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Linear and nonlinear preventive maintenance1

models2

Shaomin Wu, and Ming J. Zuo Senior member, IEEE,3

Abstract4

Preventive maintenance (PM) is a maintenance program with activities initiated at predetermined intervals, or5

according to prescribed criteria, and intended to reduce the probability of failure, or the degradation of the functioning6

of an item. In the literature, a number of PM models have been introduced to depict the effectiveness of PM. Based on7

these models, approaches to scheduling PM policies have been considerably studied. This paper attempts to review8

existing PM models, and investigate their inter-relationships. We then categorize these models into three classes:9

linear, nonlinear, and a hybrid of both. These three PM model classes depict the relationships of the hazard functions10

before, and after a PM. Possible extensions to these three PM models are discussed. The statistical properties for11

models are derived, and approaches to optimizing the PM policy are given.12

Index Terms13

Preventive maintenance, corrective maintenance, linear preventive maintenance, nonlinear preventive maintenance,14

hazard function, maintenance effectiveness.15

ACRONYM
1

16

CM Corrective Maintenance

PM Preventive Maintenance

IFR Increasing Failure Rate

DFR Decreasing Failure Rate

IFRA Increasing Failure Rate on Average

DFRA Decreasing Failure Rate on Average

NBU New Better than Used

NWU New Worse than Used
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NOTATION17

t A non-negative number, it is reset to zero at each PM.

h0(t) Hazard function of the system when no PM is conducted on it, or naked hazard function.

hk(t) Hazard function of the system at time t after the kth PM, where k = 1, 2, 3, .....

t0 Scheduled interval before the first PM.

tk Scheduled interval between the kth PM, and the (k + 1)th PM, where k = 1, 2, 3....

a, b, α, β Non-negative parameters.

I. INTRODUCTION18

Maintenance activities (e.g., CM, and PM ) can change a maintained system in one of two ways. Accordingly,19

the maintenance can be described as better, or worse. A better maintenance decreases the hazard rate and/or virtual20

age of a system, whereas a worse one increases them, or even brings the system to fail or break down.21

The effectiveness of a better maintenance can be further classified into one of the three situations: perfect, minimal,22

and imperfect. A perfect maintenance is assumed to restore a system to be as good as new (AGAN ). A minimal23

maintenance restores a system to a state the same as just before the maintenance, or as bad as old (ABAO). An24

imperfect maintenance may bring a system to any condition between AGAN and ABAO. In reality, however, both25

CM, and PM are usually imperfect. Pham & Wang [1], and more recently Doyen & Gaudoin [2] have given useful26

surveys on imperfect maintenance models.27

A worse maintenance deteriorates the health of a system compared to what it was prior to maintenance. In the28

case of technology changes, a system can be brought to a state better than its AGAN state, but these two situations29

are outside the scope of this article.30

Modelling the effectiveness of PM is an active research topic; see [3]–[21] for examples. It is an essential require-31

ment in various scenarios, for example, when people plan maintenance strategies, select maintenance contractors,32

or estimate the residual lifetime for some important industrial systems (for example, nuclear power plants, planes,33

trains) put up for re-sale at the end of their planned life.34

There are many papers modelling the effectiveness of PM. Most of them model the hazard rates of maintained35

systems after PM interventions [3]– [4]. According to a taxonomy given by [5], existing PM models are categorized36

into three groups: age reduction models, hazard rate reduction models, and a hybrid of both.37

• Age reduction models These models are developed by considering age reduction in the hazard function ( [3],38

[6]– [7]). Using the concept of age reduction, we might say that a certain PM has reduced the virtual age of a39

maintained system to a younger age, for example, from an age of t years old to “as good as t− τ years old”40

where τ > 0. That is, the hazard function changes from h(t) before a PM to h(t− τ) after a PM.41

• Hazard rate reduction models These models are developed considering the reduction of the hazard rate of a42

system [5]– [8]. This group of models assumes that the hazard rate of a system changes, for example, from43

h(t) before a PM to ah(t) after a PM.44
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• Hybrid models These models are combinations of the above two groups [4], [9]; the hazard rate changes from45

h(t) to ah(t− t0), for example.46

However, if one reviews existing PM models, the following weaknesses can be found in those models.47

• Although many PM models have been developed, little record on comparing these models has been found.48

• Parameters in lifetime distributions (such as the Weibull distribution) usually have their physical meanings (for49

example, the location parameter, and the scale parameter, in the Weibull distribution). However, parameters50

in the existing PM models are not given any physical explanation, which can limit the applications of these51

models because of a lack of proper interpretation of the parameters.52

• Assumptions in some existing PM models may not be appropriate, which are elaborated upon in Section III.53

The main theme of this paper is to briefly review existing PM models, explore their interrelationships, and extend54

them to three new ones: linear, nonlinear and their hybrid. A PM model is linear if the maintained system has hazard55

rates hk(t)(k = 1, 2, ...) immediately after the kth PM with hk(t) = ahk−1(t)+b, nonlinear if hk(t) = hk−1(αt+β),56

or hybrid if hk(t) = ahk−1(αt + β) + b, where a, b, α, and β are non-negative parameters, and t > 0. Physical57

interpretation of the parameters in these models will be given. More general extensions of these models will also58

be provided.59

Although we discuss PM models and PM policy development in this paper, our primary focus is on the comparison60

of commonly studied PM models. The paper does not pretend to give a comprehensive view of the topic of existing61

PM models, and it emphasizes on modelling rather than on statistical inference. We have tried to make Section II62

reasonably complete; however, those papers which are not included were either considered not to bear directly on63

the topic of this paper, or were inadvertently overlooked. Our apologies are extended to both the researchers and64

readers if any relevant papers are omitted.65

The paper is structured as follows. Section II briefly reviews the existing PM models, and explores their66

interrelationships. Section III introduces two new PM models, accompanied by their statistical properties. Section67

IV studies the periodic PM policy for the two PM models, and provides conditions on the existence of solutions.68

Section V offers discussion on possible extensions of the newly proposed PM models, and their corresponding69

properties. Finally, Section VI arrives at conclusions, and further work that might be important.70

II. EXISTING PM MODELS, AND THEIR PROPERTIES71

Assume that PM actions are carried out at times t0, t0 + t1, t0 + t1 + t2, .... CM on failure between adjacent PM72

actions is assumed to be minimal. Time on either PM or CM is negligible. hk(t) is the hazard rate of the system73

after the kth PM intervention (the initial hazard function is h(t)(= h0(t))). If the kth PM is performed, the induced74

hazard function changes from hk−1(t) to hk(t) after the PM. hk(t) is assumed to be increasing in t. The time t is75

reset to zero at each PM. Denote Fk(t) = 1− exp[−
∫ t

0
hk(s)ds], and F (t) = 1− exp[−

∫ t

0
h0(s)ds].76

Definition 1: Better PM: The kth PM is a better PM if hk−1(t+ tk−1) ≥ hk(t).77
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A. Existing PM models78

The effectiveness of a PM may be AGAN or ABAO. The criteria are given as follows.79

Definition 2: The kth PM is AGAN if80

hk(t) = h0(t). (1)

The kth PM is ABAO if81

hk(t) = hk−1(t+ tk−1). (2)

However, we should note that, in the case of ABAO, a PM is useless.82

In the Malik model [3], the improvement of the kth PM is that the t years old system is no longer that old,83

and its post-maintenance age is reduced from t to µkt in terms of its reliability, where µk varies between zero and84

one. If we simply concern the age reduction and hazard function, then the effect of the maintenance can also be85

expressed by hazard functions as follows.86

Definition 3: (Malik [3]) We say that the kth PM is MAL if87

hk(t) = h0(t+

k−1
∑

i=0

µiti), (3)

where 0 < µi < 1.88

The values of parameter µi in the MAL model (3) are restricted to (0,1). However, if the range of µi can be89

extended to include the two end points, then the MAL model is an extension of the ABAO model, or the AGAN90

model. That is, the MAL model reduces to the ABAO model if µi = 1, and to the AGAN model if µi = 0.91

Nakagawa [5] proposes two PM models; one is an age reduction model, and the other is a hazard rate reduction92

model. In what follows, these two models are referred to as NAK1, and NAK2, respectively.93

Definition 4: (Nakagawa [5]) We say that the kth PM is NAK1 if94

hk(t) = h0(t+

k−1
∑

i=0

(ti

k−1
∏

j=i

ν1j)), (4)

where 0 < ν10 < ν11 < ... < ν1k−1 < 1.95

If we compare (3) with (4), and let
∑k−1

i=0 (ti
∏k−1

j=i ν1j) =
∑k−1

i=0 µiti for ∀k, then model NAK1 is equivalent96

to model MAL. Obviously, ∀j, model NAK1 reduces to model ABAO if ν1j = 1, and to model AGAN if ν1j = 0.97

Definition 5: (Nakagawa [5]) We say that the kth PM is NAK2 if98

hk(t) = h0(t)

k−1
∏

i=0

ν2i, (5)

where 1 ≤ ν20 ≤ ν21 ≤ . . . ≤ ν2k−1.99

Obviously, if ν2k is set to 1 for all k, then the NAK2 model promotes to the AGAN model.100

Model NAK1 assumes that PM activities can bring the maintained system younger, and Model NAK2 regards101

that a PM can first bring the hazard rate to zero, and then increase more quickly than it did in the previous PM102

interval.103
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Lin et al. [4] combine models NAK1 and NAK2, and propose the following PM model to link the hazard functions104

between two adjacent working periods.105

Definition 6: (Lin et at [4]) We say that the kth PM is LIN if106

hk(t) = λ1khk−1(λ2ktk−1 + t). (6)

Obviously, if λ1k = 1 (or λ2k = 0) for all k, then the LIN model is equivalent to the NAK1 (or NAK2) model.107

All of the above PM models can be applied to both periodic, and sequential PM modelling. Canfield [6] only108

considers the periodic PM case. He distinguishes between the level of the hazard, and the shape of the hazard109

function as they are related to system degradation with time. The hazard level reflects the extent of the system110

degradation. The shape of the hazard function at a given time reflects the rate at which the hazard is changing. He111

regards the effective age after PM reduces to t− τ if the item’s effective age was t just prior to this PM, while the112

hazard level remains unchanged, where τ(≥ 0) is the restoration interval at the effective age of the item due to the113

kth PM. The restoration interval τ in this model is an index for measuring the quality of PM.114

Definition 7: We say that the kth PM is CAN if115

hk(t) = h0(t+ k(T − τ)) +

k
∑

i=1

{(h0((i− 1)(T − τ) + T )− h0(i(T − τ))} , (7)

where T is a fixed constant time length between two adjacent PM actions.116

When τ = T , and suppose h0(0) = 0, the CAN model reduces to117

hk(t) = h0(t) + kh0(T ). (8)

Parameter τ in the CAN model is assumed to be a fixed constant. Reference [10] considers τ as a random118

variable and develops PM policies.119

Kijima et al. [11], and Kijima [12] introduce two types of CM models, type I and type II, using the concept120

of virtual age. The idea is to distinguish between the system’s age, which is the time elapsed since the system121

was new, usually at time t = 0; and the virtual age of the system, which describes its present health condition122

when compared to a new system. The two models are Vk = Vk−1 + κkXk, and Vk = κk(Vk−1 + Xk), where123

Vk is the virtual age of the system immediately after the kth repair, and κk is a parameter. Interesting extensions124

on the virtual age concept have been made by other authors. For example, Dagpunar [14] considers the case in125

which the virtual age after the kth CM can be expressed as Vk = φ(Vk−1+Xk) (where φ(.) is an arbitrary scaling126

function that models the effects of CM); Dorado [15] studied nonparametric statistical inference in a model slightly127

more general than Kijima’s models. More references can be found in [16], [17]. Kijma’s virtual age concept was128

originally introduced to model the effectiveness of CM activities. It has been applied to the PM case recently by129

some authors (for example, [18], [19]).130

The type I, and type II models [11], [12] share similar expressions of hazard functions. Therefore, we only131

discuss type I as an example.132
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Definition 8: We say that the kth PM is KIJ if133

hk(t) = h0(κkt+
k−1
∑

i=1

κiti). (9)

The KIJ model can be seen as an extension of the NAK1, and MAL models.134

Seo & Bai [13] introduced a periodic PM model. They define hk(ωk−1(T )) = hk−1(Ω(ωk−2(T ), T )), where135

Ω(.) and ω(.) are specified functions, and T is a fixed constant time length between two adjacent PM actions. This136

model can be regarded as an extension of the KIJ model for periodic PM.137

Another interesting model is the geometric process for CM. Lam [22] defines the geometric process as an138

alternative to the NHPP: a sequence of random variables {Xk, k = 1, 2, ...} is a geometric process if the distribution139

function of Xk is given by F (αk−1t) for k = 1, 2, ..., and α is a positive constant. The hazard rate changes from140

h(t) before a CM activity to αhk−1(αt) after the CM. The change is similar to the hybrid PM models. Wang141

& Pham [23] later refer a process similar to the geometric process as a quasi-renewal process. Finkelstein [24]142

develops a very similar model where he defines a general deteriorating renewal process such that Fk+1(t) ≤ Fk(t).143

Wu & Clements-Croome [25] extend the geometric process by replacing its parameter αk−1 with α1α
k−1+β1β

k−1,144

where α > 1, and 0 < β < 1. The geometric process has been studied by many authors (for example, see [7],145

[26]–[29]). However, we have found very few works in the application of the geometric process to modelling PM.146

We hence will not discuss this model in detail.147

B. Interrelationships148

On the basis of the above discussion, if we use Y =⇒ Z to denote that Z can be derived from Y , the chain of149

implications in Fig. 1 exists among the existing sequential PM models.150

LIN +3

!)��

MALKS

��

ai
+3 ABAO

NAK2

��

NAK1

u}

ks KIJ

AGAN

Fig. 1. Interrelationships of existing PM models.

From the relationships shown in Fig. 1, we conclude that all of the existing PM models can be categorized to151

be special cases of the LIN model, and the KIJ model. The CAN model, and the model by Seo & Bai [13] are not152

included in Fig. 1 as these two models are periodic ones.153
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C. A new categorization154

Unlike the classification of the PM models used by [5], the following category is created from the perspective of155

the aging property. All of the PM models in the preceding subsection can be categorized into one of the following156

classes, or a combination of the two classes.157

Age reduction PM models: PM modelled by AGAN, MAL, NAK1, or CAN assumes that the PM restores158

the maintained system to a younger age. Apparently, the model introduced by Seo & Bai [13] also falls159

into this category. After a PM, the system will follow the deteriorating speed from its younger age point.160

The parameters in the age reduction PM models indicate how much a PM has reduced the functional161

age of a maintained system. These parameters are µi, ν1j , and τ in the MAL, NAK1, and CAN models,162

respectively. They are called age reduction parameters in what follows.163

Age defying PM models: PM modelled by NAK2 defies the age of the system after it has been maintained.164

The ageing of the system after a PM will slow down (or speed up in some cases). The effect of the PM165

mainly influences the future system degradation. The parameters in this category measure the speed of166

deterioration of the maintained system after PM has been conducted. These parameters are ν2i in the167

NAK2 model, and they are called age defying parameters.168

PM in the LIN model can function as both age reduction, and age defying. The parameters λ2k, and λ1k in the169

LIN model are the age reduction parameter, and the age defying parameter, respectively.170

III. LINEAR, AND NONLINEAR PM171

Aside from the LIN model, the PM models reviewed in Section II consider the PM improvement simply from one172

aspect: either age reduction, or age defying. The PM models introduced in this section depict the PM effectiveness173

from both aspects. These models are called linear PM models, and nonlinear PM models, respectively.174

A. Linear PM175

The NAK2 model assumes that the hazard rate right after PM reduces to 0, and then increases more quickly176

than it did in the previous PM interval. These assumptions might be too rigorous, and even unrealistic in some177

scenarios, which can limit the models applications in practice. For example, in some scenarios, a PM, such as178

cleaning, adjustment, alignment, and lubrication work, may not always reduce the system’s age or hazard rate to179

zero [30]. Instead, it may only reduce the degradation rate of the system to a certain level. Therefore, a reasonable180

extension is to relax the assumptions that the hazard rate reduces to a certain level after better maintenance, and181

then increases more quickly than it did in the previous PM interval. This relaxation of the assumption leads to the182

following model.183

Definition 9: The kth PM is called linear PM if184

hk(t) = ahk−1(t) + b, (10)

where a, and b are parameters; t ∈ (0, tk) for k = 1, 2, ..., and a, b > 0.185
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The reason we call the kth PM a linear PM is that the relationship between the two adjacent hazard functions186

before and after the kth PM is linear. We also call (10) a linear PM model.187

Parameters in (10) can have their physical meanings. Parameter a indicates a degree of deterioration after PM.188

The system deteriorates faster than before if a > 1, deteriorates slower than before if a < 1, or keeps the same189

shape but different locations of the hazard rate as before if a = 1 and b 6= 0. a is called an age defying parameter190

of the linear PM model, although the PM does not defy the age of the maintained system in the case of a > 1.191

Parameter b indicates the starting value of the hazard rate immediately after a PM. The PM is a worse maintenance192

if b > hk−1(tk−1), and it is a better maintenance if b < hk−1(tk−1). Therefore, we call b a location parameter.193

Equation (10) reduces to the NAK2 model if b = 0; and to the AGAN model if b = 0, and a = 1. Parameters194

a, and b reflect the performance of the linear PM. a can be limited within (0, 1) for better PM.195

If all of the first k PM are linear PM, (10) can also be written as196

hk(t) = Akh0(t) +Bk, (11)

where A0 = 1, B0 = 0, B1 = b, Ak = ak, and Bk =
ak + a− 2

a− 1
b.197

It is easy to derive the following Lemma.198

Lemma 1: If all of the first k PM are linear PM, we have199

Fk(t) = 1− e−Bkt(1− F (t))Ak . (12)

200

Theorem 1: If all of the first k PM are linear PM, and 1− F (t) belongs to IFR, DFR, IFRA, DFRA, NBU, or201

NWU, then 1− Fk(t) is in the same category for k = 2, 3, . . ..202

The proof of Theorem 1 is given in Appendix.203

B. Nonlinear PM204

Models MAL, NAK1, and CAN consider age-reduction phenomenon after PM. If a PM can defy and also reduce205

the age of a maintained system, then the following model is more appropriate to describe such scenarios.206

Definition 10: Assume h0(t) is a nonlinear function with respect to t. The kth PM is called nonlinear PM if207

hk(t) = hk−1(αt+ β), (13)

where α(> 0), and β(≥ 0) are parameters; and t ∈ (0, tk).208

In this model, α plays a role in defying or accelerating degradation of a maintained system due to the effectiveness209

of PM. A PM defies the age of a maintained system for α ∈ (0, 1), and it accelerates the deterioration of the system210

for α ∈ (1,∞). β is the value that a PM brings the system’s age to in terms of the immediate proceeding PM211

interval. Hence, we call α an age defying parameter, and β a location parameter.212

The linearity between hk(t) and hk−1(t) in (13) depends on hk−1(t): if hk−1(t) is linear with respect to t, then213

the relationship is linear; otherwise, it is nonlinear. In the case that hk−1(t) is linear, (13) is equivalent to (10).214
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This equivalence is the reason we assume h0(t) is nonlinear in the definition. We also call (13) a nonlinear PM215

model.216

The two parameters α, and β in (13) estimate the effectiveness of the PM: a better maintenance if 0 < α < 1,217

and β < tk−1.218

If all of the first k PM are nonlinear PM, another expression of (13) is given as219

hk(t) = h0(Φkt+Ψk), (14)

where Φ0 = 1, Ψ0 = 0, Ψ1 = β, Φk = αk, and Ψk =
αk + α− 2

a− 1
β.220

Lemma 2: If all of the first k PM are nonlinear PM, for nonlinear PM, we have221

Fk(t) = 1− (1− F (Φkt+Ψk))
1

Φk (1− F (Ψk))
−

1

Φk . (15)

222

Theorem 2: If all of the first k PM are nonlinear PM, and 1 − F (t) is IFR (or DFR), then 1 − Fk(t) of the223

nonlinear PM model (13) is IFR (or DFR) for k = 1, 2, 3, . . ..224

IV. PM POLICY OPTIMIZATION225

A PM policy specifies how PM activities should be scheduled. In the reliability and maintenance literature,226

two PM policies are commonly discussed: periodic PM, and sequential PM. The periodic policy schedules PM227

activities at fixed time periods, for example, T, 2T, 3T, . . ., whereas the sequential policy schedules PM activities228

at a sequence of time intervals, t1, t2, . . ., that can be unequal. Obviously, if we let t1 = t2 = . . . = T , then229

the sequential PM is equivalent to the periodic PM. Hence, we focus on the sequential PM in what follows, and230

searching maintenance intervals aiming at optimizing overall cost.231

We make the following assumptions for the maintenance policy optimization.232

• The planning horizon is infinite.233

• The hazard functions, h0(t), is continuous, and strictly increasing if there are no PM interventions.234

• The times for PM, minimal repair, and replacement are negligible.235

• PM is performed at t1, t1 + t2, . . . ,

N−1
∑

i=1

ti, and the system is replaced at

N
∑

i=1

ti.236

• Minimal repairs are used for failures between PM.237

• The system is restored to as good as new state at replacement.238

To derive the expected cost expression, we assume that the planning horizon is infinite, the system is replaced239

after N − 1 PM, and the system is brought to an AGAN state at replacement.240

In what follows, we consider both the linear, and nonlinear cases.241

A. Linear PM model case242

Assume all PM are linear, the total number of minimal repairs is given by
∑N−1

k=0

∫ tk
0
(Akh0(x) + Bk)dx, the243

total number of PM is N − 1, and there is one replacement. Then the expected cost per unit time between two244

January 8, 2014 DRAFT



10

Inputs:

h0(t): hazard function;

cm: cost of minimal repair;

cp: unit cost of PM;

cr : replacement cost;

Outputs:

N∗: optimal number of PM before a replacement;

t∗
k

: optimal time interval for the kth PM;

Steps:

1: for NL = 1, 2, ..., N do;

2: obtain tk by solving equation (17);

3: if inequalities (18) and (19) are satisfied, then;

4: calculate CL(t1, t2, ..., tN−1, N);

5: set T ∗
← T ; N∗

← N ;

6: break;

7: end;

8: end;

TABLE I

SEARCHING THE OPTIMAL t∗
k

, AND N∗ FOR THE LINEAR PM MODEL.

adjacent replacements is given by245

CL(t0, t1, ..., tN−1, N) =
cm

∑N−1
k=0

∫ tk
0
(Akh0(x) +Bk)dx+ cp(N − 1) + cr

∑N−1
k=0 tk

, (16)

where, cm is the cost per CM, cp is the cost per PM, cr is replacement cost, and N − 1 is the number of PM246

between two adjacent replacements.247

The optimal t∗k should satisfy the following conditions.
∂CL(t0,t1,...,tN−1,N)

∂tk
|tk=t∗

k
= 0, for k = 0, 1, 2, ..., N − 1.248

This implies that the optimum t∗0, t
∗

1, ..., t
∗

N−1 should satisfy249

Akh0(t
∗

k) +Bk =
CL(t0, t1, ..., tN−1, N)

cm
, (17)

for k = 0, 1, 2, ..., N − 1. The optimal N∗ should satisfy the following conditions.250

CL(t
∗

0, t
∗

1, ..., t
∗

N∗
−2, (N

∗ − 1)) ≥ CL(t
∗

0, t
∗

1, ..., t
∗

N∗
−1, N

∗), (18)

and251

CL(t
∗

0, t
∗

1, ..., t
∗

N∗ , (N∗ + 1)) ≥ CL(t
∗

0, t
∗

1, ..., t
∗

N∗
−1, N

∗). (19)

Table I presents a method to search the optimal values of t∗k, and N∗ for the linear PM model case.252

B. Nonlinear PM model case253

Assume all PM are nonlinear, and the system is aged from Ψk just before the kth PM to Φktk +Ψk just before254

the next PM. Then the total cost is given by255

January 8, 2014 DRAFT



11

CN (t0, t1, ..., tN−1, N) =
cm

∑N−1
k=0

∫ tk
0

h0(Φkx+Ψk)dx+ cp(N − 1) + cr
∑N−1

k=0 tk
. (20)

The optimal t∗k should satisfy the conditions
∂CN (t0,t1,...,tN−1,N)

∂tk
|tk=t∗

k
= 0, for k = 0, 1, 2, ..., N − 1. This256

implies that the optimum t∗0, t
∗

1, ..., t
∗

N−1 should satisfy h0(t
∗

0) = h0(Φ1t
∗

1 + Ψ1) = h0(Φ2t
∗

2 + Ψ2) = . . . =257

h0(ΦN−1t
∗

N−1 +ΨN−1), and cmh0(Φkt
∗

k +Ψk) = CN (t∗0, t
∗

1, t
∗

2, ..., t
∗

N−1, N).258

Similarly, the optimum value N∗ should satisfy the conditions CN (t∗1, t
∗

2, ..., t
∗

N∗
−2, (N

∗−1)) ≥ CN (t∗1, t
∗

2, ..., t
∗

N∗
−1, N

∗),259

and CN (t∗1, t
∗

2, ..., t
∗

N∗ , (N∗ + 1)) ≥ CN (t∗1, t
∗

2, ..., t
∗

N∗
−1, N

∗).260

V. DISCUSSION261

Comparing to the existing PM models reviewed in Section II, we can see that the linear PM model relaxes the262

assumption of the NAK2 model, while the nonlinear PM model relaxes the assumption of models MAL, NAK1,263

and CAN. Here, by relaxation, we mean that the proposed models either relax the assumption of parameters264

0 < ν10 < ν11 < ... < ν1k−1 < 1 in the NAK1 model, and 1 ≤ ν20 ≤ ν21 ≤ ... ≤ ν2k−1 in the NAK2 model;265

or add one more parameter, bk in the linear PM model, and βk in the nonlinear PM model. The following hybrid266

model can be seen as extensions of all of the existing PM models.267

If we combine the linear and nonlinear PM models, a hybrid PM model can be derived. For all PM models,268

parameter estimation is of interest in both practical, and theoretical perspectives. This section addresses both the269

hybrid PM model, and its parameter estimation.270

A. Hybrid PM271

Combining both the linear and nonlinear PM models, we can extend them to a hybrid PM model as follows.272

Definition 11: The kth PM is called hybrid PM if the hazard functions before, and after the kth maintenance273

have the relationship274

hk(t) = ahk−1(αt+ β) + b, (21)

for k = 1, 2, . . ..275

B. More generic extensions276

All PM models discussed in Section II assume different parameters after each PM. Similarly, we have the277

following extensions for the linear, nonlinear, and hybrid PM models.278

1) Extended linear PM model:279

Definition 12: The kth PM is called an extended linear PM if280

hk(t) = akhk−1(t) + bk, (22)

where ak, and bk are parameters; t ∈ (0, tk), and ak, bk > 0. A typical, reasonable choice for the age reduction281

parameter bk is to assume that it depends on tk−1. For example, set bk = ρkhk−1(tk−1) with ρk ∈ (0, 1) for better282

maintenance.283
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If all of the first k PM are extended linear PM, then (22) can also be written as284

hk(t) = A′

kh0(t) +B′

k, (23)

where285

A′

0 = 1, B′

0 = 0, B′

1 = b1, A
′

k =
k
∏

i=1

ai, and B′

k =
k−1
∑

i=1



bi

k
∏

j=i+1

aj



+ bk.

It is easy to derive the following Lemma.286

Lemma 3: If all of the first k PM are extended linear PM, for (23), we have287

Fk(t) = 1− e−B′

k
t(1− F (t))A

′

k . (24)

If 1 − F (t) belongs to IFR, DFR, IFRA, DFRA, NBU, or NWU, then 1 − Fk(t) is in the same category for288

k = 2, 3, . . ..289

2) Extended nonlinear PM model:290

Definition 13: Assume h0(t) is a nonlinear function with respect to t. The kth PM is called an extended nonlinear291

PM if292

hk(t) = hk−1(αkt+ βk), (25)

where t ∈ (0, tk), αk is an age defying parameter, and βk is an age reduction parameter.293

Similar to the linear PM model, the expressions of parameters, αk, and βk, in the extended nonlinear PM model294

are important. If we recall the existing PM models, parameters µk in the MAL model, ν1k in the NAK1 model,295

λ2k in the LIN model, and kT − kτ in the CAN model, are related to the time intervals tk, and playing a similar296

role as the parameter βk in the extended nonlinear PM model. Therefore, βk can be set to γktk−1, which will be297

used in the PM policy optimization section, where γk ∈ (0, 1).298

If all of the first k PM are extended nonlinear PM, another expression of e (25) is299

hk(t) = h0(Φ
′

kt+Ψ′

k), (26)

where300

Φ′

0 = 1,Ψ′

0 = 0,Ψ′

1 = β1,Φ
′

k =
k
∏

i=1

αi, and Ψ′

k =

k−1
∑

i=1

(βi

k
∏

j=i+1

αj) + βk.

The proof for the following Lemma is simple, so we do not show the proof in this paper.301

Lemma 4: If all of the first k PM are extended nonlinear PM, for (25), we have302

Fk(t) = 1− (1− F (Φ′

kt+Ψ′

k))
1

Φ′

k (1− F (Ψ′

k))
−

1

Φ′

k . (27)

If 1− F (t) is IFR (or DFR), then 1− Fk(t) is IFR (or DFR) for k = 1, 2, 3, . . ..303
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3) Extended hybrid PM model:304

Definition 14: The kth PM is called an extended hybrid PM if the hazard functions before, and after the kth305

maintenance have the relationship306

hk(t) = akhk−1(αkt+ βk) + bk. (28)

All PM models in Section II are special cases of the extended hybrid model.307

If all of the first k PM are extended hybrid linear PM, then another expression of model (28) is given as308

hk(t) = Akh0(Φkt+Ψk) +Bk, (29)

and we have the following lemma.309

Lemma 5: For Model (29), we have310

Fk(t) = 1− e−Bkt(1− F0(Φkt+Ψk))
Ak

Φk (1− F0(Ψk))
−

Ak

Φk . (30)

If hk(t) is IFR (DFR), then hk+1(t) is IFR (DFR).311

C. More complex situations312

Obviously, the introduced PM models do not consider more complex situations that can exhibit more complex313

non-linear relationship between hk(t) and hk−1(t). For example, hk(t) can be a G(hk−1(t)), or hk(t) = hk−1(g(t))314

where G(.) and g(.) are nonlinear functions. In practice, however, estimating parameters for a nonlinear relationship315

can be problematic as there might be limited data available.316

D. Parameter estimation317

In practice, there are two approaches to estimating the parameters in PM models. The first approach estimates318

the parameters on the basis of reliability data sets. For example, one can utilize maximum likelihood estimation319

to estimate the parameters of the linear, and non-linear PM models. The second one uses domain experience to320

estimate the parameters. This approach is used only if few failure data are collected (see [31]). A combination of321

these two approaches can also be used. For example, [7] considers the scenarios where the maintenance effect is a322

random variable. It assumes that both parameter τ in the CAN model, and parameter ν1i in the NAK1 model are323

random variables with certain probability distributions. Under such assumptions, they show that more cost-effective324

PM policies can be obtained.325

Note that a PM model with many parameters might not be applicable in practice. This is due to a lack of326

sufficient data for parameter estimation. However, (10) of the linear PM model, (13) of the nonlinear PM model,327

and (21) of the hybrid PM model include fewer parameters which should be easier to estimate, and more realistic328

for applications in practice.329
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VI. CONCLUSIONS330

PM models are important in both designing maintenance policies, and assessing the residual lifetime of systems331

being preventively maintained. Many PM models are proposed in the reliability literature. As discussed in Section332

III, however, existing PM models present weaknesses in the sense that either their parameters might not have333

physical meanings, or their model assumptions are too restrictive. The linear, nonlinear, and hybrid PM models334

proposed in this paper overcome such weaknesses.335

The main contributions of this paper are as follows.336

• We have reviewed the existing PM models, investigated their interrelationships, and proposed a new classifi-337

cation of the PM models.338

• Three PM models are introduced, and their relationships are investigated.339

• The properties of the PM models are derived.340

• The expected costs for the three PM models for sequential PM are formulated, and the necessary conditions341

of obtaining the optimal PM policies for both the general, and special cases are derived.342

Our future research will include343

• estimating the parameters within the three models, and comparing the three models with those reviewed in344

Section II with respect to their performance on the basis of field test data; and345

• investigating the application of the proposed PM models to various scenarios, including optimizing warranty346

policies for products with linear or nonlinear preventive maintenance.347
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APPENDIX411

The proof of Theorem 1 is as follows.412

Proof If h0(t) is increasing (or decreasing), then (11) hk(t) is increasing (or decreasing).413

1− F (t) is IFRA (or DFRA) if [1− F (t)]1/t is decreasing (or increasing).414

Because415

(1− Fk(t))
1/t = (e−Bkt(1− F (t))Ak)1/t = e−Bk

(

(1− F (t))1/t
)Ak

(31)

from (11), assuming that (1−F (t))1/t is increasing (decreasing) with respect to t, then (1−Fk(t))
1/t is increasing416

(decreasing) in t.417

1−F (t) is NBU (or NWU) if 1−F (t1+t2) ≤ (1−F (t1))(1−F (t2)) (or 1−F (t1+t2) ≥ (1−F (t1))(1−F (t2))).418

Assume that (1− F (t1))(1− F (t2)) ≥ 1− F (t1 + t2). According to (1), then it follows that419

1− Fk(t1 + t2) = e−Bk(t1+t2)(1− F (t1 + t2))
Ak

≥ e−Bk(t1+t2)(1− F (t1))
Ak(1− F (t2))

Ak

= (1− Fk(t1))(1− Fk(t2)) (32)

A similar proof exists for the case 1− F (t1 + t2) ≥ (1− F (t1))(1− F (t2)). This proves the theorem.420
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