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1 Introduction

The normal states of high temperature superconductors and heavy fermion compounds

have become one of the most challenging topics in condensed matter physics. A clear

understanding of the normal-state transport properties of cuprates is considered as a key

step towards understanding the pairing mechanism for high-temperature superconductiv-

ity. There is still a lack of a satisfying explanation of the linear temperature dependence of

resistivity at sufficiently high temperatures in materials such as organic conductors, heavy

fermions, Fullerenes, Vanadium Dioxide, and Pnictides. In addition, the quadratic tem-

perature dependence of the Hall angle, the violation of Kohler’s rule and the divergence of

the resistivity anisotropy are those puzzled the theorists for more than two decades [1].

The transport properties of the normal states of high temperature superconductors

are highly anisotropic with a much higher conductivity parallel to CuO2 plane than the

perpendicular direction. The in-plane resistivity of hole-doped cuprates shows a systematic

evolution with doping. In the underdoped cuprates, the in-plane resistivity varies approx-

imately linearly with temperature at high temperature. But as the temperature cools

down, the in-plane resistivity deviates downward from linearity, suggestive of a higher

power T-dependence. The optimally doped cuprates are characterized by a linear-T resis-

tivity for the range above the critical temperature T > Tc, whilst on the overdoped side,

the linear-T relation is replaced by T 2-dependence. On the other hand, the T 2-dependence

of the Hall angle can be observed in a wide range of doping from underdoped region to

overdoped region.

The AdS/CFT correspondence provides a powerful prescription for calculating trans-

port coefficients of strongly coupled systems by analyzing small perturbations about the

black holes that describe the equilibrium state [2–4]. Recently, some of us studied conduc-

tivity anisotropy holographically in [5]. In [6], Blake and Donos attempted to attack the
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mystery of the linear temperature resistivity and the quadratic temperature Hall angle phe-

nomena by proposing two different relaxation time scales. One central point of their obser-

vations is that the Hall angle is only proportional to the momentum dissipation-dominated

conductivity i.e. θH ∼ Bσdiss/q, where σdiss is the momentum dissipation conductivity, B

is the magnetic field strength and q is related to the charge density. Hence, the temper-

ature dependence of the Hall angle is different from the DC conductivity because the DC

conductivity is decomposed into the sum of a coherent contribution due to momentum

relaxation and an incoherent contribution due to intrinsic current relaxation1 [7]. They

further predicted that the resistivity would take the general form ρ ∼ T 2/(∆ + T ), where

∆ is a model dependent energy scale. In the low temperature limit T � ∆, the resistivity

is governed by the Fermi-liquid T 2 behavior. The T 2-dependence of the Hall angle also

signifies the Fermi-liquid phenomena. Conversely, in the high temperature limit T � ∆,

it shows linear resistivity of strange metals. In [9], the authors studied DC electrical and

Hall conductivity in the massive Einstein-Maxwell-Dilaton gravity. They found that the

linear-T and quadratic-T resistivity can be simultaneously achieved in Lifshitz spacetimes

at a dynamical exponent z = 6/5 and a hyperscaling violating exponent θ = 8/5. Other

works addressing on the linear-T resistivity and Hall angle can be found in [10–22] for an

incomplete list.

In this paper, we report our construction of a new asymptotic Lifshitz black hole solu-

tion in the Einstein-Maxwell-dilaton-axion model with a hyperscaling violating exponent.

The solution is supported by two gauge fields and a dilationic scalar, the former playing

very different roles. One gauge field is responsible for generating the Lifshitz-like vacuum

of the background. The other plays a role analogous to that of a standard Maxwell field

in asymptotically AdS space. The general expressions of transport coefficients are then

calculated. When focusing on special cases with z = 1 in which the metric corresponds

to asymptotically AdS space, one can easily achieve a resistivity with two time scales in

the asymptotic AdS spacetime. It is well known that in real materials, the spatial transla-

tion invariance is broken and the momentum of charge carriers is not conserved because of

the presence of impurities and lattices [23–55]. In this paper, the translational symmetry

breaking is realized through introducing linear-spatial coordinates dependent axions. An

established means to test whether quasiparticles and thus Landau’s Fermi-liquid theory

valid, is to compare the thermal conductivity and the electrical conductivity [1]. If quasi-

particles can be well defined, the Wiedemann-Franz law characterizes the zero temperature

value of the Lorenz number L0 = π2/3 × k2B/e2, where kB is Boltzmann’s constant and

e is the charge of an electron. If in a system L/L0 equals one, we say that Fermi liquid

description is exactly satisfied. On the other hand, L/L0 > 1 means that there are ad-

ditional carriers which contribute to the heat current but not to the charge current. By

contrast, L/L0 < 1 at zero temperature implies the breakdown of Landau’s Fermi-liquid

picture [28, 48]. In this paper, all the thermoelectric conductivities and the Lorenz ratio

will be computed in this model. We also would like to check the Wiedemann-Franz law at

1As it was clarified in [7, 8], it is not proper to say that DC conductivity has one term stemmed from

momentum relaxation and the other term from incoherent contribution since it is inconsistent with the

known behavior of the incoherent hydrodynamic DC conductivities.
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zero temperature. Although in the holographic setup, the metal has no relationship what-

ever with real Fermi liquids, the strange metal scaling geometries presented here maybe

able to mimic Fermi liquid behavior in transport [56–58].

The structure of this paper is organized as follows. In section 2, we present a new black

hole solution in general (d+ 2)-dimensional Lifshitz spacetime. We then calculate the DC

electrical conductivity, thermal conductivity and thermoelectric conductivity in terms of

the horizon data in section 3. We develop a new method in calculating the DC transport

coefficients. Discussions and conclusions are presented in section 4.

2 A new black brane solution in Lifsthitz spacetime with linear axion

fields and hyperscaling violating factor

Let us begin with a general action

S =
1

16πGd+2

∫
dd+2x

√
−g
[
R+V (φ)−1

2
(∂φ)2−1

4

n∑
i=1

Zi(φ)F 2
(i)−

1

2
Y (φ)

d∑
i

(∂χi)
2

]
, (2.1)

where we have used the notation Zi = eλiφ and Y (φ) = e−λ2φ. Note that R is the Ricci

scalar and χi is a collection of d−massless linear axions. The action consists of Einstein

gravity, axion fields, and U(1) gauge fields and a dilaton field. For simplicity, we only

consider two U(1) gauge F
(1)
rt and F

(2)
rt in which the first gauge field plays the role of an

auxiliary field, making the geometry asymptotic Lifshitz, and the second gauge field makes

the black hole charged, playing a role analogous to that of a standard Maxwell field in

asymptotically AdS space.

Solving the equations of motion, we are able to obtain a spacetime which is asymptot-

ically Lifshitz and hyperscaling violated. The action yields a Lifshitz black brane solution

with a hyperscaling violating factor

ds2 = r−
2θ
d

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2d

)
, (2.2)

f(r) = 1− m

rd+z−θ
+

Q2

r2(d+z−θ−1)
− β2

r2z−2θ/d
, (2.3)

F(1)rt = Q1

√
2(z − 1)(z + d− θ)rd+z−θ−1, (2.4)

F(2)rt = Q2

√
2(d− θ)(z − θ + d− 2)r−(d+z−θ−1), (2.5)

λ1 = −
2d− 2θ + 2θ

d√
2(d− θ)(z − 1− θ/d)

, (2.6)

λ2 =

√
2
z − 1− θ/d

d− θ
, (2.7)

eφ = r
√

2(d−θ)(z−1−θ/d), V (φ) = (z + d− θ − 1)(z + d− θ)r2θ/d, (2.8)

χi = βiax
a, β20 =

1

d

d∑
i=1

−→
β a ·
−→
β a,

−→
β a ·
−→
β b = β20δab for i ∈ {1, d}. (2.9)

where β2 =
d2β2

0
2(d−θ)(d2+2θ−(z+θ)d) . This solution is Lifshitz-like even in the UV. When the dy-

namical exponent z = 1, we recover the normal AdS black hole geometry because F(1)rt = 0.
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The black hole solution can return to the result given in [59] and [60] under the condition

of β = 0 and θ = 0, respectively. The transport coefficients have been studied in [61]. We

emphasize that the choice of couplings Y (φ) and Zi(φ) is our choice here and we believe

that different choices of coupling would leads to different power scalings of the transport.

Intriguingly, in a later paper, the exact solution presented here was found again by the

authors of [62]. The event horizon locates at r = rH satisfying the relation f(rH) = 0. We

can express the mass m in terms of rH

m = rd+z−θH +Q2
2r

2−d−z+θ
H − β2rd−z−θ+2θ/d

H . (2.10)

By further introducing a coordinate z = rH/r, we can recast f(r) as

f(z) = 1−zd+z−θ+ Q2
2

r
2(d+z−θ−1)
H

[
z2(d+z−θ−1)−zd+z−θ

]
+

β2

r
2z−2θ/d
H

[
zd+z−θ−z2z−2θ/d

]
. (2.11)

The corresponding Hawking temperature is given by

T =
(d+ z − θ)rzH

4π

[
1− d+ z − θ − 2

d+ z − θ
Q2

2r
−2(d+z−θ−1)
H − d2 + 2θ − (z + θ)d

d(d+ z − θ)
r
2θ/d−2z
H β2

]
.

(2.12)

The entropy density is given by s = rd−θH /4G. The specific heat of this black hole can

be evaluated via c = T (∂s/∂T )Q,β . We find that the thermodynamical stability and the

positiveness of the specific heat require θ < d. The near horizon geometry can be evaluated

by introducing two new coordinates u and τ :

r − rH =
εr2H
l2u

, t =
τ

εrz−1H

.

We can see that at zero temperature T = 0, the solution near the horizon develops an

AdS2 ×Rd−1 geometry. The near horizon geometry is defined by the limit ε→ 0:

ds2 = r
−2− 2θ

d
H

(
−dτ2 + du2

l2u2

)
+ r

2− 2θ
d

H d~xd. (2.13)

The effective AdS2 radius is given by:

l2ads2 =
r
−2− 2θ

d
H

l2
, (2.14)

l2 = (d− 1)(d− θ)(d+ z − θ − 2)Q2
2r

2(θ−d−z)
H /d+ (d+ z − θ)(dz − θ)r−2H /d . (2.15)

We observe that even in the absence of the U(1) gauge field, the black brane could still

be extremal with near horizon of AdS2 as we just demonstrated. It means that at low

temperature the theory flows to an IR fixed point in the presence of the linear axion fields.

Black hole solution at (d+z−θ−2) = 0. One may notice that as (d+z−θ−2)→ 0, Q2

and f(r) appear to diverge. At well-defined solution can be achieved in an alternative form:

f(r) = 1− m

rd+z−θ
− q22 ln r

2(d− θ)rd+z−θ
− β2

r2z−2θ/d
, (2.16)

= 1− m

r2
− q22 ln r

2(2− z)r2
− β2

r2z−2θ/d
,

F(2)rt = q2r
−1, (2.17)
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where m and q2 = Q2

√
2(d− θ)(z − θ + d− 2) are finite physical parameters without

divergence as (d+ z − θ − 2)→ 0. A careful examination of (2.16) and (2.17) reveals that

they satisfy the corresponding Einstein equation and Maxwell equation. We can express

f(r) in terms of the event horizon radius

f(r) = 1− r2H
r2

+
q22

2r2(2− z)
ln
rH
r
− β2

r
2z−2θ/d
H

(
r2H
r2
− r

2z−2θ/d
H

r2z−2θ/d

)
. (2.18)

The Hawking temperature is given by

T =
rzH
2π

(
1− q22

4(2− z)r2H
− β2(d+ θ − dz)

dr
2z−2θ/d
H

)
. (2.19)

3 DC transport coefficients

Firstly, we would like to introduce a new method by taking advantage of the matrix theory

and the equations of motion, which maybe called the matrix method, to calculate the

DC electrical and thermoelectric conductivities. The standard calculational method will

be presented in section 3.2 as a consistent check and the thermal conductivity will be

computed. In what follows, we work in the special case with d = 2. Later, we will extend

our discussions to more general conditions.

3.1 DC electrical and thermoelectric conductivities

For simplicity, we rewrite the metric in d = 2 dimensional spacetime as

ds2 = −gttdt2 + grrdr
2 + gxxdx

2 + gxxdy
2. (3.1)

For the purpose of computing the electrical conductivity, we consider the linear perturba-

tions of the form

A(1)x = a1(r)e
−iωt, (3.2)

A(2)x = a2(r)e
−iωt, (3.3)

htx = htx(r)e−iωt, (3.4)

χ1 = βx+ χ̄1(r)e
−iωt, (3.5)

and let the other metric and gauge perturbations vanishing. Since we choose the conduc-

tivity along the x− direction, it is consistent to set all scalar fluctuations to be vanished

except for the one with the linear piece along the direction x. We can arbitrarily denote

this scalar by χ and write χ = βx + χ̄(r)e−iωt. The equation of motion for the linear

– 5 –
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perturbation can be obtained as(√
gtt
grr

Z2a
′
1

)′
+
A′(1)tZ1gxx
√
gttgrr

(
gxxhtx

)′
+ ω2

√
grr
gtt
Z2a1 = 0, (3.6)(√

gtt
grr

Z2a
′
2

)′
+
A′(2)tZ2gxx
√
gttgrr

(
gxxhtx

)′
+ ω2

√
grr
gtt
Z2a2 = 0, (3.7)(√

gtt
grr

gxxZ2χ̄
′
)′

+ ω2

√
grr
gtt
gxxZ2χ̄− iωβ2Z2

√
grr
gtt
htx = 0, (3.8)(

gxxhtx

)′
+
iχ̄′gtt
ωZ2

+ Z1A
′
(1)ta1 + Z2A

′
(2)ta2 = 0, (3.9)(

g2xx√
grrgtt

h′tx

)′
− q1a′1 − q2a′2 − β2gxxY

√
grr
gtt
htx − iωgxxY

√
grr
gtt
χ̄ = 0, (3.10)

where the prime denotes a derivative with respect to r. Note that the derivative of

the scalar potential is given by A′(1)t = − q1
Z1(φ)

√
gttgrr
gxx

and A′(2)t = − q2
Z2(φ)

√
gttgrr
gxx

, where

q1 = Q1

√
2(z − 1)(z + d− θ) and q2 = Q2

√
2(d− θ)(z − θ + d− 2). Equation (3.9) is a

constrained equation, which implies that the linear perturbations a1, a2, htx and χ̄ are not

all linearly independent.

After introducing χ̃ = frz−5χ̄′/(iω) and eliminate htx, we are able to rewrite the

equations (3.6)–(3.9) in a more explicit form

(rz−3+θfa′1)
′ = A1a1 +B1a2 + C1χ̃, (3.11)

(r3z−1−θfa′2)
′ = A2a1 +B2a2 + C2χ̃, (3.12)

(r3(z−1)fχ̃′)′ = A3a1 +B3a2 + C3χ̃, (3.13)

where

A1 =

(
q21

r5−z−θ
− ω2

r5+z−θf

)
, A2 = B1 =

q1q2
r5−z−θ

,

B2 =

(
q22

r5−z−θ
− ω2

r3−z+θf

)
, B3 = C2 = − βq2

r5−z−θ
,

C3 =

(
β2

r5−z−θ
− ω2

r5−zf

)
, A3 = C1 = − βq1

r5−z−θ
.

We notice that the combination (3.11) + (3.13)× q1/β and (3.12) + (3.13)× q2/β leads to(
rz−3+θfa′1 +

q1
β
r3(z−1)fχ̃′

)′
= 0, (3.14)(

r3z−1−θfa′2 +
q2
β
r3(z−1)fχ̃′

)′
= 0. (3.15)

A massless mode can be extracted from (3.14) and (3.15). From the membrane paradigm

approach [63] we know that the realization of the currents in the boundary theory can be

identified with radially independent quantities in the bulk. From (3.6) to (3.9), one can

– 6 –
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easily find that the equivalent expressions of the conserved electric currents in the zero

frequency limit read

J1 = −rz−3+θfa′1 + q1r
θ−2htx, (3.16)

J2 = −r3z−1−θfa′2 + q2r
θ−2htx. (3.17)

The DC conductivity is the zero frequency limit of the optical conductivity

σDCij = lim
ω→0

σDCij (ω) = lim
ω→0

∂Ji(ω)

∂Ej(ω)
(3.18)

The DC conductivity can be evaluated at the horizon whenever we have massless mode

since it does not evolve between the horizon and the boundary [44]. Then let us define a

matrix σ̃ from u

w
v
rz−3+θfa′1
r3z−1−θfa′2
r3(z−1)fχ̃′

}

�
~ = σ̃

u

w
v
iωa1
iωa2
iωχ̃

}

�
~ ,

where the special notation J. . .K should be considered as a square matrix which is introduced

for convenience, for example
u

w
v
a1
a2
χ̃

}

�
~ ≡

 a1 a
(2)
1 a

(3)
1

a1 a
(2)
2 a

(3)
2

χ̃ χ̃(2) χ̃(3)

 , (3.19)

in which a
(i)
1 , a

(i)
2 and χ̃(i) are linearly independent sources, introduced to guarantee the

source term invertible. After inverting the components in J. . .K, a(i)1 , a
(i)
2 and χ̃(i) will be

not important in further calculations and it is better for us to hide them in J. . .K. We

emphasize that the matrix σ̃ is not the exact conductivity tensor of the system as we can

see below. We take the derivative of σ̃ and obtain

σ̃′ =

u

w
v
rz−3+θfa′1
r3z−1−θfa′2
r3(z−1)fχ̃′

}

�
~

′u

w
v
iωa1
iωa2
iωχ̃

}

�
~

−1

− iωσ̃

u

w
v
a1
a2
χ̃

}

�
~

′u

w
v
iωa1
iωa2
iωχ̃

}

�
~

−1

=

u

w
v
A1a1 +B1a2 + C1χ̃

A2a1 +B2a2 + C2χ̃

A3a1 +B3a2 + C3χ̃

}

�
~

u

w
v
iωa1
iωa2
iωχ̃

}

�
~

−1

− iωσ̃

u

w
v
a′1
a′2
χ̃′

}

�
~

u

w
v
iωa1
iωa2
iωχ̃

}

�
~

−1

=
1

iω

A1 B1 C1

A2 B2 C2

A3 B3 C3

− iωσ̃
 (rz−3+θf)−1 0 0

0 (r3z−1−θf)−1 0

0 0 (r3(z−1)f)−1

 σ̃. (3.20)

The prime denotes the derivative with respect of r. The advantage of this method is that

it reduce second order ordinary differential equations to non-linear first order ordinary

differential equations. Multiplying both sides of equation (3.20) with f , we obtain

fσ̃′ =
f

iω

A1 B1 C1

A2 B2 C2

A3 B3 C3

− iωσ̃
 r3−θ−z 0 0

0 r1+θ−3z 0

0 0 r3−3z

 σ̃.

– 7 –
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At the event horizon f(rH) = 0 and σ̃′ is finite. So the above equation reduces to

0 =

 rθ−z−5H 0 0

0 rz−θ−3H 0

0 0 rz−5H

− σ̃0
 r3−θ−zH 0 0

0 r1+θ−3zH 0

0 0 r3−3zH

 σ̃0.

The regularity condition at the event horizon yields

σ̃0 =

 r−4−θH 0 0

0 r2z−2+θH 0

0 0 r2z−4H

 .

From the definition of the matrix σ̃, we obtain the boundary condition at the event horizon

fa′1 → iωr−z−1H a1

∣∣∣
rH
, (3.21)

fa′2 → iωr−z−1H a2

∣∣∣
rH
, (3.22)

fχ̃′ → iωr−z−1H χ̃
∣∣∣
rH
. (3.23)

Considering the above relation (3.21)–(3.23), we then can impose the regularity condition

at the horizon from equation (3.10) and obtain

htx
∣∣
r=rH

=

(
− iω q1

β2Y
a1 − iω

q2
β2Y

a2 − iω
χ̄

β2Y

)∣∣∣∣
r=rH

. (3.24)

The last term in the right hand of (3.24) will be dropped out in the following calcula-

tion since it does not contribute to the transport. Further utilizing (3.21), (3.22), (3.16)

and (3.17), we can determine the value of currents

J1 = −
(
rθ−4H +

q21
β2
r2z−4H

)
iωa1 −

q1q2
β2

r2z−4H iωa2, (3.25)

J2 = −
(
r2z−2−θH +

q22
β2
r2z−4H

)
iωa2 −

q1q2
β2

r2z−4H iωa1. (3.26)

The DC electric conductivity can be computed via σij = ∂Ji
∂Ej

, where Ej = −iωaj . Finally

we obtain

σ11 = rθ−4H +
q21
β2
r2z−4H , σ12 =

q1q2
β2

r2z−4H ,

σ21 = σ12, σ22 = r2z−2−θH +
q22
β2
r2z−4H . (3.27)

This result is consistent with [62]. The physical interpretation of the DC conductivity

tensor obtained here is somehow subtle: we consider electric perturbations only along

the x−direction but obtain a 2 × 2 conductivity matrix with non-vanishing off-diagonal

components. We also observe that taking z → 1, θ → 0 and then q1 → 0, but the quantity

σ11 = r−4H is not vanishing. However, if we set z = 1 and θ = 0 from the very beginning

– 8 –
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in the action (2.1), the auxiliary gauge field F(1)rt naturally does not appear and the black

hole solution is the Reissner-Nordström-AdS metric with vanishing σ11 and σ12. So we have

a discontinuity in the z → 1, θ → 0 and q1 → 0 limit. This means that once we change

the asymptotic structure from an AdS to a Lifshitz one and turn on the perturbation

δA(1)x, it could not have a continuous limit back to the perturbation considered in the

Reissner-Nordström-AdS spacetime by simply taking z → 1, θ → 0 and q1 → 0 limit.

The original purpose of introducing the auxiliary U(1) gauge field F(1)rt is to construct

the Lifshitz-like nature of the vacuum. One may notice that not only A(1)t , but also a1
diverges in the asymptotic r →∞ regime:

a1 = a10 +
a20

rz−4+θ
, (3.28)

where the second term diverges when z − 4 + θ < 0 at the infinite boundary. So that we

must impose the regular condition a20 = 0. That is to say, a1 does not introduce a charge

current on the asymptotic boundary. In this sense, we should set the boundary condition

J1 = 0. From (3.25), (3.26) and σij = ∂Ji
∂Ej

, we obtain

σDC = r2z−2−θH +
q22

(β2 + q21r
2z−θ
H )

r2z−4H . (3.29)

This is a very intriguing result because (3.29) means that even without translational sym-

metry breaking, finite DC electric conductivity can still be realized because of the presence

of the auxiliary U(1) charge q1 [64]. By embedding the Lifshitz solution in AdS, the di-

vergence encountered here is no longer a problem since an AdS embedding modifies the

UV properties without affecting the horizon behavior. However, it is not of our purpose to

realize such an AdS embedding in this paper.

Another interesting situation is the case without translational invariance breaking (i.e.

β = 0). We also arrive at a finite conductivity

σDC = r2z−2−θH +
q22

q21r
2z−θ
H

rθ−4H . (3.30)

The linear and quadratic in temperature resistivity can be reached via z = 6/5 and θ = 8/5.

Note that these are the exact exponents given in [9]. This feature of the construction of

a finite conductivity without the need to break translational invariance has been reported

and explained by Sonner in [64]. Throughout this paper, we mainly consider the situation

with J1 = 0, because it is mathematically inconsistent to turn off a1. However, it is also

physically unclear of the boundary correspondence of the source a1 because the auxiliary

gauge field is only introduced to realize Lifshitz-like vacuum. Therefore, it is consistent to

set J1 = 0.

Considering two gauge fields resulting a 2×2 electric conductivity matrix, one naturally

expects that the thermoelectric conductivity has more than one component. One may

notice the equation of motion for htx at zero frequency is given by

h′′tx −
1

2

(
g′rr
grr

+
g′tt
gtt

)
h′tx +

(
g′rrg

′
tt

2grrgtt
+

g′2tt
2g2tt
− g′′tt
gtt

+
Z2A

′2
(2)t

gtt
+
Z1A

′2
(1)t

gtt

)
htx

+Z2A
′
(2)ta

′
2 + Z1A

′
(1)ta

′
1 = 0. (3.31)
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Clearly, the vector type of perturbations htx is coupled to a1 and a2. Together with

equations of motion of the Maxwell fields to the linear order, we can write down a radially

conserved heat current

Q =

√
gtt
grr

(
− gtthtx∂rgtt + h′tx

)
−A(1)tJ1 −A(2)tJ2. (3.32)

After imposing the regularity condition at the event horizon, that is to say

htx(r = rH) =

(
− iω q1

β2Y
a1 − iω

q2
β2Y

a2 + . . .

)∣∣∣∣
r=rH

, (3.33)

we can simply evaluate the conserved heat current at the event horizon

Q = −4πT iωr2z−2−θH

β2
(q1a1 + q2a2)

∣∣∣∣
r=rH

. (3.34)

We have used the boundary condition A(1)t(rH) = A(2)t(rH) = 0. The thermoelectric

conductivity can be obtained at the event horizon r = rH by using the expression ᾱi = ∂Q
T∂Ei

.

We finally obtain

ᾱ1 =
∂Q
T∂E1

=
4πq1
β2

r2z−2−θH , (3.35)

ᾱ2 =
∂Q
T∂E2

=
4πq2
β2

r2z−2−θH . (3.36)

There are no off-diagonal components of the thermoelectric coefficient as can be seen above.

Both components obey the same temperature scaling. If one turns on magnetic field, the

off-diagonal components of the thermoelectric conductivity can be observed.

Special case: z = 1, θ = 1 and J1 = 0. For the case θ = 1, z = 1 and thus q1 = 0,

the temperature is given by

T =
rH
2π

(
1− q22

4r2H
− β2

2rH

)
. (3.37)

In this case, the entropy density s = rH/4G is proportional to the temperature in the small

q and β limit. We find that the DC electric conductivity (3.29) behaves as

σDC =
1

rH
+

q22
β2r2H

∼ 1

2πT
+

q22
4π2β2T 2

, (3.38)

where we have use the large horizon radius approximation rH ∼ 2πT . The resistivity in

the small β limit can be expressed as

ρ ≈ 4β2π2T 2

q22 + 2β2πT
=

T̃ 2

T̃ + ∆
, (3.39)

where T̃ = 2πT and ∆ = q22/β
2. Equation (3.39) shows us that for T̃ � ∆, the resistivity

is dominated by the linear-T behavior, while T̃ � ∆, the system obeys the Fermi-liquid

– 10 –
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Figure 1. The resistivity as a function of temperature. (Left) The resistivity shows linear-T

behavior at higher temperature with q22/β
4 = 8. (Right) The resistivity shows quadratic-T behavior

at lower temperature with q22/β
4 = 10. The dashed red lines correspond to fitting functions ρ ∼

10.78T/β and ρ ∼ 6.09T 2/β2, respectively.

like law. As a demonstration, we plot the resistivity as a function of temperature in

figure 1. In the higher temperature regime, the resistivity shows linear in temperature

dependence, analogous to the experimental behavior of bad metals. In the low temperature

regime, the resistivity varies as T 2, retaining Landau’s Fermi-liquid description, although

the quasiparticle picture is not well defined here. One can also understand equation (3.38)

as follows: for small β but fixed temperature T and charge density q2, (3.39) shows Fermi-

liquid-like property, while large β results in strange metal behavior. At zero temperature,

the DC conductivity becomes

σDC =
4

β2
+
β2

q22
−
√
β4 + 4q22
q22

. (3.40)

This equation implies that as the disorder goes to zero, the system becomes an ideal metal

with infinite DC conductivity, while β →∞ the ground state is an insulator.

3.2 DC thermal and thermoelectric conductivities

In irreversible thermodynamics, the dissipative properties of a system are closely related

to the entropy production in a unit time

ds

dt
=
∑
i

TiXi, (3.41)

where Xi is the thermal force which is determined by the gradients of energy, temperature,

chemical potential etc. Ti denotes the current driven by Xi which can be written in the

linear approximation as

Ti =
∑
j

LijXi, (3.42)

where Lij represent the transport coefficients. We can see that both the thermal force Xi
and the transport coefficients Lij contribute to the entropy production rate. The thermal

force represents the external factor describing the environment and the transport coef-

ficients are the intrinsic causes reflecting the responsibility of the system driven by the

thermal force.
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In what follows, we would like to introduce a linear in time source for the background

metric. So that even in the absence of hydrodynamics the transport coefficients investigated

here retain their essential interpretation: they characterize the rate of entropy production

when the equilibrium state is subjected to a slowly varying source. Therefore, it is reason-

able to write the linear perturbation with both time- and radial-coordinates dependence:

δgµν = tc0 +hµν(r) with c0 a source. For instance, we are able to write gauge perturbation

A(i)x = aie
−iωt = ai + Eit+O(t2).

In order to compute the thermoelectric and thermal conductivities, we need to consider

perturbations with sources for both the electric and the heat currents.

gtx = tδh(r) + htx, A(1)x = E1t+ ta1(r) + δA1, A(2)x = E2t+ ta2(r) + δA2, (3.43)

The conserved currents can be written as

J1 = −
√
gtt
grr

Z1(φ)
(
ta′1 + δA′1

)
− q1gxx

(
tδh(r) + htx

)
, (3.44)

J1 = −
√
gtt
grr

Z2(φ)
(
ta′2 + δA′2

)
− q2gxx

(
tδh(r) + htx

)
. (3.45)

The conserved heat current becomes

Q̃ =

√
gtt
grr

[
− gtt

(
htx + tδh(r)

)
∂rgtt +

(
tδh′(r) + h′tx

)]
−A(1)tJ1 −A(2)tJ2. (3.46)

In order to evaluate the thermoelectric conductivities, we assume δh(r) = −ζgtt and ai(r) =

−Ei + ζA(i)t, so that the time-dependent terms of the conserved currents are canceled and

the form of the currents remain unchanged. According to the holographic dictionary,

the coefficient ζ corresponds to the thermal gradient −∇xT/T . We can then express the

conserved currents (3.44) and (3.46) as

J1 = −
√
gtt
grr

Z1(φ)δA′1 − q1gxxhtx, (3.47)

J2 = −
√
gtt
grr

Z2(φ)δA′2 − q2gxxhtx, (3.48)

Q̃ =

√
gtt
grr

(
− gtthtx∂rgtt + h′tx

)
−A(1)tJ1 −A(2)tJ2. (3.49)

In the previous section, we choose the gauge hrx = 0. Here we would like to turn on hrx.

The linearized rx-component of the Einstein equations now is given by

hrx =
gxxδχ

′
1

β
+
Z2(φ)gxxA

′
(2)tE2 + Z1(φ)gxxA

′
(1)tE1

Y (φ)gttβ2
+
gxxδh

′(r)− g′xxδh(r)

gttβ2Y (φ)
. (3.50)

We assume that δχ′1 is analytic at the event horizon and falls off fast at the infinity so that

it has no contribution to the boundary value of hrx. After switching to the Eddington-

Finklestein coordinates (v, r) with v = t +
∫ √

grr/gttdr and imposing the regularity con-

dition at the event horizon, from (3.43) we obtain

δA1 = E1

∫ √
grr/gttdr, (3.51)

δA2 = E2

∫ √
grr/gttdr. (3.52)
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In the Eddington-Finklestein coordinates, we need explore relationship between htx and

hrx. The linear perturbative part of the metric can be expressed as

2htxdvdx+ 2htx

√
grr
gtt
drdx+ 2hrxdrdx. (3.53)

In order to cancel out the divergence at the event horizon, we need to impose the condition

htx(r = rH) = −
√
gtt
grr

hrx

∣∣∣∣
r=rH

=

(
− E1q1 + E2q2

Y (φH)β2
− 4πTζgxx
Y (φH)β2

)∣∣∣∣
r=rH

. (3.54)

Therefore, the conserved currents can be expressed by their values at the event horizon

J1 =

(
E1Z1(φ) +

E1q
2
1 + E2q1q2

β2Y (φ)gxx
+

4πTq1ζ

β2Y (φ)

)∣∣∣∣
r=rH

, (3.55)

J2 =

(
E2Z2(φ) +

E2q
2
2 + E1q1q2

β2Y (φ)gxx
+

4πTq2ζ

β2Y (φ)

)∣∣∣∣
r=rH

, (3.56)

Q̃ =

[
4πTq1E1 + 4πTq2E2

β2Y (φ)
+

16π2T 2ζgxx
β2Y (φ)

]∣∣∣∣
r=rH

. (3.57)

The electrical conductivity matrix can be written down as

σ11 =
∂J1
∂E1

= rθ−4H +
q21
β2
r2z−4H , σ12 =

∂J1
∂E2

=
q1q2
β2

r2z−4H , (3.58)

σ21 =
∂J2
∂E1

= σ12, σ22 =
∂J2
∂E2

= r2z−2−θH +
q22
β2
r2z−4H . (3.59)

Therefore, we reproduce the result presented in (3.27). The thermoelectric conductivity α

and thermal conductivity κ̄ are then evaluated as

α1 =
1

T

∂J1
∂ζ

=
4πq1
β2Y (φ)

∣∣∣∣
r=rH

=
4πq1
β2

r2z−2−θH , (3.60)

α2 =
1

T

∂J2
∂ζ

=
4πq2
β2Y (φ)

∣∣∣∣
r=rH

=
4πq2
β2

r2z−2−θH , (3.61)

κ̄ =
1

T

∂Q̃
∂ζ

=
16π2Tgxx
β2Y (φ)

∣∣∣∣
r=rH

=
16π2T

β2
r2z−2θH . (3.62)

The thermal conductivity is not influenced by the gauge fields and only one component

appears at this moment.

One can continue of the analysis given before (3.29) and imposes the condition J1 = 0.

The DC thermoelectric and thermal conductivities become

ᾱDC =
4πq2

(β2rθ−2zH + q21)r2H
. (3.63)

κ̄DC =
16π2T

β2r2θ−2zH + rθHq
2
1

. (3.64)

As z = 1, θ = 1 and q1 = 0, the Seebeck coefficient behaves as ᾱ ∼ 1/T . On the other

hand, setting β to be zero, one obtains ᾱ ∼ 1/T 2. At zero temperature, ᾱ = 8πq2/β
4.

– 13 –



J
H
E
P
1
1
(
2
0
1
6
)
1
2
8

In brief, the thermoelectric conductivity is influenced by temperature and impurities. It

would be interesting to check the Wiedemann-Franz law by introducing the thermal con-

ductivity at zero electric current, which is the usual thermal conductivity that is more

readily measurable, κ = κ̄DC − αDC ᾱDCT/σDC , and thus

κDC =
16π2Tr2z+2−2θ

H

β2r2H + q22r
θ
H + q21r

2+2z−θ
H

. (3.65)

In the case θ = 1, z = 1 and thus q1 = 0, both the ratios κ/T = 16π2/β2 and κ̄/T =

16π2/β2 are a constant. This reflects that the thermal conductivity is dominated by im-

purity scattering.

In conventional metals, the WF law is characterized by the constant Lorenz ratio L0.

The WF law asserts that the ratio of the electronic contribution of the thermal conductivity

to the electrical conductivity of a conventional metal, is proportional to the temperature.

This implies that the ability of the quasiparticles to transport heat is determined by their

ability to transport charge so the Lorenz ratio is a constant. In our set-up, the Lorenz

ratios are given by

L̄ ≡ κ̄DC
σDCT

=
16π2r4−θH

β2r2H + q22r
θ
H + q21r

2+2z−θ
H

, (3.66)

L ≡ κDC
σDCT

=
16π2r6H(β2rθH + q21r

2z
H )

(β2r2+θH + q22r
2θ
H + q21r

2+2z
H )2

(3.67)

At zero temperature with θ = 1 and z = 1, (3.66) and (3.67) yield L̄ = 4π2 +

4π2β2/
√

4q22 + β4 > L0 and L = 4π2β4/(4q22 +β4)+4π2β2/
√

4q22 + β4. Usually, we regard

L as the quantity comparable with the experiments. Eq. (3.67) implies that as β → 0

deviations from the Fermi-liquid behavior can be obtained, while β →∞, so L = 8π2 the

system shows Fermi-liquid-like behavior. This is quiet different from the behavior of the

electric conductivity given in (3.38).

d+2-dimensional DC transport coefficients. In what follows, we extend our results

to the d+ 2-dimensional case

σ11 =

(
g
d−2
2

xx Z1(φ) +
q21

β2Y (φ)g
d/2
xx

)∣∣∣∣
r=rH

= r
2θ−2θ/d−2d
H +

q21
β2
r
2z+θ−2−d−2θ/d
H , (3.68)

σ12 = σ21 =
q2q1
β2

r
2z+θ−2−d−2θ/d
H , (3.69)

σ22 =

(
g
d−2
2

xx Z2(φ) +
q22

β2Y (φ)g
d/2
xx

)∣∣∣∣
r=rH

= rd+2z−θ−4
H +

q22
β2
r
2z+θ−2−d−2θ/d
H , (3.70)

ᾱ1 =
4πq1
β2Y (φ)

∣∣∣∣
r=rH

=
4πq1
β2

r
2z−2−2θ/d
H , (3.71)

ᾱ2 =
4πq2
β2Y (φ)

∣∣∣∣
r=rH

=
4πq2
β2

r
2z−2−2θ/d
H , (3.72)

κ̄ =
16π2Tg

d/2
xx

β2Y (φ)

∣∣∣∣
r=rH

=
16π2T

β2
r
d+2z−2−θ−2θ/d
H . (3.73)
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We would also like to generalize the transport coefficients under the the condition J1 = 0,

so that the transport coefficients reduce to diagonal components

σDC = rd+2z−θ−4
H +

q2r
2θ+2z−d−2θ/d
H

β2r2+θH + q21r
2z+d
H

,

αDC = ᾱDC =
4πr

2z+θ−2θ/d
H

β2r2+θH + q21r
2z+d
H

,

κ̄DC =
16π2Tr

2z+d−2θ/d
H

β2r2+θH + q21r
2z+d
H

.

Similarly, we have the thermal conductivity at zero electric current

κDC =
16π2Tr3d+2z

H

q22r
4+3θ
H + (β2r2+θH + q21r

d+2z
H )r

2d+2θ/d
H

. (3.74)

The corresponding Lorenz ratio in (d+ 2)-dimensional spacetime are obtained as

L̄ ≡ κ̄DC
σDCT

=
16π2r2d+4+θ

H

q22r
4+3θ
H + (β2r2+θH + q21r

d+2z
H )r

2d+2θ/d
H

, (3.75)

L ≡ κDC
σDCT

=
16π2r

4+4d+θ+2θ/d
H (β2r2+θH + q21r

d+2z
H )

(q22r
4+3θ
H + (β2r2+θH + q21r

d+2z
H )r

2d+2θ/d
H )2

. (3.76)

At zero temperature with vanishing charge density qi = 0, which is associated with the

quantum critical regime. As z = 1, the above Lorenz ratios are a constant at zero tem-

perature L̄ = L = 16π2
(
d2 − d(θ + 1) + 2θ

)
/d(d− θ + 1). Note that in the absence of

charge density, the electric conductivity is dominated by the particle-hole creation of the

boundary field theory. While for non-vanishing charge density, the Lorenz ratios decrease

as the chemical potential increases. By contrast, β = 0 and z = 1 at zero temperature

leads to L̄ = 8π2/(d− θ)(d+ z − θ) and L = 0. In general, the Lorenz ratios become tem-

perature independent when θ = d regardless of the value of z, which in turn corresponds

to a vanishing specific heat.

4 Discussions and conclusions

In the previous sections, we did not study the Hall angle, which we would like to defer to

a future publication. After turning on a magnetic field on the background , one can easily

find that the blacken factor is given by

f(r) = 1− m

rd+z−θ
+

Q2
2

r2(d+z−θ−1)
− β2

r2z−2θ/d
+

B2r2z−6

4(1− θ/d)(4 + 2θ/d− 3z)
. (4.1)

The Hall angle2 can be evaluated by following [6]

θH ∼
Bq2
β2

r
2z+θ−2−d−2θ/d
H . (4.2)

2Consistency of the resulting perturbation equations requires both gauge fields to fluctuate. This in turn

leads to some subtleties in the analysis. In general, two gauge fields with magnetic fields lead to a 4 × 4

DC electrical conductivity matrix. Here we mainly consider Hall angle generated by the second gauge field

in the action (1).
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For the case d = 2, z = 1 and θ = 1 and in the higher temperature limit rH ∼ T , we

have θH ∼ T−2 which is what observed in cuprates. The transport coefficients in the

presence of a magnetic field are studied in [65] and comparisons with the experimental

phenomenologies are discussed.

In summary, we obtained a new black hole solution in Lifshitz spacetime with a hy-

perscaling violating factor. At zero temperature, the black hole approaches AdS2 × Rd

geometry near the horizon with non-vanishing entropy density. One can reproduce the

black hole solution given in [60] and [59] as θ = 0 and β = 0, respectively. The black hole

solution is different from the one obtained in [66], where the authors constructed a class of

Lifshitz spacetimes in five dimensions that carry electric fluxes of a Maxwell field.

We then studied holographic DC thermoelectric conductivities in this model with mo-

mentum dissipation. The novel matrix method was introduced to compute the transport

coefficients. Since two gauge fields are presented, these result in a 2×2 DC electric conduc-

tivity matrix. The results cannot recover electric conductivity in Reissner-Nordström-AdS

background by simply taking z → 1, β → 0 and θ → 0 limits, although the metric can re-

cover that of Reissner-Nordström-AdS type in these limits. This reflects that once we turn

on the gauge perturbation in Lifshitz spacetime, it is not possible to have a continuous limit

to the perturbation that is normally considered in Reissner-Nordström-AdS background.

When we physically setting the electric current J1 of the auxiliary gauge field to be vanish-

ing, the components of the conductivity matrix with respect to the auxiliary gauge fields

disappear, but mixture between q1 and the transport coefficients can be observed. It is

only when we take z = 1, q1 vanishes. We expect that when we turn on the magnetic field

in Lifshitz spacetime, the resulting electric conductivity should be a 4 × 4 matrix. More

complicated situations would then be observed. It deserves further investigation on such

complication and mixture.

The most intriguing result is that linear and quadratic in temperature resistivity can

be realized simultaneously under the condition z = 1, d = 2 and θ = 1. The exponents

taken here agree with the scaling approach provided in [67], but different from [68, 69]. We

notice that the exponents taken here violates the null energy condition in the bulk. But a

careful examination of the local thermodynamic stability and the causal structure of the

boundary field theory reveals that it is true that the system is locally thermodynamically

stable at all temperatures and charges without superluminal signal propagation on the

boundary.

This work can be considered as a concrete example realizing what were proposed by

Blake and Donos in their paper [6]. For the resistivity, at the low temperature, it behaves

as the Fermi-liquids, while in the high temperature, it reduces to linear in temperature

resistivity same as strange metals. We also studied the thermoelectric conductivities and

the Lorenz ratios in this paper. Although in the holography, there are no quasiparticles

and thus the system has no relationship with real Fermi liquids, the scaling geometries

presented here are able to mimic Fermi liquid behavior for certain regime of q22/β
4 as

shown in (3.67).
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[46] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent

and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

[47] D. Roychowdhury, Magnetoconductivity in chiral Lifshitz hydrodynamics, JHEP 09 (2015)

145 [arXiv:1508.02002] [INSPIRE].

[48] X.-H. Ge, Y. Ling, C. Niu and S.-J. Sin, Thermoelectric conductivities, shear viscosity and

stability in an anisotropic linear axion model, Phys. Rev. D 92 (2015) 106005

[arXiv:1412.8346] [INSPIRE].

[49] A. Donos and J.P. Gauntlett, Navier-Stokes Equations on Black Hole Horizons and DC

Thermoelectric Conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].

[50] E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows

on black hole horizons, JHEP 10 (2015) 103 [arXiv:1507.00234] [INSPIRE].

[51] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity of Magnetised

Holographic Matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].
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