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SUMMARY

HIV RNA viral load measures are often subjected to some upper and lower detection limits 

depending on the quantification assays. Hence, the responses are either left or right censored. 

Linear (and nonlinear) mixed-effects models (with modifications to accommodate censoring) are 

routinely used to analyze this type of data and are based on normality assumptions for the random 

terms. However, those analyses might not provide robust inference when the normality 

assumptions are questionable. In this article, we develop a Bayesian framework for censored linear 

(and nonlinear) models replacing the Gaussian assumptions for the random terms with normal/

independent (NI) distributions. The NI is an attractive class of symmetric heavy-tailed densities 

that includes the normal, Student’s-t, slash, and the contaminated normal distributions as special 

cases. The marginal likelihood is tractable (using approximations for nonlinear models) and can be 

used to develop Bayesian case-deletion influence diagnostics based on the Kullback-Leibler 

divergence. The newly developed procedures are illustrated with two HIV AIDS studies on viral 

loads that were initially analyzed using normal (censored) mixed-effects models, as well as 

simulations.
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1. Introduction

Studies of HIV viral dynamics, often considered to be the centerpiece of AIDS research, 

consider repeated/longitudinal measures over a period of treatment routinely analyzed using 

linear and nonlinear mixed-effects models (LME/NLME) to assess rates of changes in HIV-1 
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RNA level or viral load (H. Wu, 2005; L. Wu, 2010). Viral load measures the amount of 

actively replicating virus and its reduction is frequently used as a primary endpoint in 

clinical trials of antiretroviral therapy. However, depending upon the diagnostic assays used, 

its measurement may be subjected to some upper and lower detection limits (hence, left or 

right censored), below or above which they are not quantifiable. The proportion of censored 

data in these studies may not be trivial (Hughes, 1999) and considering crude/ad hoc 

methods, namely, substituting threshold value or some arbitrary point such as midpoint 

between zero and cutoff for detection (Vaida and Liu, 2009) might lead to biased estimates 

of fixed effects and variance components (L. Wu, 2010).

Our motivating datasets in this study are on HIV-1 viral load, (i) after unstructured treatment 

interruption, or UTI (Saitoh et al., 2008) and (ii) set point for acutely infected subjects from 

the Acute Infection and Early Disease Research Program (AIEDRP) program (Vaida and 

Liu, 2009). The former has about 7% observations below (left censored) the detection limits, 

whereas the latter has about 22% lying above (right censored) the limits of assay 

quantifications. As alternatives to crude imputation methods, Hughes (1999) proposed a 

likelihood-based Monte Carlo expectation-maximization (EM) algorithm (MCEM) for LME 

with censored responses (LMEC). Vaida, Fitzgerald, and DeGrut-tola (2007) proposed a 

hybrid EM using a more efficient Hughes’ algorithm, extending it to NLME with censored 

data (NLMEC). Recently, Vaida and Liu (2009) proposed an exact EM algorithm for LMEC/

NLMEC, which uses closed-form expressions at the E-step, as opposed to Monte Carlo 

simulations. A common feature of all these methods is the fidelity to the “Gaussian” 

paradigm for the random effects and within-subject random errors. Even though normality 

may be a reasonable model assumption, it may lack robustness in parameter estimation 

under departures from normality (namely, heavy tails) and/or outliers (Pinheiro, Liu, and 

Wu, 2001). Viral load measurements are often skewed with heavy right (or left) tail, and 

even log transformations on the responses do not render normality. These characteristics 

further complicate analysis of mixed-effects models, because both the (within-subject) 

random error and (between-subject) random effects might contribute to the “shift from 

normality.” For example, Figure 1 (panels a and b) displays density histogram and Q-Q plots 

of empirical Bayes’ estimates of random effects, respectively, obtained by fitting a classical 

LMEC model using R package lmec to the UTI data. The plots reveal subject-specific 

intercepts behaving somewhat symmetrically, with evident outliers (b-outliers) at the level of 

the random effects as well as at the within-subject levels (e-outliers), demonstrated through 

the residual Q-Q plot in Figure 1 (panel c).

In presence of longer-than-normal tails/outliers, popular data transformations (namely, Box-

Cox, etc.) might render normality, or close to normality with reasonable empirical results; 

however, (i) transformation provides reduced information on an underlying data generation 

scheme, (ii) component-wise transformation might not guarantee joint normality, (iii) 

parameters might lose interpretability on a transformed scale, and (iv) transformations may 

not be universal and usually vary with the dataset. Hence from a practical perspective, there 

is a necessity to seek an appropriate theoretical model that avoids data transformations, yet 

presents a ro-bustified “Gaussian” framework. For complete data, some proposals replace 

normality with more flexible classes of distributions, namely, a t-linear mixed model (T-

LME) (Pin-heiro et al., 2001; Lin and Lee, 2006, 2007). From a Bayesian perspective, Liu 
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(1996) discussed a class of robust distributions, called normal/independent (NI) distributions 

(Lange and Sinsheimer, 1993) for multivariate linear regression models and Rosa, Padovani, 

and Gianola (2003) extended it for heavy-tailed LME (NI-LME). Although some results on 

LME/NLME with elliptical distributions have recently appeared in the literature (Russo, 

Paula, and Aoki, 2009), to the best of our knowledge, there seem to be no studies on 

Bayesian inference for NLMEC/LMEC using the NI class. Here, we propose a robust 

Bayesian parametric framework for NLMEC/LMEC and related Kullback-Leibler (K-L) 

influence diagnostics (Peng and Dey, 1995) based on the NI class and apply it to two 

motivating HIV datasets. The term “robustness” is quite extensive, here it is achieved in 

terms of Bayesian parameter estimation. The theoretical justification rests on the facts that 

the NI class stochastically attributes varying weights to each subject, i.e., lower weight for 

outliers (see Web Figure 1) and thus controls the influence of subject-level data on the 

overall inference. Also, every member of the NI class tends to the normal case, for example, 

as the t degrees of freedom → ∞ to, it approaches normality.

The rest of the article proceeds as follows. In Section 2, after a brief introduction of NI 

distributions, we propose the NI-LMEC and related Bayesian inference. Section 3 deals with 

Bayesian inference for NI-NLMEC. Section 4 presents Bayesian model selection tools and 

related case influence diagnostics. The advantage of the proposed methodology is illustrated 

through the two motivating AIDS datasets in Section 5. Section 6 presents a simulation 

study to compare the performance of our proposed methods with other “normality”-based 

methods. Section 7 concludes with some discussions and possible directions for future 

research.

2. Linear Mixed-Effects Models with Censored Responses

2.1 Normal/Independent Distributions

We start with some background on the class of NI distributions as proposed in Lange and 

Sinsheimer (1993). An element of the NI family is defined as the distribution of the p-variate 

random vector y = μ + U−1/2Z, where μ is a location vector, Z is a normal random vector 

with mean vector 0, variance-covariance matrix Σ and U is a mixing positive random 

variable with cumulative distribution function H (u | ν) and probability density function 

(pdf) H(u | ν), independent of Z, where ν is a scalar or parameter vector indexing the 

distribution of U. Note that given U, y follows a multivariate normal distribution with mean 

vector μ and variance-covariance matrix u−1Σ with the pdf of y given by 

NI(y | μ, Σ , ν) = ∫ 0
∞ϕp y; μ, u−1 Σ dH(u | ν), where ϕp( . ; μ, Σ ) stands for the pdf of the p-

variate normal distribution with mean vector μ and covariate matrix Σ. We shall use the 

notation NIp (μ, Σ, H) to indicate that y is a distribution in the NI class. When H is 

degenerate (U = 1), NIp (μ, Σ, H) is normally distributed. The NI family constitutes a class 

of thick-tailed distributions, some of which are the multivariate versions of the Student’s-t, 
slash, and the contaminated normal (CN) distributions (see Web Appendix A for more 

details).
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2.2 Model Specification

Ignoring censoring for the moment, we proceed as in Pinheiro et al. (2001) and Lin and Lee 

(2006) by considering a generalization of the classical normal LME as follows:

yi = Xiβ + Zibi + ϵi, i = 1, …, n, with (1)

bi, ϵi
⊤ NIni + q 0, Diag Σ , σ2Ini

, H , (2)

where subscript i is the subject index; Ip denotes the p × p identity matrix; Diag(A, B) 

denotes a block diagonal matrix whose elements are the square matrices A and B; 

yi = yi1, …, yini

⊤
 is a ni × 1 vector of observed continuous responses for subject i, Xi and Zi 

are known full-rank design matrices of dimensions ni × p and ni × q, respectively; β is a p × 

1 vector of population-level fixed effects; bi is a q × 1 vector of unobservable random 

effects; ϵi is the ni × 1 vector of random errors; and the dispersion matrix D = D (α) depends 

on unknown and reduced parameter vector α. Using the definition of a NI random vector 

and (2), it follows that marginally

bi
i . i . d .N Iq(0, D, H) and ϵi

ind.N Ini
0, σ2Ini

, H ,

i = 1, …, n .
(3)

Conditional on Ui, bi and ϵi are independent, as well as uncorrelated because 

Cov bi, ϵi = E biϵi
⊤ = E E biϵi

⊤ |Ui = 0. In the present formulation, we consider the case 

where the response Yij is not fully observed for all i, j. Let the observed data for the ith 

subject be (Qi, Ci), where Qi represents the vector of uncensored reading or censoring level, 

and Ci the vector of censoring indicators, such that

yi j ⩽ Qi j if Ci j = 1, and yi j = Qi j if Ci j = 0. (4)

For simplicity, we will assume that the data are left censored. The extensions to arbitrary 

censoring are immediate. Following Vaida and Liu (2009), classical inference on the 

parameter vector θ = β⊤, σ2, α⊤, ν⊤ ⊤
 is based on the marginal distribution of yi. For 

complete data, we have that marginally yi
ind.NIni

Xiβ, Σi , H  where Σi = σ2Ini + ZiDZi
⊤. For 

responses with censoring pattern as in (4), we have that yi TNIni
Xiβ, Σi , H; 𝔸 , where 

TNIni
( . ; 𝔸) denotes the truncated NI distribution on the interval 𝔸, where 

𝔸i = Ai1 × …, × Aini, with Aij as the interval (−∞, ∞), if Cij = 0 and (−∞, Qij], if Cij = 1. 
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Specifically, a p-dimensional vector X TNI p(μ, Σ , ν; 𝔸) if its density is given by 

TNI p(x | μ, Σ , ν; 𝔸) =
NI p(x | μ, Σ , ν)

∏r = 1
p ∫ −∞

ar NI p(x | μ, Σ , ν)dx
𝕀(𝔸)(X), where the notation 

∏r = 1
p ∫ −∞

ar =∫ −∞
a1 …∫ −∞

ap  stand for the abbreviation of multiple integrals. For computing the 

likelihood function, the first step is to treat separately the observed and censored 

components of yi. Let yi
o be the ni

o-vector of observed outcomes and yi
c be the ni

c-vector of 

censored observations for subject i with ni = ni
o + ni

c , such that, Cij = 0 for all elements in 

yi
o, and 1 for all elements in yi

c. After reordering, yi, Qi, Xi, and Σi can be partitioned as 

follows: yi = vec yi
o, yi

c , Qi = vec Qi
o, Qi

c , Xi
⊤ = Xi

o, Xi
c  and Σi =

Σi
oo Σi

oc

Σi
co Σi

cc
, where vec(.) 

denote the function which stacks vectors or matrices of the same number of columns. Then 

we have yi
o NI

ni
o Xi

oβ, Σi
oo , H , yi

c |yi
o, ui N

ni
c μi, ui

−1Si , where 

μi = Xi
cβ + Σi

co Σi
oo −1 yi

o − Xi
oβ) and Si = Σi

cc − Σi
co Σi

oo −1 Σi
oc. Now, let Φni

(u; a, A)

and ϕni
(u; a, A) be the cumulative distribution function (left tail) and pdf, respectively, of 

Nni
(a, A) computed at u. From Vaida and Liu (2009) and Jacqmin-Gadda et al. (2000), the 

likelihood function for cluster i (using conditional probability arguments) is given by

Li(θ) = f yi
o θ P yi

c ⩽ Qi
c yi

o, θ

= ∫0
∞

ϕni
yi
o; Xi

oβ, u−1 Σi
oo Φ

ni
c Qi

c; μi, u−1Si dH(u),

and the full likelihood given by 𝓁(θ |y) = ∑i = 1
n logLi(θ) , which would yield maximum 

likelihood (ML) inference through EM-type algorithms. Our proposition uses the Bayesian 

paradigm for a number of reasons, primarily motivated by the computational simplicity 

achieved. Although both the EM-type algorithms and full Bayes’ approach uses “often 

identical” Gibbs steps, the M-step in the EM routine for complicated LMEC/NLMEC 

models is computationally cumbersome, and hence a single run of the EM routine is often 

more time consuming (Liu et al., 2010) than the Bayesian updating, assuming equal number 

of Gibbs iterations. The high-dimensional integrals in our likelihood function further 

complicates ML-type estimation (involving multiparameter variance estimation through 

observed Fisher information inversion), except under normality and linearity assumptions. 

Often, asymptotic theory of maximum likelihood estimation (MLE) may not be applicable 

for moderate-size censored data, and it is often difficult to develop or justify the theoretical 

properties of these classical approaches. On the contrary, recent developments in Markov 

chain Monte Carlo (MCMC) methods facilitate easy and straightforward implementation of 

the Bayesian paradigm through conventional software such as WinBUGS. The Bayesian 

Lachos et al. Page 5

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach allows extreme flexibility in fitting realistic models to datasets of varying 

complexity (Dunson, 2001), makes use of all information available in the relevant clinical 

study/trial, accommodates full parameter uncertainty through appropriate prior choices 

supported with proper sensitivity investigations, provides direct probability statement about 

a parameter through credible intervals (CI), and does not depend on asymptotic results.

2.3 Prior and Posterior Specifications

To complete the Bayesian specification, we need to consider prior distributions for all the 

unknown model parameters θ = β⊤, σ2, α⊤, ν
⊤

. A popular choice to ensure posterior 

propriety in a linear mixed model (LMM) is to consider proper (but diffuse) conditionally 

conjugate priors (Hobert and Casella, 1996). Thus, we have β N p β0, Sβ , 

σ2 IGamma q0/2, λ0/2 , and D IWishq Λ0
−1 , ν0 , where IGamma(a, b) is the inverse gamma 

distribution with mean b/(a − 1), a > 1, and IWishq(M−1, ν0) is the inverse Wishart 

distribution with mean M−1/(ν0 − q − 1), {ν0 > q + 1, where M is a q × q known positive 

definite matrix. For the specific models in Subsection 2.1, the prior for ν was chosen 

accordingly as follows.

i. Student’s-t model: Here ν TExp γ
2 ; (2, ∞) , i.e., the degrees of freedom 

parameter ν has a truncated exponential prior distribution on the interval (2, ∞). 

This truncation point was chosen to assure finite variance.

ii. Slash model: A Gamma (a, b) distribution with small positive values of a and 

b (b ≪ a) is adopted as a prior distribution for ν.

iii. Contaminated normal model: A Beta (ν0, ν1) distribution is used as a prior for 

ν, and an independent Beta (ρ0, ρ1) is adopted as prior for ρ.

Henceforth (unless otherwise stated), f ( ⋅ ) denotes densities, whereas the arguments in 

parentheses represent associated random variables. Assuming elements of the parameter 

vector to be independent, our Bayesian model allows straightforward construction of a Gibbs 

sampler. Denote y = y1
⊤, …, yn

⊤ ⊤
, b = b1

⊤, …, bn
⊤ ⊤

 and u = u1, …, un
⊤, Q = vec Q1, …, Qn

and C = vec C1, …, Cn . Given u, all conditional posterior distributions are as in a standard 

N-LMEC model and have the same form for any element of the NI family. These are given 

by

1. yi | bi, ui, Ci, Qi, θ ~ f(yi | bi, ui, Ci, Qi, θ). Thus, conditional on (bi, ui), yi is a 

vector of independent observations distributed as truncated normal, each with 

untruncated variance ui
−1σ2 and untruncated mean xi j

⊤β + zi j
⊤ bi on the interval 

yi j ⩽ Qi j. We will use the notation TN xi j
⊤ β + zi j

⊤ bi, ui
−1σ2; −∞, Qi j  in this 

context.

2. bi | yi, ui, Ci, Qi, θ = bi | yi, ui, θ ~ f(bi | yi, ui, θ). This distribution is multivariate 

normal with mean bi = Λi Zi
⊤ yi − Xiβ  and variance ui

−1 Λi, with 
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Λi = D−1 + σ2Zi
⊤Zi

−1
. Note that the entire vector yi is used for sampling from 

bi.

3. Because θ1 | y, C, Q, θ −θ1
 and θ1 |y, θ −θ1

 are two equivalent processes, we 

have:

β|y, b, u, θ( − β) N Aβμβ, Aβ , σ2|y, b, u, θ
−σ2

IGamma
q0 + N

2 ,
λ0 + s

2 ,

D y, b, u, θ( − α) IWishq Λ−1 , ν0 + n ,

where μβ = Sβ
−1β0 + ∑i = 1

n uiXi
⊤ yi − Zibi , Aβ = Sβ

−1 + ∑i = 1
n uiXi

⊤Xi
−1

, 

N = ∑i = 1
n ni, s = ∑i = 1

n uiλ1i, Λ = Λ0 + ∑i = 1
n uibibi

⊤, with 

λ1i = yi − Xiβ − Zibi
⊤ yi − Xiβ − Zibi .

4. To complete the Gibbs sampling specifications, we need the full conditional 

posterior distributions of u and parameter ν, which depends on the density 

h( . | ν). The general form for ui is 

π ui |y, b, θ ∝ ui
ni + q /2

h ui | ν exp −
ui
2

λ1i

σi
2 + bi

⊤D−1bi . For ν, the density is 

π ν |y, b, u, θ( − ν) ∝ π(ν)∏i = 1
n h ui | ν . The form of ui and ν depends on the 

specific NI distribution adopted and also on the prior for ν (see Web Appendix 

A).

3. Nonlinear Mixed-Effects Models with Censored Responses

3.1 Model Specification

Extending the notation of the previous section and ignoring censoring, we first propose the 

following general mixed-effects model in which the random terms are assumed to follow a 

NI distribution (NI-NLME). Let yi = yi1, …, yini

⊤
 denote the (continuous) response vector 

for subject i and η = η Xi1, ϕi , …, η Xini
, ϕi

⊤
 be a nonlinear vector-valued differentiable 

function of the random parameter ϕi and co-variate vector Xi. The NI-NLME can then be 

expressed as:

yi = η ϕi, Xi + ϵi, ϕi = Aiβ + Bibi, (5)

Lachos et al. Page 7

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Ai and Bi are known design matrices of dimensions r × p and r × q, respectively 

(possibly depending on some covariate values), β is the p × 1 vector of fixed effects, and Bi, 

is the q × 1 vector of random effects. The joint distribution of (bi, ϵi) follows (2). From the 

definition of NI distributions and (2), we have that marginally ϕi
indNIq Aiβ, BiDBi

⊤, H  and 

ϵi
ind.NIni

0, σ2Ini
, H , and as in the linear case, they are uncorrelated because Cov ϕi, ϵi = 0. 

For NI-NLME with complete responses, the marginal distribution is given by

f (y θ) = ∏
i = 1

n ∫0
∞∫ℝqϕni

yi; η ϕi, Xi , ui
−1σ2Ini

ϕq

× ϕi; Aiβ, ui
−1BiDBi

⊤ dϕidH ui ν ,

which generally does not have a closed-form expression because the model is not linear in 

random effects. In the normal case, various approximations (namely, first-order Taylor series 

expansion of the model function around the conditional mode of bi) have been proposed to 

achieve tractable numerical optimizations (Lindstrom and Bates, 1990). Most algorithms for 

computing the approximate MLE θ and empirical Bayes’ estimators (predictors) for the 

random effects bi consider iterative maximization of the approximate log-likelihood 

functions 𝓁(θ, b) = ∑i = 1
n log f yi |θ, bi . Following Taylor series expansions, we have the 

following theorem, whose proof is given in the Web Appendix B.

THEOREM 1.—Let b be an expansion point in a neighborhood of bi, then under the NI-

NLME model as in (5), the marginal distribution of yi, can be approximated as 

yi NIni η Aiβ + Bibi, Xi − Hibi, Vi, H , where Vi = HiBi D HiBi
⊤ + σ2Ini

, 

Hi =
∂η Aiβ + Bibi, Xi

∂bi
⊤ |

bi = bi

 and ˙ denotes approximated in distribution.

Our empirical Bayes’ estimates of the random effects b(k) can be approximated as 

bi
(k) = E bi |yi, θ(k − 1) ≈ Λi

(k − 1) Hi
(k − 1) yi − η Aiβ

(k − 1) + Bi bi
(k − 1), Xi + Hi

(k − 1) bi
(k − 1) , 

where Λi
(k − 1) = D−1(k − 1) + 1

σe
2(k − 1) Hi

(k − 1) ⊤ Hi
(k − 1)

−1
. Note that the distribution of bi | 

yi is approximately symmetric (see Web Appendix B), and thus bi
(k) is the mode of the 

distribution at each step. We have used this strategy to calculate the likelihood function and 

hence compute various Bayesian model selection/diagnostics. Now assuming left censoring 

such that the observed data for the ith subject be (Qi, Ci), the individual observations within 

cluster i follows (4), so that the NI-NLMEC is defined. From Theorem 1, the approximated 

log-likelihood function for NI-NLMEC is a LMEC model with the same structure as 

indicated in (1), (2), and (4) and can be computed as described in Subsection 2.2. In the next 

subsection, we present full conditionals for the NI-NLMEC model parameters.
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3.2 Prior and Posterior Specifications

Under the same prior specifications as discussed in Subsection 2.3, the full conditional 

distributions for NI-NLMEC models are as follows:

yi j ϕi, ui, Ci, Qi, θ TN η ϕi, Xi j , ui
−1σ2; −∞, Qi j ;

ϕi yi, ui, θ ∝ ϕni
yi; η ϕi, Xi , ui

−1σ2Ini
ϕq ϕi; Aiβ, ui

−1BiDBi
⊤ ;

β|y, ϕ, u, θ( − β) N p Aβμβ, Aβ ; σ2|y, ϕ, u, θ
−σ2 IGamma

N + q0
2 ,

λ0 + s

2 ;

D|y, ϕ, u, θ( − α) IWishq Λ−1 , ν0 + n ; π ν|y, ϕ, u, θ −ν ∝π ν ∏i = 1
n h ui ν );

π ui yi, ϕi, θ ∝ ui
ni + q /2

h ui ν exp −
ui
2

λ1i

σ2 + ϕi − Aiβ
⊤ BiDBi

⊤ −1
ϕi − Aiβ ,

where Aβ = Sβ
−1 + ∑i = 1

n uiAi
⊤ BiDBi

⊤ −1Ai
−1

, μβ = Sβ
−1β0 + ∑i = 1

n uiAi
⊤ BiDBi

⊤ −1
ϕi , 

N = ∑i = 1
n ni, Λ = Λ0

−1 + ∑i = 1
n ui ϕi − Aiβ ϕi − Aiβ

⊤
, s = ∑i = 1

n uiλ1i with 

λ1i = yi − η ϕi, Xi
⊤ yi − η ϕi, Xi . Note that the full conditional for ϕi, requires Metropolis-

Hastings steps. Moreover, the full conditional of ui, and ν for the specific NI distribution are 

as in the linear case (see Web Appendix A), with 

λi = 1
q2 yi − η ϕi, Xi

⊤ yi − η ϕi, Xi + ϕi −Aiβ)⊤ BiDBi
⊤ −1

ϕi − Aiβ .

4. Bayesian Model Selection and Influence Diagnostics

4.1 Model Selection Criteria

We use the conditional predictive ordinate (CPO) statistic (Carlin and Louis, 2008), one of 

the most widely used model selection/assessment criterion available in the Bayesian toolbox, 

which is derived from the posterior predictive distribution. Let 𝒟 be the full data and 𝒟(−i) 

denote the data with the ith observation deleted. We denote the posterior density of θ given 

𝒟( − i) by πθ |𝒟( − i). For the ith observation, the CPOi, can be written as 

CPOi = ∫ Θ f yi |θ πθ |𝒟( − i)dθ = ∫ Θ
π(θ |𝒟)
f yi |θ

dθ
−1

. For our proposed models, a closed form of 

the CPOi is not available. However, a Monte Carlo estimate of CPOi can be obtained by 
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using a single MCMC sample from the posterior distribution π(θ |𝒟) using a harmonic-mean 

approximation (Dey, Chen, and Chang, 1997) as CPOi = 1
Q ∑q = 1

Q 1
f yi |θq

−1
, where 

θ1, …, θQ is a post burn-in sample of size Q from π(θ |𝒟). A summary statistic of the CPOi,’s 

is the log pseudomarginal likelihood (LPML), defined by LPML = ∑i = 1
n log CPOi . Larger 

values of LPML indicates better fit. Some other measures, such as the deviance information 

criterion (DIC) proposed by Spiegelhalter et al. (2002), the expected Akaike information 

criterion (EAIC), and the expected Bayesian (or Schwarz) information criterion (EBIC) as 

given in Carlin and Louis (2008) can also be used. These are based on the posterior mean of 

the deviance, which can be approximated as D = ∑q = 1
Q D θq /Q, where 

D(θ) = − 2∑i = 1
n log f yi |θ . The DIC criterion can be estimated using the MCMC output 

as DIC = D + ρD, where ρD is the effective number of parameters, defined as 

E D(θ) − D E(θ) , where D E(θ)  is the deviance evaluated at the posterior mean. Similarly, 

the EAIC and EBIC can be estimated as EAIC = D + 2 # ϑ  and EBIC = D + # ϑ log n , 

where #(ϑ) is the number of model parameters. Note that for all these criteria, the evaluation 

of the likelihood function f yi |θ = Li(θ) is a key aspect; however, for our proposed models 

(NI-LMEC/NI-NLMEC) it can be easily computed from the results given in Subsections 2.2 

and 3.1, respectively.

4.2 Bayesian Case Influence Diagnostics

Our proposed regression models might be sensitive to the underlying model assumptions, so 

it is of interest to determine which subjects/observations might be influential for the 

analysis. Let K P, P( − i)  denote the K-L divergence between P and P( − i), defined as 

K P, P( − i) = ∫ π(θ |𝒟)log π(θ |𝒟)
π θ |𝒟( − i) dθ, where P denotes the posterior distribution of θ for 

full data, and P(−i) denotes the posterior distribution of θ without the ith case. As pointed out 

by Peng and Dey (1995), K P, P( − i)  can be expressed as log 

logEθ 𝒟 f yi |θ
−1 + Eθ 𝒟 log f yi |θ = − log CPOi + Eθ |𝒟 log f yi |θ , where 

Eθ |𝒟( ⋅ ) denotes the expectation with respect to the joint posterior π(θ |𝒟). A Monte Carlo 

estimate of the K-L divergence (see Cancho et al., 2011), is given by

K P, P( − i) = − log CPOi + 1
Q ∑

q = 1

Q
log f yi θq ,

i = 1, …, n .

(6)
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5. Case Studies

We illustrate the proposed methods with the analysis of two HIV datasets previously 

analyzed using normal LMEC models.

5.1 UTI Data

The first application is a study of 72 perinatally HIV-infected children (Saitoh et al., 2008). 

The dataset is available in the R package lmec. Primarily due to treatment fatigue, UTI is 

common in this population. Suboptimal adherence can lead to antiretroviral resistance and 

diminished treatment options in the future. The subjects in the study had taken antiretroviral 

therapy for at least 6 months before UTI, and the medication was discontinued for more than 

3 months. Out of 362 observations, 26 (7%) observations were below the detection limits (50 

or 400 copies/ml) and considered left censored at these values. The individual profiles of 

viral load at different follow-up times after UTI is presented in Figure 2 (upper panel). We 

consider a profile LME model with random intercepts bi, given by yi j = bi + β j + ϵi j, where 

yij is the log10 HIV RNA for subject i at time tj, t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 

= 18, t8 = 24. Vaida and Liu (2009) analyzed the same dataset by fitting a similar N-LMEC 

from a frequentist perspective, but from Figure 1 it is clear that inferences based on 

normality assumptions can be questionable (presence of thick tails). We revisit the UTI data 

with the aim of providing robust inferences by using NI distributions. In our analysis, we 

assume normal (N-LMEC), Student’s-t (T-LMEC), slash (SL-LMEC), and CN-LMEC 

distributions from the NI class for comparisons.

For choice of priors, we have, βj ~ N1(0, 103), j = 1,...,8, σ2 ~ IGamma(0.1, 0.1), 

α = σb
2 IGamma(0.1, 0.1); ν TExp 0.1; (2, ∞)  for the Student’s-t model, ν ~ Gamma(0.1, 

0.01), for the slash model and ν ~ Beta(1, 1) and ρ ~ Beta(2, 2), for the CN model. We 

generated four parallel independent MCMC runs of size 50,000 with widely dispersed initial 

values for each parameter for all the four subclasses, where the first 10,000 iterations were 

discarded as burn-in samples. To eliminate potential problems due to autocorrelation, we 

considered a spacing of size 20. The convergence of the MCMC chains were monitored 

using trace plots, autocorrelation plots, and Gelman-Rubin R diagnostics. Sensitivity 

analysis on the routine use of the inverse-gamma prior on the variance components reveal 

that the results are fairly robust under different prior choices.

Table 1 compares among the four subclasses of NI models using the model selection criteria 

discussed in Section 4. Notice that all three members of the NI-LMEC class (with heavy 

tails) perform significantly better than the N-LMEC, with the CN-LMEC outperforming all 

the rest. For the T-LMEC and SL-LMEC models, as ν (the t degrees of freedom) → ∞, it 

approaches the N-LMEC model as a limiting case. For both these models, the estimated 

value of ν is small, indicating the lack of adequacy of the normal assumption for the UTI 

data. Posterior densities of ν, along with 95% CI are presented in Web Figure 2. In Table 1, 

we also report the posterior mean and standard deviations for the model parameters from the 

four fitted NI models. Note that the posterior estimates of β1, β2, and β3 (the slope 

parameters corresponding to time points 0, 1, and 3 months) for the NI-LMEC models with 

heavy tails are quite close to each other and those for the time points further away, i.e., 
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β4,...,β8, are also reasonably close to each other. The posterior standard error estimates of (β 
are small (and consequently have tighter 95% CI) than those in the normal model, indicating 

that the three heavy-tailed models seem to produce more precise estimates.

With missing-at-random assumption as in Vaida and Liu (2009), our dropout (censored) 

model does not bias the inference regarding the mean of βj. The mean viral load E(yij) = βj 

increases gradually throughout 24 months for all the models. In fact for the CN-LMEC (our 

best model), it increases from 3.99 with 95% CI (3.89–4.09) at the time of UTI to 4.81 with 

95% CI (4.65–4.95) at 24 months. The estimates of the between-subject (σb
2) and within-

subject (σ2) scale parameters (in log10 scale) are 0.446 and 0.116, respectively, which are 

smaller as compared to the N-LMEC model. To determine possible influential observations, 

we computed the K-L divergence measures for all the four competing models. From Figure 

3 (upper panels) for the N-LMEC, cases 20, 35, 42, and 57 have larger K(P, P(−i)) as 

compared to Student’s-t. Web Figure 4 (upper panel) presents K-L plots for the slash and 

CN models. As expected, the effect of these cases on the posterior estimates of the mean of 

β were attenuated using the NI class, and hence is a robust alternative for censored viral 

loads with possible influential observations. This is also observed in Figure 2 (upper panel), 

where the presence of these outliers might have underestimated the predicted mean curve for 

the N-LMEC model as compared to the other three NI-LMEC models with heavy tails. The 

fitted individual viral load trajectories for some randomly chosen subjects using these three 

models are presented in Web Figure 5.

To investigate whether the random effects design matrix should be restricted to only 

“random intercepts” for the UTI data (as pointed out by a reviewer), we considered two 

alternative models each with the “time” covariate as in Ho and Lin (2010), given by (i) 

model 1: yij = β1 + β2tij + bi + eij (random intercept), and (ii) model 2: yij = β1 + β2tij + bi1 + 

bi2 tij + eij (random intercept and slope). For the best-fitting model (i.e., CN-LMEC), the 

DIC (LPML) values are 730.77 (−373.93) for model 1 and 807.83 (−412.03) for model 2, 

respectively, indicating clearly that a simple profile LME model would be adequate.

5.2 AIEDRP Data

The second AIDS case study is from the AIEDRP program, a large multicenter 

observational study of subjects with acute and early HIV infection. We consider 320 

untreated individuals with acute HIV infection; for more details see Vaida and Liu (2009). 

Of the 830 recorded observations, 185 (22%) were above the limit of assay quantification, 

hence right censored. So, we consider a right-censored version of (4) and accommodate it 

within our NLME. Following Vaida and Liu (2009), we choose a five-parameter NLME 

model (inverted S-shaped curve) as follows:

yi j = α1i +
α2

1 + exp ti j − α3 /α4
+ α5i ti j − 50 + ϵi j,

where yij is the log10 HIV RNA for subject i at time tij. Choice of an appropriate nonlinear 

model is hard to assess for any HIV data, but the above model was considered in Vaida and 
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Liu (2009) primarily because the residual plots did not exhibit any serial autocorrelation, and 

the model fit seems adequate. The parameter α1i and α2 denotes subject-specific random set 

points, and the decrease from the maximum HIV RNA, respectively. In the absence of 

treatment (following acute infection), the HIV RNA varies around a set point, which may 

differ among individuals; hence the set point is chosen to be subject specific. The location 

parameter α3 indicates the time point at which half of the change in HIV RNA is attained, 

α4 is a scale parameter modeling the rate of decline and α5i allows for increasing HIV RNA 

trajectory after day 50. The smooth (mean) curve for the observed data in Figure 2 (lower 

panel) agrees with the postulated shape of the HIV RNA trajectory for this study. To force 

the parameters to be positive, we reparameterize as follows β1i = log α1i = β1 + b1i; 

βk = log αk , k = 2, 3, 4; and α5i = β5 + b2i. Within a Bayesian framework, we use the normal 

(N-NLMEC), Student’s-t (T-NLMEC), SL-NLMEC, and CN-NLMEC models from the NI 

class, where (b1i, b2i) are assumed to be independent and identically distributed (i.i.d.), 

multivariate NI distributions with unrestricted scale matrix D. The MCMC scheme was 

similar to the previous application on UTI data, as well as the procedures described in 

Section 3, further we consider D ~ IWish2(T−1, 2) with T = Diag (0.01, 0, 0.01).

Table 2 presents comparison among the four subclasses of NI models using various model 

selection criteria discussed earlier as well as posterior mean and standard deviation of model 

parameters for the four models. Once again, the NI-NLMEC (with heavy tails) provided 

much improved model fits over the N-NLMEC, with the Student’s-t outperforming the rest. 

From Table 2, we observe that the estimates of the slope parameters β2 and β4 for the NI 

models with heavy tails are somewhat different than the normal case. However, the standard 

errors of the NI-NLMEC are smaller, indicating that the three models with longer tails than 

normal seem to produce more precise estimates. As earlier, posterior densities of ν and 95% 

CI are presented in Web Figure 3. Note that for the T-NLMEC and SL-NLMEC, the 

densities are concentrated around small values of ν, indicating the lack of adequacy of the 

normality assumption for the model. Similar is the case for the CN-NLMEC model. 

Henceforth, we consider results based on the Student’s-t distribution (our best model) using 

the above five-parameter NLMEC model. Residuals plots in our analysis (omitted for 

brevity) revealed no serial correlations. At 6 months since infection, the estimated average 

viral load (in logio units) is 4.513, whereas the normal model estimates this at 4.55. The 

individual 6-month viral load estimates vary between 0.57 and 9.39, with the 95% CI (2.69, 

6.55). The average slope after day 50 was negative (β5 = −0.002) with 95% CI (−0.007, 

0.002). This is in contrast to the normal model (Vaida and Liu, 2009), where the 95% 

confidence interval does not include 0. The individual slopes β5 + bi2 included positive 

values, with 95% CI (−0.014, 0.016). The estimates of the between-subject variance-

covariance components D11, D12, and D22 and within-subject scale parameter (σ2) for the NI 

models (with heavy tails) are slightly smaller as compared to the N-LMEC model. Using the 

K-L divergence measures, the cases 9, 166, 230, and 259 were identified to be influential 

(see lower panels of Figure 3 and Web Figure 4) under the N-NLMEC. However, using the 

NI-NLMEC models, there seem to be no influential observations. We arrive at the same 

conclusion from Figure 2 (lower panel) that the N-NLMEC might be affected in the 

presence of outliers. The fitted viral load curve appears to be underestimated as compared to 

the other three heavy-tailed NI-NLMEC models. Interestingly, estimates of viral load 

Lachos et al. Page 13

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trajectories (Web Figure 5) for some randomly sampled subjects using the NI class are quite 

distinguishable.

6. Simulation Studies

In this section, we conduct a simulation study to investigate the consequences on parameter 

inference when the normality assumption is inappropriate, as well as to investigate whether 

the model comparison measures, namely, LPML, DIC, EAIC, and EBIC determine the best-

fitting model to the simulated data. We consider the following linear mixed model:

yi j = β0 + β1ti j + b0i + b1iti j + ϵi j, i = 1, …, n( = 50),
j = 1, …, ni( = 6),

(7)

where each subject has been measured at 2, 4, 6, 8, 10, and 24 hours, with a total of six 

observations per subject (balanced design). We set b0i, b1i i.i.d.T2(0, D, ν), ϵi j T 0, σ2, ν , 

β⊤ = β0, β1 = ( − 2.83, − 0.18), D = 0.49 0.01
0.01 0.02 , σ2 = 0.15, and ν = 4.

To study the effect of the level of left censoring in the estimation, we choose three different 

simulation settings with censoring proportions, say 10%, 20%, and 40%, and simulated 100 

datasets for each setting. Next, we fit the LMEC model assuming normal and Student’s-t 
distributions using R2WinBUGS package available in R. For each of the simulations, we fit 

the model given in (7) assuming normal and Student’s-t distributions. The following 

independent priors are considered to perform the MCMC sampling: βk N1 0, 103 , k = 0, 1; 

σ2 IGamma(0.1, 0.1); D IWish2 H−1, 2  with H = Diag (0.01, 0, 0.01); and ν ~ TExp {0.1;(2, 

∞)} for the Student’s-t model. The MCMC scheme follows exactly as in Section 5.1 with 

respect to number of chains, iteration size, burn-in size, and spacings. For each sample, the 

posterior parameter mean as well as LPML, DIC, EAIC, and EBIC were recorded. Table 3 

presents the summary statistics for β (the fixed-effects parameters) assuming normal and 

Student’s-t distributions for the three censoring patterns. In these tables, MC mean and MC 

SD denote, respectively, the arithmetic average of the 100 posterior mean estimates 

∑ j = 1
100 θk j/100 and posterior standard deviations estimates ∑ j = 1

100 sd θk j /100. t-complete 

indicates the Bayesian estimates for complete data using a Student’s-t model.

From Table 3, we observe that the Student’s-t distribution detects heavy-tailed behavior in 

the random terms at all levels of censoring, because the estimate of ν is small (at most 7.3). 

The increase in the proportion of censored data comes with significant bias (the deviations 

of the parameter estimates from the true values); however, the Student’s-t model shows 

much less bias and smaller standard deviation estimates as compared to the normal model. 

Thus, models with “longer-than-normal” tails produce more accurate Bayesian estimates in 

the context of censored data; the degree and directions of the bias in fixed effects will 

depend not only on the relative proportions of left (or right) censoring but also on the model 

assumptions. We also present the arithmetic average (MC LPML, MC DIC, MC EAIC, and 

MC EBIC) of the various model comparison measures mentioned earlier. All the measures 
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favored the Student’s-t model, demonstrating the ability of these Bayesian measures to 

detect an obvious departure from normality. This affirmation can be also observed in Web 

Figure 6, where we plot the values of LPML, DIC, EAIC, and EBIC for the normal and 

Student’s-t models with 40% censored responses.

7. Conclusions

This article provides a new insight into statistical practices of models and diagnostic 

methods typically used for analyzing censored HIV viral load outcomes, and presents a 

useful and practical alternative in presence of thick tails/outliers. For NLMEC, the analysis 

is computationally feasible through approximating the likelihood function of a NI-NLMEC 

for a multivariate NI distribution with specified parameters. We apply our methodology to 

two recent AIDS studies (freely downloadable from R) as well as simulated data to illustrate 

how the procedures can be used to evaluate model assumptions, identify outliers, and obtain 

robust parameter estimates. Depending on assay quantifications, we considered both left 

censoring and right censoring in our setup. We assume the dropout/censoring mechanism to 

be “missing at random,” (see p. 283 of Diggle et al., 2002); hence in the log-likelihood 

expression, the observed data component can be separated from the dropout/censoring 

component. Thus, condition on our model being correct, the dropout does not bias the 

inference regarding mean viral loads. The models can be fitted using standard available 

software packages, such as R and WinBUGS (code available upon request) and hence can be 

easily accessible to practitioners in the field.

Our methods can certainly be extended to interval-censored longitudinal data following 

Sinha, Chen, and Ghosh (1999). The current framework assumes serially uncorrelated 

random errors, assuming the sources of randomness (beyond covariates) being primarily 

attributed to the random effects. Although this assumption appears restrictive (as pointed out 

by a referee), exploring an appropriate serial correlation structure for random errors warrants 

further investigation requiring nontrivial modification of the current theoretical framework, 

which is beyond the scope of this current article. It can also be complicated due to unevenly 

spaced data, as in our case. The models developed here do not consider skewness in the 

responses because typically in HIV-AIDS studies, the responses (censored viral load) is log 

transformed to achieve a “close to normality” shape. However, features of nonnormality 

might be attributed to both skewness and thick tails, and methods to combine those within a 

unified framework for censored mixed models are currently under investigation. 

Incorporating measurement error models (L. Wu, 2010) within our robust framework for 

related HIV viral load covariates (namely, CD4 cell counts) is also part of our future 

research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors thank the associate editor and two referees whose constructive comments led to a far improved 
presentation, and Florin Vaida for interesting insights. VHL acknowledges support from CNPq-Brazil (Grant 

Lachos et al. Page 15

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2008/201384–6) and from FAPESP-Brazil (Grant 2010/01246–5). DB received funding support (Grants 
P20RR017696–06 and R03DE020114) from the US National Institutes of Health.

References

Cancho V, Dey D, Lachos V, and Andrade M (2011). Bayesian nonlinear regression models with scale 
mixtures of skew normal distributions: Estimation and case influence diagnostics. Computational 
Statistics and Data Analysis 55, 588–602.

Carlin B and Louis T (2008). Bayesian Methods for Data Analysis (Texts in Statistical Science). New 
York: Chapman and Hall/CRC.

Dey DK, Chen MH, and Chang H (1997). Bayesian approach for the nonlinear random effects models. 
Biometrics 53, 1239–1252.

Diggle PJ, Heagerty P, Liang K-Y, and Zeger SL (2002). Analysis of Longitudinal Data, 2nd edition 
New York: Oxford University Press.

Dunson D (2001). Commentary: Practical advantages of Bayesian analysis of epidemiologic data. 
American Journal of Epidemiology 153, 1222–1226. [PubMed: 11415958] 

Ho HJ and Lin TI (2010). Robust linear mixed models using the skew-t distribution with application to 
schizophrenia data. Biometrical Journal 52(4), 449–469. [PubMed: 20680971] 

Hobert J and Casella G (1996). The effect of improper priors on Gibbs sampling in hierarchical linear 
mixed models. Journal of the American Statistical Association 91, 1461–1473.

Hughes J (1999). Mixed effects models with censored data with application to HIV RNA levels. 
Biometrics 55, 625–629. [PubMed: 11318225] 

Jacqmin-Gadda H, Thiebaut R, Chene G, and Commenges D (2000). Analysis of left-censored 
longitudinal data with application to viral load in HIV infection. Biostatistics 1, 355–368. [PubMed: 
12933561] 

Lange KL and Sinsheimer JS (1993). Normal/independent distributions and their applications in robust 
regression. Journal of Computational and Graphical Statistics 2, 175–198.

Lin T and Lee J (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. 
Statistics in Medicine 25, 1397–1412. [PubMed: 16220509] 

Lin T and Lee J (2007). Bayesian analysis of hierarchical linear mixed modeling using the multivariate 
t distribution. Journal of Statistical Planning and Inference 137, 484–495.

Lindstrom M and Bates D (1990). Nonlinear mixed-effects models for repeated-measures data. 
Biometrics 46, 673–687. [PubMed: 2242409] 

Liu C (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the 
American Statistical Association 91, 1219–1227.

Liu D, Lu T, Niu X, and Wu H (2010). Mixed-effects state-space models for analysis of longitudinal 
dynamic systems. Biometrics, doi: 10.1111/j.1541-0420.2010.01485.x.

Peng F and Dey DK (1995). Bayesian analysis of outlier problems using divergence measures. The 
Canadian Journal of Statistics 23, 199–213.

Pinheiro JC, Liu CH, and Wu YN (2001). Efficient algorithms for robust estimation in linear mixed-
effects models using a multivariate t-distribution. Journal of Computational and Graphical 
Statistics 10, 249–276.

Rosa G, Padovani C, and Gianola D (2003). Robust linear mixed models with normal/independent 
distributions and Bayesian MCMC implementation. Biometrical Journal 45, 573–590.

Russo C, Paula G, and Aoki R (2009). Influence diagnostics in nonlinear mixed-effects elliptical 
models. Computational Statistics and Data Analysis 53, 4143–4156.

Saitoh A, Foca M, Viani R, Heffernan-Vacca S, Vaida F, Lujan-Zilbermann J, Emmanuel P, Deville J, 
and Spector S (2008). Clinical outcomes after an unstructured treatment interruption in children 
and adolescents with perinatally acquired HIV infection. Pediatrics 121, e513–e521. [PubMed: 
18310171] 

Sinha D, Chen M, and Ghosh S (1999). Bayesian analysis and model selection for interval-censored 
survival data. Biometrics 55, 585–590. [PubMed: 11318218] 

Lachos et al. Page 16

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spiegelhalter DJ, Best NG, Carlin BP, and van der Linde A (2002). Bayesian measures of model 
complexity and fit. Journal of the Royal Statistical Society, Series B 64, 583–639.

Vaida F and Liu L (2009). Fast implementation for normal mixed effects models with censored 
response. Journal of Computational and Graphical Statistics 18, 797–817. [PubMed: 25829836] 

Vaida F, Fitzgerald A, and DeGruttola V (2007). Efficient hybrid EM for linear and nonlinear mixed 
effects models with censored response. Computational Statistics and Data Analysis 51, 5718–
5730. [PubMed: 19578533] 

Wu H (2005). Statistical methods for HIV dynamic studies in AIDS clinical trials. Statistical Methods 
in Medical Research 14, 171–192. [PubMed: 15807150] 

Wu L (2010). Mixed Effects Models for Complex Data. Boca Raton, Florida: Chapman & Hall/CRC.

Lachos et al. Page 17

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Plots of density histogram (panel a) and normal Q-Q plot (panel b) of empirical Bayes’ 

estimates of random effects obtained by fitting LMEC to the UTI data. Panel (c) displays 

normal Q-Q plot for model residuals.

Lachos et al. Page 18

Biometrics. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Individual profiles and overall mean (in log10 scale) using the four NI distributions for HIV 

viral load at different follow-up times for UTI data (upper panel) and AIEDRP data (lower 

panel). In both the panels, the trajectories for the influential individuals are numbered.
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Figure 3. 
Index plots of K(P, P(−i)). The upper two plots are for the UTI data whereas the lower two 

plots are for the AIEDRP data. Influential observations are numbered.
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