Linear and Nonlinear Optimization

SECOND EDITION

Igor Griva Stephen G. Nash Ariela Sofer

George Mason University Fairfax, Virginia

Society for Industrial and Applied Mathematics • Philadelphia

Contents

Preface

I	Basics		L
1	Optin	nization Models	3
	$1.\hat{1}$	Introduction	3
	1.2	Optimization: An Informal Introduction	1
	1.3		7
	1.4	Linear Optimization)
	Exerci	ises	2
	1.5	Least-Squares Data Fitting 12	2
	Exerci	ises	4
	1.6	Nonlinear Optimization	4
	1.7	Optimization Applications	3
		1.7.1 Crew Scheduling and Fleet Scheduling	3
	Exerci	ises	2
		1.7.2 Support Vector Machines	2
	Exerci	ises	4
		1.7.3 Portfolio Optimization	5
	Exerci	ises	7
		1.7.4 Intensity Modulated Radiation Treatment Planning 24	3
	Exerci	ises	1
		1.7.5 Positron Emission Tomography Image Reconstruction 33	2
	Exerci	ises	4
		1.7.6 Shape Optimization	5
	1.8	Notes)
2	Funda	amentals of Optimization 4.	3
	2.1	Introduction	3
	2.2	Feasibility and Optimality	3
	Exerci	ises	7
	2.3	Convexity	3
		2.3.1 Derivatives and Convexity 5)

Contents

	Exerci	ses		2
	2.4		eral Optimization Algorithm	ł
	Exerci	ses		3
	2.5	Rates of	Convergence	3
	Exerci	ses		l
	2.6	Taylor Se	eries	2
	Exerci	ses		5
	2.7	Newton's	Method for Nonlinear Equations	7
		2.7.1	Systems of Nonlinear Equations	2
	Exerci	ses		ŀ
	2.8	Notes)
3	Repre	sentation of	of Linear Constraints 77	1
	3.1	Basic Co	ncepts	1
	Exerci	ses		2
	3.2	Null and	Range Spaces	2
	Exerci	ses		ŧ
	3.3	Generatio	ng Null-Space Matrices	5
		3.3.1	Variable Reduction Method	5
		3.3.2	Orthogonal Projection Matrix)
		3.3.3	Other Projections)
		3.3.4	The QR Factorization $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 90)
	Exerci	ses		Ĺ
	3.4	Notes	93	3
Π	Linear	Programm	ning 95	5
4	Geom		ear Programming 97	ξ.,
	4.1	Introduct	ion	
	Exerci			
	4.2	Standard	Form	
	Exerci			
	4.3		lutions and Extreme Points	
	Exerci			
	4.4		tation of Solutions; Optimality	
	4.5	Notes .		ļ
5	The S	implex Me		50
	5.1		ion	
	5.2		plex Method	
		5.2.1	General Formulas	
		5.2.2	Unbounded Problems	
		5.2.3	Notation for the Simplex Method (Tableaus) 135	
		5.2.4	Deficiencies of the Tableau)

	Exerc	ises		1
	5.3	The Simpl	lex Method (Details)	4
		5.3.1	Multiple Solutions	4
		5.3.2	Feasible Directions and Edge Directions	
	Exerc			
	5.4		arted—Artificial Variables	
	5.1	5.4.1	The Two-Phase Method	
		5.4.2	The Big-M Method	
	Exerc			
	5.5		cy and Termination	
		5.5.1	Resolving Degeneracy Using Perturbation	
	Exerc			
	5.6			
	0.0	110005		î
6	Duali	ity and Sensi	itivity 17	3
	6.1	The Dual	Problem	3
	Exerc	cises		7
	6.2	Duality Tl	heory	9
		6.2.1	Complementary Slackness	
		6.2.2	Interpretation of the Dual	
	Exerc			
	6.3		Simplex Method	
	~.~			
	6.4		y	
	6.5		c Linear Programming	
	6.6			
	0.0	Notes		t
7	Enha	ncements of	the Simplex Method 21	3
	7.1	Introducti		3
	7.2	Problems	with Upper Bounds	
	Exerc			
	7.3		Generation	
	Exerc			
	7.4		mposition Principle	
	Exerc			
	7.5		ation of the Basis	
	7.0	7.5.1	The Product Form of the Inverse	
		7.5.2	Representation of the Basis—The LU Factorization 24	
	Ever			
			1 Stability and Computational Efficiency	
	7.6			
		7.6.1	Pricing	
		7.6.2	The Initial Basis	
		7.6.3	Tolerances; Degeneracy	
		7.6.4	Scaling	6

		7.6.5	Pr	eproc	essi	ng	* *		ж. 5	×	÷		•	8 R	•				a 2			267
		7.6.6	Μ	odel	Forn	nats				8					• •	•	•					268
	Exerci	ses				a a						• •		•	• •		•	• •				269
	7.7	Notes				<u>n</u> n					÷		22 I				•		5 . 5	: ::	2	270
8	Netwo	ork Problen																				271
	8.1	Introducti																				
	8.2	Basic Cor	ncepts	and	Exar	mple	es.	• •	•		÷				-85	•	•		23 . S	• •	×	271
	Exerci	ses																				
	8.3	Represent																				
	Exerci	ses																				
	8.4	The Netw																				
	Exerci	ses			••••	•••	• •	• •	x :		\sim		×.	8 R	•8		•			• •	×	294
	8.5	Resolving																				
	Exerci	ses																				
	8.6	Notes	• • •		• •	•••	92 B	•••	•	•	·	e e	2		1					1 12)) :	299
9	Comp	utational C	Comp	lexity	of]	Line	ar	Pro	gra	m	mi	ng										301
	9.1	Introducti	ion .							• •					•		•	• •				301
	9.2	Computat	tional	Com	plex	ity		a a	23		\mathbf{z}			2 2)	×.	e v	•		243		а.	302
	Exerci	ses													•		•					304
	9.3	Worst-Ca	se Be	havio	r of	the	Sim	ple	x N	let	ho	d.	*		•		•		•			305
	Exerci	ses														• •	•					308
	9.4	The Ellips	soid N	Aetho	od.				* 3		×						•					308
	Exerci	ses		2.20				a .a	a :		÷				£3	8.8						313
	9.5	The Avera	age-C	ase B	ehav	vior	of t	he	Sim	ple	ex	Me	the	bd					•			314
	9.6	Notes	• • •	• • •			•••	•••		• •	×	• •	×	• •	×	0 Q	•		•	•••	•	316
10	Interi	or-Point M	etho	ls for	Lin	ear	Pro	ogra	ami	mi	ng											319
	10.1	Introducti	ion .										•				•		•		•	319
	10.2	The Prima	al-Du	al Int	erior	-Po	int]	Met	hoo	1.			*		2				•		•	321
		10.2.1	C	ompu	tatio	nal	Asp	bect	s of	In	iter	ior	-Po	oint	M	eth	100	ls			4	328
		10.2.2	T	he Pre	edict	or-C	Corr	ecto	or A	lg	ori	thn	n									329
	Exerci	ises					• •	a a	х.		×		×		8	e e			•		•	330
	10.3	Feasibilit	y and	Self-	Dual	l Fo	rmu	ılati	ons						ł,		•		•		•	331
	Exerci	ises							×		*		*				•		•			334
	10.4	Some Con	ncept	s fron	n No	nlin	ear	Op	tim	iza	tic	n				2 2	1				-	334
	10.5	Affine-Sc	aling	Meth	ods	• •					25				•		•	• •				336
	Exerci	ises											×						•		•	343
	10.6	Path-Foll	owing	g Met	hods								8		÷.		•		•			344
	Exerci	ises												• •			•					352
	10.7	Notes									4											353

C .	the second second
(On	onte
Cont	CIIIS

ш	Unconstrained Optimization	355
11	Basics of Unconstrained Optimization	357
	11.1 Introduction	. 357
	11.2 Optimality Conditions	
	Exercises	
	11.3 Newton's Method for Minimization	
	Exercises	
	11.4 Guaranteeing Descent	
	Exercises	
	11.5 Guaranteeing Convergence: Line Search Methods	
	11.5 Other Line Searches	
	Exercises	
	11.6 Guaranteeing Convergence: Trust-Region Methods	
	Exercises	
	11.7 Notes	. 399
12	Methods for Unconstrained Optimization	401
	12.1 Introduction	
	12.2 Steepest-Descent Method	. 402
	Exercises	
	12.3 Quasi-Newton Methods	. 411
	Exercises	. 420
	12.4 Automating Derivative Calculations	. 422
	12.4.1 Finite-Difference Derivative Estimates	. 422
	12.4.2 Automatic Differentiation	. 426
	Exercises	. 429
	12.5 Methods That Do Not Require Derivatives	
	12.5.1 Simulation-Based Optimization	
	12.5.2 Compass Search: A Derivative-Free Method	
	12.5.3 Convergence of Compass Search	
	Exercises	
	12.6 Termination Rules	
	Exercises	
	12.7 Historical Background	
	12.8 Notes	
-		
13	Low-Storage Methods for Unconstrained Problems	451
	13.1 Introduction	
	13.2 The Conjugate-Gradient Method for Solving Linear Equations	
	Exercises	
	13.3 Truncated-Newton Methods	
	Exercises	
	13.4 Nonlinear Conjugate-Gradient Methods	
	Exercises	
	13.5 Limited-Memory Quasi-Newton Methods	. 470

ix

Exerci	ses	•		•	•	•			×.		×		•		×	•	*	•	•	•	•		•	•			 473
	Preconditioning																										
Exerci	ses	23	•		•	•	•			9						•	×	¥.	÷		27	•		•	•		 477
13.7	Notes	2	22	•	•	•	•	8	12	ą.	÷	÷	:	•	÷	÷		÷	2			2		•	•	4	478

IV Nonlinear Optimization

481

14	Optim	nality Conditions for Constrained Problems	483
	14.1	Introduction	. 483
	14.2	Optimality Conditions for Linear Equality Constraints	. 484
	Exerci	ises	. 489
	14.3	The Lagrange Multipliers and the Lagrangian Function	. 491
	Exerci	ises	
	14.4	Optimality Conditions for Linear Inequality Constraints	. 494
	Exercis	ses	
	14.5	Optimality Conditions for Nonlinear Constraints	. 502
		14.5.1 Statement of Optimality Conditions	. 503
	Exercis	ses	
	14.6	Preview of Methods	. 510
	Exercis	ses	
	14.7	Derivation of Optimality Conditions for Nonlinear Constraints	. 515
	Exercis	ses	. 520
	14.8	Duality	
		14.8.1 Games and Min-Max Duality	
		14.8.2 Lagrangian Duality	
		14.8.3 Wolfe Duality	
		14.8.4 More on the Dual Function	
		14.8.5 Duality in Support Vector Machines	. 538
	Exercis	ses	
	14.9	Historical Background	. 543
	14.10	Notes	. 546
15	Feasib	ple-Point Methods	549
	15.1	Introduction	. 549
	15.2	Linear Equality Constraints	
	Exercis	ses	
	15.3	Computing the Lagrange Multipliers	
	Exercis	ses	
	15.4	Linear Inequality Constraints	. 563
		15.4.1 Linear Programming	
	Exerci	ses	
	15.5	Sequential Quadratic Programming	
	Exercis	ses	
	15.6	Reduced-Gradient Methods	
	Exerci	ses	

	15.7	Filter Met	thods	588
	10.17			
	15.8			
	15.0	110103		570
16	Penal	ty and Barr	rier Methods	601
	16.1	Introducti	on	601
	16.2	Classical 1	Penalty and Barrier Methods	602
		16.2.1	Barrier Methods	603
		16.2.2	Penalty Methods	610
		16.2.3	Convergence	613
	Exerci	ises		
	16.3		ioning	
	16.4		Penalty and Barrier Methods	
	Exerci	ises		623
	16.5	Exact Pen	alty Methods	623
	Exerci		· · · · · · · · · · · · · · · · · · ·	
	16.6		r-Based Methods	
		16.6.1	Dual Interpretation	
	Exerci	ises		638
	16.7		Primal-Dual Methods	
		16.7.1	Primal-Dual Interior-Point Methods	
		16.7.2	Convergence of the Primal-Dual Interior-Point Method .	
	Exerci	ises		
	16.8		nite Programming	
	Exerci			
	16.9			
	1997-000			NOUND.
V	Appen	dices		659
A	Topic	s from Line	ar Algebra	661
	A.1		on	661
	A.2		les	
	A 2		d Mateix Norma	

A.2	Eigenval	ues		÷.		53	•		٠	٠		•	001
A.3	Vector an	d Matrix Norms	×				•	•		•			662
A.4	Systems	of Linear Equations	s	÷		¥3	•			•	•	•	664
A.5		Systems of Linear Equations by Elimination											
A.6	Gaussian	Elimination as a Matrix Factorization	•	•		÷	•				•	•	669
	A.6.1	Sparse Matrix Storage			•			t					675
A.7	Other Ma	atrix Factorizations			•	e.		•		•	•		676
	A.7.1	Positive-Definite Matrices	÷		•	÷					•		677
	A.7.2	The <i>LDL^T</i> and Cholesky Factorizations	÷	¥		2			2				678
	A.7.3	An Orthogonal Matrix Factorization	÷			ŝ	•		÷		•	•	681
A.8	Sensitivi	ty (Conditioning)							5				683
A.9	The Sher	man–Morrison Formula	×	×					t		•		686
A.10	Notes .			÷	£	v		•				•	688

xi

B	Other	Fundamentals 691
	B.1	Introduction
	B.2	Computer Arithmetic
	B.3	Big-O Notation, <i>O</i> (•)
	B. 4	The Gradient, Hessian, and Jacobian
	B.5	Gradient and Hessian of a Quadratic Function
	B.6	Derivatives of a Product
	B.7	The Chain Rule
	B.8	Continuous Functions; Closed and Bounded Sets
	B.9	The Implicit Function Theorem
С	Softw	are 703
	C.1	Software
Bib	liograpł	y 707
Ind	ex	727