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ABSTRACT 
 

We discuss linear and nonlinear optical wave propagation in a left-handed medium 
(LHM) or medium of negative refraction (NRM). We use the approach of characterizing 
the medium response totally by a generalized electric polarization (with a dielectric 
permittivity ) that can be decomposed into a curl and a non-curl part. The 
description has a one-to-one correspondence with the usual approach characterizing the 
LHM response with a dielectric permittivity ε<0 and a magnetic permeability μ<0. The 
latter approach is less physically transparent in the optical frequency region because the 
usual definition of magnetization loses its physical meaning. Linear wave propagation in 
LHM or NRM is characterized by negative refraction and negative group velocity that 
could be clearly manifested by ultra-short pulse propagation in such a medium. Nonlinear 
optical effects in LHM can be predicted from the same calculations adopted for ordinary 
media using our general approach.  
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I. Introduction.  

Over 30 years ago, Veselago [1] suggested that electromagnetic wave propagation 
in an isotropic medium with negative dielectric permittivity, 0)( <ωε  and negative 
magnetic permeability 0)( <ωμ  can exhibit very unusual properties. Since in such 
media, the wave vector , the electric field k

r
E
r

, and the magnetic field H
r

 of a wave form 
a left-handed orthogonal set, in contrast to the right- handed orthogonal set in an ordinary 
medium, they are sometimes labeled as left-handed meta-materials (LHM), as opposite to 
the ordinary right-handed media (RHM). Among the many interesting properties of wave 
propagation in such media are the appearances of a Pointing vector in the direction 



opposite to the wave vector (or a negative group velocity) and a refracted wave on the 
same side of the surface normal as the incoming wave at an RHM/LHM interface 
(negative refraction) (so that the LHM is also called negative refraction medium (NRM)). 
The predictions of Veselago have aroused much theoretical interest and stimulated strong 
experimental efforts to create LHM or NRM in recent years [1-12].  Experimental 
success has been demonstrated in the microwave region [3, 6, 7]. More recently, it has 
been proposed that photonic-gap materials can behave as effective NRM at optical 
frequencies. Analogous to Bloch electron waves in the band structure of a crystal, optical 
waves in the periodic lattice of a photonic-gap material can have a Bloch state with its 
wave vector and group velocity in opposite directions [8-12]. Negative refraction of light 
at an air/photonic-crystal interface has been demonstrated in numerical simulations [10- 
12]. 
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Main emphasis of studies on LHM or NRM so far has been on linear optical 
effects. We consider here nonlinear optical processes in LHM and show that they also 
exhibit unusual properties with respect to energy conversion and propagation. We shall 
limit our discussion to homogeneous NRM excluding photonic-gap materials; the latter 
are more complex because of the presence of optical Umklapp processes.   

Before discussing nonlinear optical effects in NRM we would like to note that 
there are usually two different approaches in dealing with wave propagation. One 
involves the set of fields HBE

rr
,,

r
,

r
 with ED

rr
)(ωε=  and HB

rr
)(ωμ=  for 

monochromatic waves. This approach is often used in discussion of wave propagation in 
LHM or NRM, with the emphasis on the assumption that the response is completely 
characterized by ε(ω)<0 and μ(ω)<0. However, it is known that while the approach is 
appropriate in the low frequency region, it is less so in the optical frequency region 
because )(ωμ  loses its usual physical meaning [13] and higher-order multipoles may 
become important.  A more general approach is to use the set of fields  with BD

rrr
,,E

E
r

D
r

ε~=  and HB
rr

= , satisfying the Maxwell equations: 
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, 0=⋅∇ B
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.  (1) 

In this case, the linear optical response of the medium is completely characterized by the 
generalized dielectric constant ),(~ k

r
ωε , and the refractive index  (n 2nε =%

, and B
) can always 

be taken as positive. We note that in this approach, the vectors ,k E
r r r

&
 always form a 

right-handed set, irrespective of the medium being NRM or not.  
The only difference between wave propagation in bulk NRM and in ordinary 

media is the appearance of a negative group velocity in the former. As we shall see later, 
the negative group velocity is not limited to magnetic media with a negative magnetic 
permeability, but could exist in any dielectric media with a sufficiently strong and proper 
spatial dispersion. Thus the second approach is certainly more general and less confusing; 
in particular, it is better suited for description of nonlinear optical effects in NRM.   
 
 We show in Sec. II that there is a one-to-one correspondence between the 
E,D,H,B approach and the E,D,B approach. While the negative group velocity in LHM or 
NRM appears because ε <0 and μ <0 in the former, it appears because ε%  has a special 
and strong spatial dispersion in the latter. We then use the E,D,B approach to describe 



negative refraction at a RHM/LHM interface in Sec.III. The E, D, B approach is 
commonly used to formulate nonlinear optics in ordinary media. With this approach, the 
results can be easily converted to describe nonlinear optical effects in NRM. We discuss 
as examples, in Sec. IV and Sec. V, respectively, second harmonic generation (SHG) and 
stimulated Raman scattering in NRM. Finally, in Sec. VI, we consider briefly ultrashort 
pulse propagation in linear and nonlinear LHM (or NRM).  
 
 
II. Linear Wave Propagation in a Medium with a Generalized Response Coefficient. 

We present here the E, D, B approach generally used to describe optical wave 
propagation in a medium and make connection to the E, D, H, B approach often used to 
describe wave propagation in NRM. 

 
A. Dielectric Tensor as the Response Coefficient. 

As pointed out by Landau and Lifshits [13], the magnetization M
r

 loses its usual 
physical meaning as magnetic moments per unit volume towards optical frequencies, and 
so does the magnetic permeability )(ωμ . It is then more appropriate to use the BDE

rrr
,,  

approach with )(ωμ  set to be 1. In this case, the linear response of a medium is fully 
described by the constitutive equation 
                                 EkD

rrr
),(~ ωε=                                        (2)      

for a monochromatic wave,  with ε~  being a generalized dielectric tensor that depends on 
both ω  and .   k

r

To make connection with the E, D, B, H approach, we notice that in terms of 
multipole expansion, the displacement vector D

r
 takes the form [14] 
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where MP
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,  and Q
t

 denote electric-dipole polarization, dipole magnetization, and 
electric quadrupole polarization, respectively. One can rewrite Eq. (3) into the form  
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with  ...+•∇−= QPPeff

trr
 being a polar vector, and ...eff MM M Q= −∇ +

tr r
 an axial v

Here, we have purposely separated the field-induced response in the medium into the curl 
part and the non-curl part, each comprising all the associated multipoles. For linear 
response to monochromatic waves, we can then also introduce two response functio
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This allows us to make connections to the E, D, H, B approach. If only the dipole terms 
are retained in the multipole expansion, we would have ( ) and ( )eff effε ε ω μ μ ω= = . With 

the help of B
tc

E
rr

∂
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−=×∇
1 , we find, for a wave specified by ,  ,  and kω
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While the approach of using , and , effD P
r r

effM
r

is more general, description in terms of 
multipoles may be useful in some cases, for example, in dealing with magneto-optical 
effects in magnetic crystals. The higher-order multipole terms, proportional to higher 
orders of  k , are expected to be progressively much smaller than the lower-order terms at 
optical frequencies or lower.  

To complete our discussion on the connection between the two approaches, we 
consider the special case of an isotropic medium with and .eff effε ε μ μ= =  Because of 

the spatial dispersion (dependence on k
r

) inherent in the magnetic dipole response, the 
generalized dielectric tensor ε%  is anisotropic even though both ε and μ are constant 
scalars. We find [13,15] from Eq. (6) that the longitudinal component of ε%  along  and 
the transverse component of 

k
r

ε%  perpendicular to k
r

 are 
      lε ε=%   

              
2 2
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For an electromagnetic wave with ω  and k
r

 related by n
c

k ω
=  and 2

trn ε= % , we obtain 

the known relation [13] 
              2 ( ) ( )trn ε ε ω μ ω= =%                                 (8a) 
or more generally, one can show that  
             tr eff effε ε μ=%                           (8b) 
where effε and effμ refer to responses to the transverse wave. It is known that in general, 
in the optical frequency region, magnetic-dipole and electric-quadrupole responses 
should play equally important roles. This picture is not in the E, D, H, B approach for 
LHM presumably because the emphasis is on waves in the microwave region, but it is 
clear in the E, D, B approach with the generalized ε% . Since the dependence of 

 is often weak away from resonance even in the optical frequency region, 
we can expand  into a power series, 

( ,ε ω
r r

% ) on k k
(ε ω% , )k

r

         ⋅⋅⋅++= jiijlmijij kkk )()(),(~ ωαωεωε
r

          (9) 
assuming a medium with inversion symmetry. The term quadratic in k describes both the 
electric-quadrupole and the magnetic-dipole responses in the medium (although they 
have different symmetries in ( , )ij kε ω

r
% ), and therefore has the two explicitly placed on 

equal footing.  
 
B. Poynting Vector, Energy Density, and Group Velocity 

In the BDE
rrr

,,  approach, the time-averaged electromagnetic energy density and 
Poynting vector in a medium (assuming isotropic for simplicity) are given by [13, 16] 
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which satisfy the energy conservation relation .0=
∂
∂

+⋅∇
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  Substitution of Eq. (7) 

into Eq. (11) leads to the same expression for the Poynting vector in the E,D,H,B 
approach with HB

rr
μ= , 
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Knowing that in the latter case, 
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we find  
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as expected. More generally we can have ε  replaced by effε and μ  by effμ . Therefore, 
the two approaches are fully consistent in their descriptions of energy relations. This is 
true in general, irrespective of LHM or RHM. 

However,  Eqs. (10) and  (11) are more general. In the E, D, H, B approach, the 
conditions for  to be opposite to S

r
k
r

 (or negative group velocity) in an LHM are ε < 0 
and μ < 0. In the E, D, B approach with the first term in Eq. (11) directed along k

r
, the 

negative group velocity requires the second term on the right-hand side of Eq. (11) 
dominate over the first term. This means that ( , )k kε ω∇ r

r
% must be sufficiently large and 

positive, or with | | | |E Bε =%  one must have  ( / ) ( , ) 1kc kω ε ε ω∇ >r
r

% % . In addition,  with 
' i "ε ε ε= +% % % , we must have "ε%  negative for a lossy medium and positive for a gain 

medium. This is seen from the wave expression  ik r i tE Ae ω⋅ −=
r rrr

. For energy propagation in 
the direction opposite to , the imaginary part of k

r
( / )k cω ε= % , and hence "ε% , must be 

negative for a wave attenuating along k−
r

, and positive for a wave growing along k−
r
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We can also see this explicitly from Eq. (8) in terms of effε  and effμ . For a lossy LHM 
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  To establish further connection between the two approaches, we notice that from 
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It is seen that even if ε < 0 and μ < 0 as in LHM, the quantity on the left hand side of  
Eq. (15) must still be positive. The above relation leads to a negative group velocity for 

wave propagation in an LHM: the group velocity is given by 
k
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r
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which is negative since the quantity in the brackets is positive for ε < 0 and μ < 0,   the 
group velocity   gvr  is  negative with respect to k

r
. So, here again, the two approaches are 

consistent. 
 
 

 
C. Transmission and Reflection at an RHM/LHM Interface  

While separation of optical response of a medium into ε and μ , and more 
generally, effε and  effμ  (from the non-curl part and the curl part of the response, 
respectively), may not be essential for wave propagation in the bulk, it is important for 
transmission and reflection of waves at an interface because of the boundary conditions 
on the fields. We consider here transmission and reflection of a wave with frequency ω  
at an air/LHM interface. The incoming wave is from the RHM side (z < 0) with an 
incidence angle   Iθ , and the reflected and refracted waves have angles of reflection and 
refraction Rθ  and   Tθ , respectively (Fig. 1; see also p.252 of Ref. [16]).  We assume, for 
simplicity, the media are isotropic, all waves are s-polarized along , and the 
longitudinal component of the waves can be neglected. 

y



 
Fig.1. Geometry describing transmission and refraction of an incident wave at an 
RHM/LHM interface. Note that the Poynting vector S

r
 is in the opposite direction from 

 for the wave propagating in the LHM. k
r

 
The E field of the wave takes the form 

            ˆ[ I Rik r ik r i t
I RE y E e E e e] ω⋅ ⋅ −= +

r rr rr
,     z < 0                    (16)                                       

      2ˆ ik r i t
TyE e e ω⋅ −=

r r

,                           z >0                                                                                

with 1 Iˆ ˆ( /  )[xsin cos ]I Ik n c zω θ θ= +
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 and 1 Iˆ ˆ( /  )[xsin cosR Ik n c z ]ω θ= − θ
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 in the RHM 

and 1 Tˆ ˆ( /  )[-xsin cos ]Tk n c z Tω θ= −
r

Ix Txk k=
θ

T

 in the LHM. Both n1 and n2 are taken as positive. 
The boundary condition  leads to the Snell’s law for refraction,  

1 2sin sinIn nθ θ= −        (17) 
where the negative sign yields 0.Tθ <  This means that the refracted wave appears on the 
same side of the surface normal as the incoming wave (i.e., negative refraction), as shown 
in Fig. 1. We have retained in Eq.(16) only the term that describes backward wave 
propagation in the LHM or NRM because as we mentioned earlier, the wave must decay 
away as  in the semi-infinite NRM medium. Given the E field in Eq.(16), the 
corresponding B field of the wave is obtained from 
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Accordingly, the reflection and transmission coefficients are given by 
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As expected, we have T + R = 1. 
 
III. Second Harmonic Generation from LHM 
 We now consider a simple nonlinear optical effect: second harmonic generation 
(SHG) from a semi-infinite LHM medium with a non-vanishing nonlinear susceptibility 

(2)χt  in air (n1=1). We anticipate that the medium could be LHM at ω or 2ω, but not at 
both ω and 2ω, and consider here an LHM at ω only. The incoming fundamental wave at 
ω then has the same geometry as that depicted in Fig.1 with the air/medium boundary 
surface set at z = 0. It refracts negatively (as defined earlier) into the nonlinear medium 
and induces in the medium (z > 0) a nonlinear polarization )()(:)2( )2()2( ωωχω EEP

rrtr
= , 

which is the source for SHG. For simplicity, we assume that the medium is isotropic 
and )2()2( ωP

r
 is parallel to the boundary surface along y  such that only the s-polarized 

field is generated at 2ω. We also assume there is no input at 2ω and depletion of the 
pump field at ω is negligible. 



 
                   
 
Fig.2. Second harmonic generation at an air/LHM interface. The wave vectors of the 
second harmonic waves are denoted by , ,  and S T Rk k k

rv v
, and the wave vector of the 

fundamental wave in LHM is . 1 / 2Sk k=
r r

 
Following the usual derivation of SHG using the E,D,B approach, we solve the 

wave equation for )2( ωE
r

with )2()2( ωP
r

 as the source term and  immediately find the 

following results [14]. Let the pump field in the LHM be described by 1
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r rrr
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r
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1Tθ  (as determined by the Snell’s law of Eq.(17)) 
with the surface normal. The induced nonlinear polarization takes the form 
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where RT kk
rr

 and  are the wave vectors at 2ω of the transmitted homogeneous wave in the 
LHM and the reflected wave into the air side, respectively, with  cnkT /2 2ωω=    and 

c/2kR ω= . The angles RTRT kk
rr

 and by  made  and ϑϑ  with the surface normal (Fig.2,b) 
are obtained by matching of the wave vector components along the surface: 
 TSSTTRR kkkk 11 sin2sinsinsin θϑϑϑ ===     (22) 
remembering that .0 and 01 << SZZ kk  The reflected SH wave is given by 
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 The results given by Esq. (21)-(23) are the same as those for SHG in RHM [14] 
except that instead of we now have ,0 and 01 >> SZZ kk .0 and 01 << SZZ kk  The physical 

consequence is that with 1 2  and kkk ST

rrr
=

TZk

 nearly in opposite directions, the SHG process 
in the LHM is badly phase-mismatched and the SHG in transmission varies rapidly with 

. It is then the SHG in reflection that is more interesting. As seen from Eqs.(21) and 
(23)}, if approaches , the reflected SH output in an LHM can be much stronger 
than that from an RHM medium. The ratio of the Pointing vectors of reflected and 
transmitted SHG is 
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which can be very large if cos ~ cosR Snωϑ ϑ  
 If the medium is RHM at ω and LHM at 2ω, the same results described in Eqs. 
(21) - (23) are still valid except that now  and 0>SZk 0<TZk , and should be replaced 
by 

Tk
/ .T effk μ  The reflected SH wave in the air appears on the same side of the surface 

normal as  (negative refraction), as dictated by the Snell’s law of Eq.(17). Here again, 
the SHG in transmission is badly phase-mismatched, but for the reflected direction 
(relatively to the incident input fundamental wave propagation), SHG shows strong 
enhancement as kRZ approaches -kTZ.  

Tk
r

The above discussion can be easily generalized to other wave mixing processes 
and the results are the same if )2()2( ωP

r
 is replaced by )( S

NLSP ω
r

 as the induced 
nonlinear polarization at Sω  and the other quantities are changed accordingly. 
 
IV. Stimulated Raman Scattering 
 Stimulated Raman scattering in an LHM can also be easily described using the 
E, D, B approach. We consider the case where only the Stokes wave at frequency ωS sees 
the LHM. The stimulated Raman process pumped by )( pE ω

r
in the semi-infinite medium 



covering z ≥ 0 is described by a third-order nonlinear susceptibility ' "( )R S R Riχ ω χ χ= −
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with , which appears as a pump-intensity dependent term in εeff with 

. Following Eq.(8), we have 
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 The Stokes wave propagating along  in the LHM is given by z
 ( , ) S Sik z i t

SE z Ae ωω − −=
rr

      for z  > 0 

with  '
S Sk k Si

c
ωκ ε= + = %  . Assuming the imaginary part of all complex quantities small 

compared to the real part in magnitude, we have ' ( / )S Sk c 'ω ε= %  and 

( / 2S S cκ ω ) "/ 'ε ε= % % . If the  term dominates in "
Rχ "~ε , then 0Sκ >  because 

' 0 z0 and "ε ε>% >% , and the Stokes wave should experience an exponential gain in the +  
direction although the Stokes wave vector is in the opposite direction. This is what one 
would expect physically. In a gain medium, the wave must grow in the direction of 
energy flow. 
 The same treatment described above should apply to other stimulated light 
scattering processes in nonlinear LHM.  
 
V. Ultra-short pulse propagation in LHM. 

Ultra-short pulses are currently available in a wide range of frequencies from THz 
to far UV. They can provide clear manifestation of the characteristic linear wave 
propagation effects in LHM: negative group velocity and negative refraction. We discuss 
qualitatively these effects. In the formal description, we can decompose the ultra-short 
pulse into Fourier components, follow the propagation of each component, and then sum 
over the components after the propagation. If the entire spectral bandwidth of the pulse 
sees the medium as an LHM, then the pulse will physically move in a direction opposite 
to the wave propagation, clearly demonstrating the negative group velocity phenomenon. 
If the spectral width of the pulse is broader than the bandwidth in which the LHM 
character of the medium prevails, the pulse is likely to split into three parts when incident 
into the LHM through an RHM/LHM interface. The central part of the pulse spectrum 
seeing the LHM will experience negative refraction at the interface, but the frequency 
components at the two sides of the pulse spectrum seeing no LHM will experience 
positive refraction. The spectroscopic study of “negatively” refracted part of pulse can be 
used for determination of the frequency interval within which the medium is an NRM.  
Interesting effects can also be expected for harmonics generation and wave mixing by 
ultra-short pulses: the harmonics also will propagate unusual way.  As part of the spectra 
components of input or output experiences the LHM, the output pulses in transmission or 
reflection can be drastically different, in terms of energy, pulse shape, spectral 
composition, and direction, from those expected from an ordinary nonlinear medium. The 
details are complicated, depending on the spectral contents of the ultra-short pulse and 
the LHM.  



 
VI. Conclusions. 

We have proposed to use the E, D, B approach to describe linear and nonlinear 
wave propagation in media. Our emphasis is on NRM (or LHM). This approach avoids 
the usual expansion of medium response into multipoles although it can be separated into 
curl and non-curl parts for convenience in dealing with boundary conditions. Compared 
to the usual E, D, H, B approach in which the medium response is characterized by dipole 
polarization and magnetization with response coefficients ε and μ, the E.D,B approach is 
more general since in the optical frequency region, magnetic dipoles as usually defined 
no longer have their usual physical meaning and electric-quadrupole and higher-order 
multipole contributions may not be negligible. There is a one-to-one correspondence in 
description of the results using the two approaches. Specifically, we note that with either 
approach, linear wave propagation in NRM is characterized by negative group velocity 
and negative refraction. They can be illustrated by ultra-short pulse propagation in an 
NRM.  

Using the E, D, B approach, we can calculate the simple nonlinear optical effects 
such as wave mixing and stimulated light scattering in NRM following the same 
derivations as for regular media. However, the results are qualitatively different. For 
example, in harmonic generation, because of improved phase-mismatch, harmonic output 
in reflection can be stronger than in transmission in NRM, contrary to the situation in 
ordinary media. With either the fundamental input or the harmonic output experiencing 
negative refraction, the transmitted harmonic output beam will appear on the same side of 
the surface normal as the fundamental input beam as dictated by the negative Snell’s law. 
This creates a Veselago-type lens that allows SH imaging of a point source emitting at 
frequency ω to its mirror point appearing at frequency 2ω through a nonlinear LHM 
plate. Stimulated light scattering in LHM appears more like what one would expect: The 
growth of the stimulated radiation is always in the direction of the group velocity of the 
wave.  

Construction of a homogeneous LHM is still a challenge. Negative refraction has 
been found experimentally only in artificial meta-materials composed of split ring 
resonator arrays in the microwave region. Photonic band-gap materials may be suitable 
for observation of negative refraction and negative group velocity in the optical region, 
but has yet to be demonstrated experimentally. In both cases, nonlinear wave mixing is 
probably observable if component materials of high nonlinearity are used since the 
effective thickness of the medium required is small. Third harmonic generation has been 
observed in 1-D photonic gap materials in the direction opposite to the input pump wave, 
but it was the results of an optical Umklapp process [17]. 
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