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Abstract—In this paper, an advanced technique for the gener-
ation of deformation maps using synthetic aperture radar (SAR)
data is presented. The algorithm estimates the linear and nonlinear
components of the displacement, the error of the digital elevation
model (DEM) used to cancel the topographic terms, and the atmo-
spheric artifacts from a reduced set of low spatial resolution inter-
ferograms. The pixel candidates are selected from those presenting
a good coherence level in the whole set of interferograms and the
resulting nonuniform mesh tessellated with the Delauney trian-
gulation to establish connections among them. The linear compo-
nent of movement and DEM error are estimated adjusting a linear
model to the data only on the connections. Later on, this infor-
mation, once unwrapped to retrieve the absolute values, is used to
calculate the nonlinear component of movement and atmospheric
artifacts with alternate filtering techniques in both temporal and
spatial domains. The method presents high flexibility with respect
the required number of images and the baselines length. However,
better results are obtained with large datasets of short baseline in-
terferograms. The technique has been tested with European Re-
mote Sensing SAR data from an area of Catalonia (Spain) and val-
idated with on-field precise leveling measurements.

Index Terms—Differential interferometry (DInSAR), digital el-
evation model (DEM), nonlinear movement, subsidence, synthetic
aperture radar (SAR), terrain deformation.

I. INTRODUCTION

T HE DETECTION of earth surface movements using re-
mote sensing techniques has shown excellent results in

the last years of research [1]–[17]. The first steps in differential
synthetic aperture radar (SAR) interferometry (DInSAR) were
made combining a pair of short-baseline SAR images enough
separated in time to generate the associated interferogram. If
the topographic phase can be neglected, due to the short spa-
tial baseline, in front of the one caused by deformation, or it
is removed using an external digital elevation model (DEM),
the unwrapped interferometric phase shows the spatial distri-
bution and magnitude of the displacement. This technique was
successfully used to monitor single deformation episodes like
the ones caused by earthquakes [1], [2] or volcanoes [3], due
to the short time gap necessary between both SAR acquisitions,
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which reduces the temporal decorrelation and allows working
with a dense grid of pixels. Differential interferometry has also
been used to monitor landslides in alpine zones above the tree
line, because on surfaces with sparse vegetation and bare soil
or rock the coherence is preserved over long periods [4]. Never-
theless, in the most general cases when monitoring low-velocity
deformations differential interferograms are forced to have a
large temporal baseline and consequently the temporal decor-
relation degrades the interferometric phase making almost im-
possible the extraction of useful information unless large co-
herent areas are present. An additional limitation, common to
both short and large temporal baseline differential interfero-
grams, is the presence of atmospheric artifacts that degrade the
quality of the displacement estimation. Note that usual changes
in the troposphere from one day to another can produce different
time delays in the propagation of the signal resulting in phase
patterns similar to the deformation ones. In order to overcome
these inherent limitations, various techniques have been pub-
lished during the last years to study the temporal evolution of
deformations from large datasets of images [5]–[17].

The phase gradient approach to stacking interferograms [5]
is used to construct averages and differences of interferograms
without phase unwrapping, allowing the study of surface change
detection by increasing fringe clarity and decreasing the er-
rors introduced by the atmospheric contribution. The method
has been applied to study fault creeps for earthquake physics
and hazard mitigation [6]. In order to minimize the effects of
the DEM inaccuracies and the spatial decorrelation, some tech-
niques work with small baseline interferograms generated from
the image dataset, which can cause the presence of different sub-
sets of interferograms with no common images. Initially, only
one deformation time series for each subset were obtained [7],
[8]. The technique has been extended to the subset problem by
means of the singular value decomposition (SVD) method [9],
which applies a minimum-norm criterion to the velocity defor-
mation estimation [10]. This technique requires the unwrapping
of the interferograms over the sparse-grid formed by the pixels
with coherence over a given threshold. The method calculates
the time sequence deformation and estimates the DEM error
and the atmospheric artifacts present in the interferograms, in
a similar way as the Permanent Scatterers technique [13]. A
complementary approach, also based on the application of the
SVD method to link independent SAR acquisitions datasets,
was presented in [11]. Instead of looking for large scale defor-
mations with reduced spatial resolutions, the algorithm was able
to monitor localized deformation phenomena at high resolution
of highly coherent structures, like buildings.
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The technique of the Permanent Scatterers (PS) also uses
large stacks of images to generate the differential interferograms
with respect a common master image for each available acqui-
sition, even if the baseline is larger than the critical one and the
generated interferogram highly affected by spatial decorrelation
[12]. The high dispersion of baseline values and the limited ac-
curacy of the available DEM make impossible the usage of a
coherence criterion to select the pixels with good phase quality,
since with the largest baselines the topographic component has
to be accurately removed from the interferometric phase prior
coherence computation. With the PS technique, pixels are se-
lected from the study of its amplitude stability along the whole
set of images, which requires a minimum of 30 images and its
proper radiometric calibration for a reliable selection; therefore,
the maximum resolution of the SAR images is preserved [12].
A linear model is adjusted to the data to estimate the deforma-
tion linear velocity and the DEM error for each selected pixel.
Finally, the nonlinear component of movement and the atmo-
spheric phase screen for each image is computed with a com-
bined spatio-temporal filtering [13]. Recently, the PS technique
has been used to combine nonhomogeneous datasets, not ac-
quired within the same track frame and mode, over the same
area [14]. In the preliminary results, 160 descending mode im-
ages from two different tracks and 30 ascending mode images
were combined increasing the spatial density of radar bench-
marks. The PS technique has also been applied on landslides
monitoring where correlation is usually low, and the detection
of isolated stable scatterers is crucial [15].

The algorithm presented in this paper is also able to retrieve
the linear and nonlinear components of movement from a set
of low-resolution interferograms, estimating at the same time
the DEM error and the atmospheric artifacts. The basis for the
linear estimation of movement is the adjustment of a linear
model, which considers the linear velocity of displacement and
the DEM error, to the available data in a similar way as done
in the preceding methods [10], [12], [13]. The pixel selection
criterion is based on its coherence stability in the stack of
interferograms, in consequence the final product will have
lower resolution than the original images and interferograms
with short baselines will be preferred but this restriction is not
compulsory. Besides this, the generation of the interferograms
does not require establishing a master image, allowing free
combinations of all available images. These two characteristics
enable the algorithm to work with a small number of images,
if compared with the requirements of the PS technique for
instance [12]. Preliminary experiments provided good defor-
mation maps from a reduced set of only seven images [16],
these results were very similar to the ones obtained later on
from a larger dataset of 20 images of the same zone [17]. This
flexibility allows the user to generate deformation maps at a
reduced cost and once a problematic zone is detected to plan
the acquisition of more images. The method adjusts a linear
model to phase increments between two neighboring pixels
linked with the Delauney triangulation [18], avoiding the need
of a sparse grid phase unwrapping of the interferograms.

Once the linear velocity of deformation and the DEM error
have been retrieved, the algorithm continues with the nonlinear
movement and the atmospheric artifacts estimation. In essence

the algorithm takes advantage of the different behavior of the
atmospheric artifacts in time and space with respect the non-
linear movement to isolate their respective contributions to the
phase. Although the approach is similar in philosophy to all the
methods previously noted, the practical implementation is dif-
ferent and oriented to strengthen the algorithm robustness. A
combination of temporal and spatial filters sequentially applied
are able to extract the atmospheric artifacts and the low- and
highpass components of the nonlinear movement. As the in-
terferograms were generated freely from the available images,
the SVD method [10] is used to retrieve the temporal sequence
suitable for the temporal filtering. One of the advantages of the
algorithm is that there is no need to unwrap the noisy differen-
tial interferograms, which can be a difficult step and a potential
source of errors. In addition the SVD method provides a min-
imum norm solution and allows the connection among noncon-
nected subsets of interferograms, however some fast nonlinear
movements could be underestimate. The coupling of the atmos-
phere and the nonlinear movement, as both can present a similar
phase behavior, is a common limitation in all methods.

In summary the processing main steps of the proposed algo-
rithm are: selection of the image set covering the desired time
interval, formation of the optimal inteferogram pairs depending
on the maximum spatial baseline allowed, identification of the
pixels candidates (those presenting a good phase quality) with
a criterion based on its coherence stability along the interfer-
ograms stack, triangulation of the selected pixels to establish
phase relations among them, and the adjustment of a linear
model, which considers linear deformation and DEM error, to
those phase relations for the whole set of interferograms. Once
the linear movement has been estimated, the algorithm isolates
the nonlinear component of movement from the atmospheric
artifacts applying successive spatial and temporal filters.
Finally, the results are integrated and interpolated to generate
the movement maps.

The paper is organized as follows. Section II explains the
extraction of the linear component of movement and the DEM
error from the interferograms and Section III the nonlinear
component and the atmospheric artifacts. Once the theoret-
ical aspects have been discussed, Section IV introduces the
European Remote Sensing (ERS) dataset used to validate the
algorithm and Section V shows the results obtained in three
different experiments. Finally, conclusions and open problems
are addressed in Section VI.

II. EXTRACTION OF LINEAR DEFORMATION

When generating an interferogram by combining two SAR
images, its phase variation between neighboring pixels can be
expressed as [22]

(1)

where earth is the flat earth component related with
range distance; is the topographic phase; is the
component due to the displacement of the terrain in range
direction [line of sight (LOS)] between both SAR acquisitions;

is the phase related with atmospheric artifacts; and
comprises degradation factors related with temporal
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and spatial decorrelation and thermal noise. Three of the terms
are analytically well known ( , , and )

(2)

(3)

(4)

where is the wavelength; the range distance; the normal
baseline (normal component of the separation between the po-
sition of satellites in both acquisitions respect to the incident
angle); is the range increment between pixels;the inci-
dence angle; and are the height and velocity increments
between neighboring pixels respectively; andis the temporal
baseline between both SAR acquisitions. Note that the deforma-
tion term has two contributions: linear and nonlinear displace-
ment. By removing the flat earth and topographic terms we ob-
tain the following DInSAR phase:

(5)

As the DEM used to cancel the topography is not perfect,
is the phase component associated to the height

error

(6)

where is the height error increment expressed in meters. If
a set of differential interferograms of the same area is used, the
topographic error and the linear deformation are correlated in all
the images following (4) and (6). As the atmospheric conditions
change from acquisition to acquisition, the atmospheric contri-
bution behaves as a white process in time [21], [22]. Conse-
quently, we can consider the atmospheric contribution and noise
temporally decorrelated along the whole set of interferograms.
With this approach, a model, which considers linear velocity de-
formation and DEM error, can be fitted to the set of differential
interferograms with different temporal baselines. The linear de-
formation model cannot be applied to all the pixels within the
area under study since only a part of them have sufficient phase
quality due to decorrelation. Therefore, a first selection based on
their phase quality estimation has to be performed before com-
puting their deformation velocity. This selection can be done
with two methods, one based on pixel amplitude stability and
the other on spatial coherence. The selection based on amplitude
presented in [12] and [13] estimates the phase standard deviation
of every pixel from its temporal amplitude stability, which pre-
serves the maximum spatial resolution of the images and allows
detecting single isolated scatterers smaller than a resolution cell.
One drawback of this technique is the large number of radiomet-
rically calibrated images required, typically more than 30 [12],
to successfully achieve a correct statistical study. On the other
hand, the spatial coherenceis used to obtain the maximum
likelihood estimator of the coherence magnitude [22] and pro-
vides an estimation of the accuracy of the pixel’s phase for each
interferogram not dependent on the number of images available.
The required estimation window worsens the spatial resolution
and can cause the loss of isolated scatterers which could be de-
tected with the amplitude criteria. In our algorithm, pixels on

Fig. 1. Example of Delaunay triangulations.

multilooked images are selected from their coherence stability.
A mean coherence image is generated from the whole stack of
coherence maps in the following way:

(7)

where is the number of interferograms. All pixels with a mean
coherence over a selection threshold are accepted as candidates
for the next step of the algorithm. A minimum value of mean co-
herence of 0.25 has been probed suitable for most of the cases.
Note that this step is only a selection of candidates, and some
of them will be rejected later if they do not adjust to the linear
model. The size of the spatial window to calculate coherence
sets the final resolution of the deformation maps. In our exper-
iments, an averaging window of 416 or 5 20 (range az-
imuth) has been probed enough for a good compromise between
estimation of coherence and final resolution. If window dimen-
sions are too small, the computed coherence will overestimate
phase quality [22], and most of the pixels selected will be re-
jected on the next steps of the algorithm. We have to remember
that the coherence is calculated once the fringes related with to-
pography and flat earth have been eliminated; then, spatial co-
herence can be considered a good estimator.

The phase of individual pixels is not of practical utility due to
the presence of different phase offsets among differential inter-
ferograms. These offsets could be calculated over high-coher-
ence stable areas not affected by deformation and atmospheric
artifacts, but in this case, additional input information would
be required. This problem can be overcome relating two neigh-
boring pixels, ( ) and ( ), by means of the Delaunay
triangulation [18], [19] and canceling then the offsets effect.
This kind of triangulations relates all the neighboring pixels of
irregularly gridded data generating nonoverlapped triangles, see
Fig. 1. Then, the differential phase increments can be expressed
as

(8)
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where and are the pixel position coordinates within the
image; is the time baseline of theth interferogram; is the
wavelength; is the constant velocity of the linear model of dis-
placement; the spatial baseline of theth interferogram; the
range distance; the incidence angle;the topographic error;
the nonlinear component of velocity; the atmospheric phase
artifacts; and decorrelation noise. Another advantage of re-
lating neighboring pixels is that the atmospheric component is
minimized for every relationship due to their spatial proximity.
Taking into account that the atmospheric perturbation is a spa-
tial small wavenumber signal, we can consider for neighboring
pixels that

(9)

The assumption considered in (9) holds if during triangu-
lation the maximum distance allowed to connect two separate
pixels is limited to approximately 1 km, which is a reasonable
correlation distance of the atmosphere [21], [22]. In some cases,
nonconnected isolated areas will have to be studied indepen-
dently. As the linear velocity and DEM error are constants in
the whole set of differential interferograms, it is possible to re-
trieve a good estimation of them adjusting the following phase
model to data [10], [12], [13]:

(10)

This can be performed maximizing the followingmodel co-
herence function[13]:

(11)

where is the number of interferograms. This function is equal
to one when the adjustment to data is perfect and zero in case of
total decorrelation. The maximization of the function is equiv-
alent to find the bidimensional frequency of the complex sinu-
soid derived from the phase term (10). For each relation estab-
lished by the Delauney triangulation, the values of this sinu-
soid are known over an irregular grid defined by the available
pairs of temporal and spatial baselines, . A reduced
set of interferograms can cause an erroneous estimation of the
unknown frequencies as different combinations of velocity and
DEM error can generate similar phases. The larger the number
of interferograms, the better will be the estimation as the range
of multiple solutions is reduced. There is not a clear minimum
number of images as results depends on each case, but we found
that seven interferograms can provide good results and it is very
difficult to work with less than five. Other interesting considera-
tions about the maximization of (11) and its implicit constraints
can be found in [13].

Once this maximization process has been done for each re-
lationship, the result is the following set of velocity and topo-
graphic error increments:

(12)

(13)

At this point, a new quality test is performed and all the
connections with a model coherence below a threshold are re-
jected. Good results have been obtained with coherence thresh-
olds larger than 0.7. As a consequence of the quality test, some
pixels will be left isolated and also eliminated. An integration
process is necessary to obtain absolute values for each pixel. We
have used an approach based on the classical region growing al-
gorithm for phase unwrapping [20]. The integration starts from
different seed points, chosen from those presenting links with
better model coherences, and calculates the absolute value of
velocity for each pixel using

(14)

where index corresponds to those neighboring pixels con-
nected to the one that is being integrated. Each contribution
reaching a pixel is weighted with its associated model coher-
ence to reduce the contribution of the less reliable connections.
A similar procedure is performed for the DEM error.

Fig. 2 shows a detailed layout of the method. In order to se-
lect the images covering a given time interval it is very impor-
tant to have a homogeneous distribution of temporal baselines
to correctly compute the velocity of deformation. Moreover, if
the estimation of the DEM error is just an intermediate product
and our goal is the correct measurement of deformation, the best
results are obtained with a selection of short spatial baselines,
which allow generate interferograms with lower spatial decorre-
lation and thus select a larger number of coherent pixels. Despite
the DEM error estimation will be less reliable, as short baselines
reduces their impact on phase, the estimation of movement will
be more reliable. Fig. 3 shows the impact on the phase of dif-
ferent DEM errors as a function of the baseline length. Another
important topic is the usage of multiple-pairs, common SAR im-
ages in different interferograms or in other words interferograms
which are lineal combinations of others with respect the images
used, from the available dataset. For instance, if we generate
three interferograms from three images, each interferogram has
different coherences and in practice one of them cannot be con-
sidered strictly as a lineal combination of the rest. This redun-
dancy increases the number of data in the model coherence max-
imized (11) and allows a better estimation of the linear velocity
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Fig. 2. Layout of the linear deformation algorithm.

Fig. 3. Impact of the DEM errors on the phase error as a function of the
baseline length.

and the DEM error even from a reduced set of images. It is also
important to notice that orbit errors can be considered as a phase
plane over a 100-km distance; therefore, under the point of view
of the algorithm they will be treated as atmosphere [23].

III. N ONLINEAR DEFORMATION

After calculating the linear deformation map, it is possible to
obtain the nonlinear component to complete the study of dis-
placement. Adding this nonlinear component to the linear term
a detailed plot of the evolution of the deformation is obtained,
as shown in Fig. 4. The first step is the calculation of the phase
residues obtained by subtracting the previously estimated linear
deformation and the DEM error from the original differential
interferometric phases, as shown in the following equation:

(15)

Fig. 4. Linear and nonlinear components of deformation.

where is the original differential phase, and
is the synthesized phase from the linear model, which considers
the movement and the DEM error

(16)
This procedure is carried out over the coherent pixels and it is

followed by a spatial bilinear interpolation to get uniform pixel
spacing. After this step, the phase residue can be expressed as

(17)

where two important terms must be considered: the atmospheric
artifacts and the nonlinear displacement .
Both terms can be isolated taking advantage of their different
frequency characteristics in space and time. Atmospheric per-
turbations are considered as a low spatial frequency signal in
each interferogram due to its approximately 1-km correlation
distance [21]; but for a given pixel its atmospheric contribu-
tion can be considered as a white process in time, because for
each acquisition date atmospheric conditions can be considered
a random variable. For instance, the characteristics of tropo-
sphere are different from one day to another. On the other hand,
the nonlinear movement presents a narrower correlation window
in space and a lowpass behavior in time. Taking into account all
these considerations, the estimation of the atmospheric artifacts
can be implemented with a filtering process in both spatial and
time domains. Note that complete separation in frequency will
not be possible due to the white process behavior of atmospheric
artifacts.

The spatial lowpass filtering is carried out applying a two-di-
mensional moving averaging window of 1-km1-km (typical
correlation distance of atmosphere). After applying this filter to

, two components remain

(18)

where is the nonlinear component of the dis-
placement atspatial low resolution(SLR), and it is assumed that
atmosphere is not affected by the spatial filter. After this
step, a temporal highpass filter should be applied to retrieve an
important part of atmospheric contribution. The interferograms
have been formed from the phases of two SAR images separated
in time, and, as noted before, no temporal restriction has been
applied on the pair selection. Consequently, the interferograms
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obtained do not follow the temporal order required by the filter.
The formation of the interferograms can be expressed in the fol-
lowing way:

(19)

where is the number of interferograms and , being
and the acquisition times of both SAR images (master

and slave). Equation (19) if expressed as a system of equations
can be solved to retrieve the phase contribution of each single
image. In the most general case the SLR residual phases have
to be unwrapped prior to solving the system. This heavily fil-
tered interferograms are especially easy to unwrap with the clas-
sical methods, as they are very smooth and contain almost no
fringes. The SLR residue is composed by the atmospheric per-
turbations, which are signals with a low variation in space, and
the spatial low-resolution version of the nonlinear displacement,
which behaves in space similarly to the atmospheric compo-
nent. In this case, the least mean squares (LMS) method has
been used [24]. Once the SLR residues have been unwrapped,
it is possible to solve the system of equations (19). The ma-
trix to invert is singular when disconnected subsets of interfer-
ograms, having no common SAR images, are present and then
the system has an infinite number of solutions. For this reason,
the singular value decomposition (SVD) method has been used
as obtains the least square solution of minimum norm [9]–[11].
Then, the result is an approximation of the reality. Nevertheless,
if the nonlinear displacement change between temporally adja-
cent samples is considered smooth, the correct phases will be
retrieved. The algorithm will underestimate the nonlinear move-
ment if very abrupt wide area displacements occur between dis-
connected subsets [10]. Once the system has been solved we get
the phases belonging to each SAR image respect to the master

(20)

where is the number of SAR images. Finally, a Kaiser tem-
poral filter [25] is applied to reduce the atmospheric contribution
and isolate the nonlinear deformation at low resolution. A key
parameter is the selection of the cut frequency to discriminate
the atmospheric component from the nonlinear displacement, as
the atmospheric effects appear in all the frequencies while the
nonlinear displacement is a lowpass signal. Therefore, the cut
frequency should be placed on the considered highest frequency
for the nonlinear displacement. With noa priori information it
is difficult to estimate this frequency; in our case with moderate
nonlinear displacements a 25% of the band has produced good
results

(21)

Note that this displacement phase corresponds to each SAR
acquisition, and added to the linear one gives us the complete

evolution of the deformation. In a similar way, an approximation
of the atmospheric contribution on each SAR image is obtained
with a highpass temporal filter.

This information is not complete, because the SLR nonlinear
deformation has been calculated using spatial lowpass-filtered
phases. Some details of movement atspatial high resolution
(SHR) have been omitted. The procedure to obtain the SHR
component is similar to the one used to estimate the atmo-
spheric artifacts and the SLR displacement. First, a better
phase model using all the available information, including the
estimated linear and SLR nonlinear deformation, the DEM
error and the atmospheric contribution is generated

(22)

where are the interferometric phases of the SLR
nonlinear displacement generated in the following way:

(23)

A new residue can be obtained by subtracting the model from
the original interferometric phases. The residue is basically
composed by two terms

(24)

where is the interferometric phase of the
SHR nonlinear displacement, and is a term related
with decorrelation and thermal noise. If we assume that the
decorrelation term is much smaller than the SHR nonlinear
displacement, we can solve a system of equations formed from
(25) to obtain the movement information for each single image

(25)

As it was done before, a phase unwrapping of the residues
is compulsory before solving the system of equations with the
SVD method. Nevertheless, we can consider this residue, as-
sociated with the nonlinear component of displacement, small
enough to assume that is not larger than one phase cycle. This
is an important assumption because phase unwrapping of these
phases would require specific algorithms for sparse data [19].
Our experience using two different datasets and a simulator has
shown this assumption is usually true. Then, the system can be
solved with no need of phase unwrapping. The solution provides
the phases associated to the nonlinear movement with the first
image as the phase reference

(26)



MORA et al.: LINEAR AND NONLINEAR TERRAIN DEFORMATION MAPS 2249

Fig. 5. Layout of the nonlinear deformation algorithm.

The same considerations pointed out when SVD was applied
before are still valid. Finally, the complete evolution of defor-
mation is obtained considering all the components previously
estimated

(27)

A detailed layout of the procedure for the nonlinear estima-
tion of displacement is shown in Fig. 5.

IV. DATA

The algorithm is able to provide good results even with a re-
duced set of SAR images, for instance preliminary results were
obtained with a dataset of only seven SAR images [16]. In this
paper, a set of 23 ERS SAR images, ranging from 1992 to 1999,
has been used, as shown in Table I. The images were chosen to
form 24 interferograms with short spatial baselines, between 2
and 24 m (see Table II). A patch of 10-km16-km from the
whole frame, which contains two interesting towns, has been se-
lected. The small town on the upper left corner of the SAR image
shown in Fig. 6 has subsidence problems, while the bigger bright
zone on the lower corner can be considered a stable area.

The images have been multilooked, with a pixel resolution
in ground range of 100 100 m. A commercial DEM of the
zone, provided by the Institut Cartogràfic de Catalunya (ICC),
has been used to remove the topographic component. Fig. 6
shows the interferometric phase and coherence obtained from
the pair formed with the images acquired July 23, 1997, and
August 12, 1998. The large coherent areas correspond to urban
zones, where coherence is better preserved, while the rest of the
image mostly corresponds to vegetated areas with lower coher-
ence due to temporal decorrelation.

TABLE I
LIST OF THESAR IMAGES USED IN THIS STUDY

TABLE II
LIST OF THESET OF 24 SHORT BASELINE INTERFEROGRAMS

V. RESULTS

The first step of the processing is the selection of those
pixels that present coherence stability in time. In this case,
pixels having a mean coherence value higher than 0.25 have
been selected. The result is a set of 1437 pixels distributed all
over the image. Obviously, the density of points is higher in
the urban areas than in the vegetated ones. All these pixels are
related using the Delaunay triangulation (Fig. 7).
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Fig. 6. (Left) SAR amplitude image, (center) interferometric phase, and (right)
coherence map of the zone under study.

Fig. 7. Selected points using (left) the coherence criterion and (right) the
Delaunay Triangulations before removing the links over 1-km length.

After processing the data using the algorithm for linear de-
formation estimation, the remaining number of points after the
quality test, which checks its linearity, is 1236 from the initial
1437 selected. In addition to noisy pixels, some very nonlin-
early moving quality points could have been eliminated and con-
sequently lost. An important assumption of the method is that
only nonlinear points free of strong abrupt deformations will
pass all the quality filters. As it can be observed on the LOS
(or slant-range) deformation velocity map in Fig. 8, only two
small areas located in the upper left corner of the image present
a subsidence velocity larger than 1 cm per year. The lower area,
labeled as A, belongs to a suburb were subsidence has been
causing structural damages in several buildings. The result over
the bigger town in the lower part of the image (D), which cor-
responds to a stable area, shows the good behavior of the al-
gorithm. Detailed deformation velocity maps over these two
areas are shown in Fig. 9. The results over the suburb (A) have
been validated with precise leveling measurements provided by
ICC, who has been monitoring the zone. These measurements
showed a maximum of subsidence of about 2 cm per year pro-
jected in the slant range direction in the same geographical posi-
tion where the maximum of 1.8 cm per year (LOS) has been de-
tected. Note that the horizontal deformation component cannot
be calculated using only one orbital direction. For example, this
term could be estimated using ascending and descending orbits
[14].

Once the linear deformation has been obtained, the nonlinear
deformation estimation algorithm has been applied to retrieve
the full deformation evolution. Fig. 10 shows the four points (A,

Fig. 8. Slant range deformation velocity map (cm per year) of the area under
study.

Fig. 9. Detailed deformation maps of the two towns, the left one affected
by localized subsidence and the right one stable. The maximum deformation
(white) corresponds to a velocity of 1.8 cm per year.

B, C, and D) depicted in Fig. 8. Point A, with the largest defor-
mation, presents a very linear trend of displacement from 1992
to 1998, but after 1998 the deformation seems to be smaller. On
the other hand, point B shows a linear trend during the whole
period of time. Points C and D, located in stable urban areas, do
not present remarkable movements, as it was expected.

To better evaluate the flexibility of the algorithm with respect
the dataset requirements in both number of images and spatial
baseline length, two additional tests have been carried out. The
first one consisted in the reduction of the number of SAR im-
ages available, while keeping the short spatial baseline restric-
tion on the selection of the interferometric pairs. In this case, 10
differential interferograms were generated using only 14 of the
SAR images available (see Table III). The second test has also
reduced the number of SAR images to 14, but has increased the
spatial baseline range in the 16 interferograms from 6 up to 402
m (see Table IV). For both cases, the obtained deformation ve-
locity maps are shown in Fig. 11. The reduction of the dataset
but keeping the low spatial baseline restriction on interfero-
gram generation causes a slight reduction on the final number
of points where deformation have been calculated, 1015 with 10
interferograms compared with the 1236 with 24 interferograms.
Despite this, reduction is not noticeable over large urban areas
where coherence is high; it can cause the loss of isolated pixels
embedded in low-coherence areas. As expected, the larger the
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Fig. 10. Deformation evolution of points detailed in Fig. 9.

TABLE III
LIST OF THEREDUCEDSET OF TEN SHORT BASELINE INTERFEROGRAMS

number of SAR short baseline interferograms the better the re-
sults. Fig. 12 shows a comparison between deformation evolu-
tion plots using 24 and 10 short baseline differential interfero-
grams. Note the great agreement between both results. On the
other hand, the effect of increasing the spatial baselines becomes
more important. For the large baseline test, the number of points
is reduced drastically, falling down to 478 from the initial 1236
even over cities. Taking into account that we maintain low spa-
tial resolution (multilooked data) a high number of points are
lost due to spatial decorrelation. As a consequence, the deforma-
tion areas are not detected in this case. When increasing spatial
baseline to the limit of critical value, only point-like scatterers
remain with enough quality. In this case, the selection criteria
based on coherence cannot be used.

TABLE IV
LIST OF THE SET OF 16 COMBINED LARGE AND SHORT

BASELINE INTERFEROGRAMS

Fig. 11. Deformation maps using ten short baseline, up to 25 m, (left)
interferograms and (right) 16 large baseline, up to 402 m, interferograms.

Fig. 12. Comparison of deformation plots obtained with 24 short baseline
interferograms (crosses) and ten short baseline interferograms (diamonds).

VI. CONCLUSION

A method with flexible requirements for the estimation of
linear and nonlinear surface displacements from a set of differ-
ential interferograms has been presented. The number of SAR
images required for a good performance of the algorithm can be
considered low, if compared with other methods of the literature,
basically due to the pixel selection criterion, based on a coher-
ence threshold, and the nonrestricted generation of the interfer-
ometric pairs not constrained to follow any specific rule like all
the combinations done with the same master image. These prop-
erties make the algorithm very convenient for detecting terrain
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movements from small datasets of images, allowing identifying
the problematic zones at a reduced cost. Even though a reduced
set of only seven images can provide a good estimation of the
linear component of movement, the redundancy provided by the
usage of larger datasets extends the penetration of the algorithm
further into more difficult areas largely affected by temporal
decorrelation. The benefits of increasing the number of images
are more noticeable when retrieving the nonlinear component
of movement, as this feature is closely related with the temporal
sampling imposed by the image selection.

The pixel candidates selection criterion based on coherence
limits the final resolution of the obtained deformation maps to
the size of the used window, around 100100 m in ground in
this paper. In addition, this criterion also introduces a practical
limit on the baselines length to be used when generating the
interferograms. The larger are the baselines, the higher is the
spatial decorrelation, the more critical is the topography can-
cellation with a DEM and the lower the computed coherence.
Then, all pixels containing point like structures presenting
higher phase quality along time will be lost if surrounded by
low-quality ones. The selection criterion allows reduce the
number of required images, but worsens the final resolution
and is not able to detect some good candidates surrounded by
decorrelated areas. The algorithm performs better with short
baseline interferograms. The initial set of candidates is later
evaluated depending on its adjustment to the linear model
of movement; as a consequence those few pixels presenting
localized higher nonlinear movements will be regarded as
noise, rejected by the algorithm and consequently lost.

The algorithm has been validated with data acquired by ESA’s
ERS-1/2 satellites from 1992 to 1999. The area under study is
a difficult test site due to the presence of large vegetated areas
surrounding small populated zones. Nevertheless, the final re-
sults perfectly show the small areas of deformation controlled
by the Institut Cartogràfic de Catalunya. The rest is stable, as it
was expected. Finally, the complete deformation plot for all the
coherent points has been calculated, showing different displace-
ment trends due to nonlinear movement in the two small zones
affected by subsidence.

Several issues are still open for further improvement. One of
them is to find new selection criteria working with a reduced
number of images which ensures pixel quality independently of
its later linear behavior. These new criteria should allow to pre-
serve the original image resolution and deal with highly non-
linear movements. Another problem that should be addressed
in the future is the isolation of the coupled nonlinear deforma-
tion and atmospheric components. A simple temporal filtering
is not enough to totally separate both components and an accu-
rate evaluation of the coupling effects and the usage ofa priori
information should be considered.
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