conditions are set as zero-gradient conditions.
The simulations utilise a uniform numerical grid with domain
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 2 and 720 × 720 × 1080 grid
points, giving an effective resolution of δx ≈ δy ≈ δz ≈ 1/360.
The results presented focus into the region −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1, −1 ≤ z ≤ 1, i.e. a subset of the full numerical
domain.

Since Ĉ is undefined along the spine and the fan, driving u
Ĉ

generates a planar wave with a small hole about the spine (for
the top-boundary driven simulations) or a gap along the fan (for
the side-driven simulations). This is essential to avoid the mode
degeneracy on the spine and/or fan-plane fieldlines.

After the near-planar pulse is generated, a small trailing
wake is also introduced due to dispersion (e.g. Uralov 2003).
Such a wake does not impact upon the dynamics of the main/lead
pulse.

2.5. WKB approximation

Semi-analytical WKB approximations of fast waves about both
proper and improper null points were previously considered
by McLaughlin et al. (2008). Succinctly, the WKB method
is an asymptotic series approximation for low-frequency wave
forms and has previously proven useful in understanding null
point models. The WKB solution for fast waves is presented
in 3 overlaying our numerical results. More information regard-
ing the WKB method (Wentzel 1926; Kramers 1926; Brillouin
1926) can be found in Bender & Orszag (1978).

However, McLaughlin et al. (2008) only consider the first-
order WKB approximation, and thus their WKB implementa-
tion cannot account for the possibility of mode coupling, which
is one of the chief concerns of this paper. As such, comparison to

the WKB method serves a two-fold purpose: if the solutions dis-
agree it indicate possible occurrences of mode coupling or, alter-
natively, it indicates numerical inaccuracies. In addition, due to
our special coordinate system being undefined on the spine and
fan, the near-planar waves presented in the numerical solutions
have the aforementioned gap around the spine. However, the
mathematical nature of the WKB solution allows one to avoid
the question of whether it is possible to drive a pure mode on
the spine or fan and simply determines which path a fluid ele-
ment would take if it were possible. As such, discrepancies be-
tween the WKB solution and numerical solutions on the spine
or fan plane are entirely to be expected and indicative of neither
coupling nor numerical error.

3. Improper null

Let us first consider the improper radial null point, in the specific
case of ǫ = 0.5, where a velocity pulse (Eq. (9)) is driven in u

Ĉ

along the top computational boundary (i.e. z = 2). The resultant
propagation is seen in Figs. 3 and 4, which figures show |u| in the
planes defined by both x = 0 and y = 0 respectively.

In both Figs. 3 and 4 we observe a refraction effect which fo-
cuses the wave towards the null point. This refraction/wrapping
effect has previously been identified as a key feature of the be-
haviour of the fast magnetoacoustic mode about 2D nulls (e.g.
McLaughlin & Hood 2004) and is dictated by the Alfvén-speed
profile around the null point, namely that the wave propagates
from regions of high to low Alfvén speed.

Here, the x = 0 plane (Fig. 3) shows the wave propa-
gating in the region with the “gentlest” Alfvén-speed profile:

c2
A
= 1

4

(

y2 + 9z2
)

and the y = 0 plane (Fig. 4) shows the wave

propagating in the region with the strongest Alfvén-speed pro-

file: c2
A
= 1

4

(

4x2 + 9z2
)

. This difference in Alfvén-speed profile

directly corresponds to the difference of the rate of refraction in
these figures, i.e. we observe the y = 0 plane (Fig. 4) to “wrap”
around the null point more readily than that in the x = 0 plane
(Fig. 3).

The WKB solution for the leading edge of a planar fast wave
is also shown in Figs. 3 and 4 (in white). The agreement be-
tween the leading edge of the wave front observed in |u| and
the WKB solution near the null point is very good: the (nu-
merical) wave experiences refraction along the same profile and
at the same rate as prescribed by the analytical approximation.
Towards the boundaries the numerical front increasingly lags be-
hind the WKB front as time evolves: this not a physical attribute
of the fast wave but rather a consequence of the boundary con-
ditions. However, this does not affect the key behaviour close to
the null where the agreement between the two solutions is good.
There is a further discrepancy where the WKB solution exists
across the spine whereas the pulse does not. However, this is ex-
pected as we purposefully did not drive any component along
the spine due to the mode degeneracy discussed in Sect. 2.4.

The agreement between the numerical solution and
the WKB solution (which itself precludes mode coupling)
suggests that the pulse is propagating only as the fast magnetoa-
coustic wave and thus no conversion to the Alfvén mode occurs.
To verify this, we now utilise the special coordinate system to
inspect the individual constituent modes of the pulse.

3.1. Ĉ: proxy for the fast mode

We now compare |u| and |u
Ĉ
|; viz. the whole disturbance and the

constituent fast mode. We find that the spatial extent, i.e. posi-
tions of the leading, middle and trailing wavefronts, of |u

Ĉ
| is
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Fig. 3. Contour plots illustrating the propaga-
tion of |u| about the improper 3D null point
for the x = 0, yz-plane. The position of the
lead wave front according to the WKB solu-
tion shown in white, which is in good agree-
ment with the numerical results (sufficiently far
from the boundary).

Fig. 4. Contour plots illustrating the propaga-
tion of |u| about the improper 3D null point
for the y = 0, xz-plane. The position of the
lead wave front according to the WKB solu-
tion shown in white, which is in good agree-
ment with the numerical results (sufficiently far
from the boundary).

identical to that of |u| at any given time, and that the difference
in magnitude between the two is O(α2). Hence, we observe its
(linear) transient behaviour about a proper null point to be domi-
nated by the refraction effect, focusing the pulse at the null point.

As the difference between |u| and |u
Ĉ
| is non-zero, it is clear that

nonlinear effects, possibly O(α2) mode conversion, are present
but the two are linearly equivalent. We now investigate the other
orthogonal directions.
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Fig. 5. The nonlinear velocity component |u
B̂0
|

for the x = 0 cut of the improper null point: a
small disturbance is created that mostly occu-
pies the same geometry as |u

Ĉ
|. Each contour is

scaled relevant to the amplitude at the specific
times to enhance the contrast of the features.

3.2. Â: proxy for the Alfvén mode

By considering |u
Â
|, we find that there is no velocity perturbation

in this direction at any location or time in the simulation. Hence,
no figure is presented, since |u

Â
| is identically zero for all time.

As detailed in Sect. 2.3, this velocity component is in the di-
rection of the Alfvén wave, and as such the results indicate that
a pure fast wave propagating about an improper 3D null does
not generate an Alfvén wave due to either linear or nonlinear
coupling.

3.3. B̂0 : proxy for the field-aligned motions

Figures 5 and 6 show the velocity component in |u
B̂0
| (motions

aligned with the equilibrium magnetic field) over the same time
scale as Figs. 3 and 4. We see that the wave shown is a non-
linear disturbance of O(α2) that, bar a small trailing wake, is
confined to within the same spatial locations as the linear fast
wave. However, this nonlinear disturbance is of a different ge-
ometry to that of the fast wave and splits into multiple peaks on
the approach to the fan plane. These multiple peaks appear to be
akin to the lobes seen in McLaughlin & Hood (2006b). During
the evolution, we find that the disturbance of O(α2) is entirely
sustained by and dependent upon the propagating fast pulse of
O(α), which acts as a progenitor wave that creates this daughter
disturbance instantaneously as it propagates.

As the fast wave propagates about the proper null point,
it causes small disturbances to the equilibrium (which can be
thought of as both a force free magnetic field and a convec-
tive/flow free fluid) as it passes. This effect is the subsequent
field/fluid response (as a consequence of frozen flux the two

are unsurprisingly connected) that settles to the initial config-
uration. Due to this dependency on the propagating fast mode
(it eventually returns to zero once the fast wave has passed an
area, as opposed to being generated but then propagating inde-
pendently) we have used the term disturbance when describing
this effect as opposed to wave or mode. The effect responsible
for the nonlinear disturbance is related (but not identical to) what
has been called the ponderomotive effect in MHD literature (see
e.g. Verwichte 1999; Verwichte et al. 1999; McLaughlin et al.
2011b). As this clearly has had no effect on the mode conversion
process (which is absent) this effect is not further investigated.

Note, the numerical experiment was repeated with the driv-
ing of a pure fast wave along one of the faces perpendicular to
the fan plane, i.e. a “side-driven” fast wave. The key results were
found to be the same as those of the top-driven simulation, con-
firming that the coupling and transient behaviour is independent
of spine/plane geometry.

4. Proper null, ǫ = 1

The numerical experiments were also considered for the proper
null point (ǫ = 1). Here, the results where found to be consistent
with, and analogous to, those in Sect. 3, namely that:

1) the whole pulse and the fast wave component, |u| and |u
Ĉ
|,

are spatially identical and linearly equivalent, with a small
difference of O(α2). In both, we find a pulse that re-
fracts along the Alfvén-speed profile, in good agreement
with WKB solution;

2) there is no coupling, linear or nonlinear, to the Alfvén mode
(|u

Â
| is permanently zero throughout);
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Fig. 6. The nonlinear velocity component |u
B̂0
|

as per Fig. 5 corresponding to the y = 0 cut.

3) there propagating fast wave sustains an instantaneous, non-
linear disturbance in |u

B̂0
|.

Additionally, as the proper null point assumes azimuthal symme-
try analytical confirmations of mode decoupling can be obtained
(see Appendix A). The results only differ in the rates of refrac-
tion and time for accumulation at the null point, as the proper
null has a different Alfvén-speed profile.

5. Conclusion

We have studied both the transient properties of fast magnetoa-
coustic waves and the nature of linear and nonlinear mode cou-
pling in the vicinity of two potential 3D null points: the proper
(ǫ = 1) null, which can be treated as a 2.5D problem using cylin-
drical polars, and the fully 3D, improper (ǫ = 0.5) null point.
Regardless of the eccentricity, ǫ, of the null point studied, we
find that:

• an initially pure, linear fast wave exhibits no linear or non-
linear coupling to the Alfvén mode in the neighbourhood of
a 3D null point;
• due to the absence of coupling, the propagation of the fast

wave is entirely dictated by the Alfvén-speed profile which
about a 3D null point leads to a refraction effect, focusing all
the wave energy at the null point itself;
• the propagating fast wave generates and sustains an instanta-

neous and dependent nonlinear field-aligned disturbance.

One of the chief aims of the simulations was to look for evi-
dence of MHD mode coupling about fully 3D (i.e. improper)
null points. Unlike the proper symmetric 2.5D null, it was not

clear from analysis of the MHD equations as to whether wave
modes about improper 3D nulls are coupled due to the asym-
metric magnetic topology, nor whether these coupling terms are
linear or nonlinear, i.e. it was not clear what the overall general
effect of departing from azimuthal symmetry would have on the
wave dynamics. To address this we have generated a pure fast
magnetoacoustic wave in the vicinity of 3D nulls and analysed
its subsequent propagation. We find that this wave exhibits no
mode coupling to the Alfvén mode at either a linear or nonlin-
ear scale about both the proper (ǫ = 1) and improper null point
(ǫ = 0.5). Further experiments, namely ǫ = 0.25 and ǫ = 0.75
(values ǫ > 1 have analogues in the range 0 < ǫ < 1, and ǫ = 0
recovers the 2D null point), retain these results. Thus, we find
that lack of mode conversion is a general feature of all potential
null points, i.e. magnetic fieldline eccentricity does not facilitate
fast to Alfvén mode conversion.

We additionally find that, in both numerical experiments,
the fast-mode pulse generates and sustains a field-aligned dis-
turbance in |uB0

|. Our analysis shows that this field-aligned dis-
turbance is not self-sustaining: it is an instantaneous daughter
disturbance resulting from the progenitor fast wave. It is evident
that the disturbance in |uB0

| does not act as a mode-conversion
mechanism in the cases considered here, since no signal is ever
generated in |uA|, and the disturbance has no feedback effect
upon the main wave.

Due to the absence of mode coupling, the key features of
fast wave behaviour in the neighbourhood of the ǫ = 0.5, im-
proper null points are fundamentally the same as the behaviour
in 2D, β = 0 null point studies (e.g. McLaughlin & Hood 2004),
despite the inhomogeneous, fully 3D magnetic field. The differ-
ence between propagating fast waves about different potential

A9, page 9 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219850&pdf_id=6


A&A 545, A9 (2012)

null points is due only to the differing Alfvén-speed profiles.
Thus, the propagation of the fast wave is found to be entirely dic-
tated by such profiles, causing the refraction effect which, over
time, focuses all of the wave energy at the null point. This is
confirmed by our numerical simulations and supports the con-
clusions drawn from a 3D WKB approach in McLaughlin et al.
(2008). Note, in the numerical simulations at large time, the
pulse is so close to the null point that the resolution will even-
tually become inadequate. Nonetheless, in our simulations, over
a finite, resolvable time the wave energy accumulates in a small
spatial region around the null point, resulting in an exponential
steepening of current-gradients, hence resistivity will eventually
become non-negligible, resulting in ohmic heating of the local
coronal plasma via resistive dissipation (a conclusion directly
carried-over from 2D studies, see McLaughlin et al. 2011a).
Thus, we conclude that 3D null points are locations for pref-
erential heating by passing fast magnetoacoustic waves.

Wave motions and null points are ubiquitous in the corona
and so these fast wave-null interactions are likely inevitable. The
large body of theory, extended by the results presented here,
indicates that this will result in localised heating events. Thus,
the key question is does this make a signifigant contribution to
coronal heating? To answer this, clear observational evidence
for MHD waves around coronal nulls is needed, a calculation
of resultant heating, and a survey of the prevalence of such
events. Such observations would require the detection of coro-
nal nulls using co-temporal high spatial/temporal imaging and
magnetograms to study oscillations in the vicinity of coronal
null points. It is possible that the Atmospheric Imaging Assembly
and Helioseismic and Magnetic Imager aboard SDO may permit
such a study.

We cannot, however, assume the results presented here hold
in the opposite case, i.e. a similar scenario for an initially pure
Alfvén wave, follows suit. In fact, results of Galsgaard et al.
(2003) report this may not be the case. Such an investigation
will be the subject of a future paper.

Finally, we highlight that sufficiently close to the null point,
as magnetic induction drops off, there will be a region where
the magnitudes of the sound speed and Alfvén speed become
comparable: identified by Bogdan et al. (2003) as the magnetic
canopy, viz. the β = 1 layer. This was investigated for a 2D null
point by McLaughlin & Hood (2006b) and has the effect of in-
troducing the slow magnetoacoustic wave into the system, which
is coupled to the fast wave (but both are still decoupled from the
Alfvén wave). Thus the cold, β = 0 plasma assumption does
not completely capture the physics of MHD waves about real
null points, which must contain a β = 1 layer near the null
point. Thus, to understand wave dynamics about null points in
the corona, it is necessary to extend the model presented here and
see how these results are modified when the β = 0 assumption is
removed.
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Appendix A: Analytical confirmation of decoupling

at the proper null point

In our simulations we find no evidence of any mode coupling
from the fast to the Alfvén mode. In the case of the proper null

point, as it assumes azimuthal symmetry, we can confirm this

analytically by taking the θ̂-component of Eq. (4) considered in
standard cylindrical polars for ǫ = 1:

∂2vθ

∂t2
=

[

−1 + r
∂

∂r
+ r2 ∂

2

∂r2
+ 4z

∂

∂z
+ 4z2 ∂

2

∂z2
− 4rz

∂2

∂r∂z

]

vθ

−2z
∂

∂z

[

∂

∂z
(vθbz − vzbθ) −

∂

∂r
(vrbθ − vθbr)
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∂

∂r
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r
∂
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3
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)]

vθ

+

(

2z

r
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∂vr

∂r
+ 2vz + r
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∂r

)

∂bθ

∂z
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)
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∂r
(rbθ)
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+ρ1

[
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∂
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∂r2
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∂
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+ 4z2 ∂

2

∂z2
− 4rz

∂2

∂r∂z

]

vθ

+ [(∇ × b) × B0 · ∇] vθ. (A.1)

Here, the linear terms O(α) are shown on the first line, and non-
linear terms of O(α2) follow. For the proper null θ̂ ∝ Â, and

so we consider θ̂ which acts as a proxy for Â. For an initial
disturbance that is purely a fast mode disturbance, we take bθ
and vθ as initially zero, yielding ∂2vθ/∂t

2 = 0 for all time. Hence,
Eq. (A.1) states that if bθ = vθ = 0 initially then vθ = 0, and
hence u

Â
= 0 for all time. This provides analytical confirmation

that about the proper null there is no fast mode to Alfvén mode
conversion at either a linear or nonlinear level.
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