LINEAR APPROXIMATION BY EXPONENTIAL SUMS ON FINITE INTERVALS

BY M. v. GOLITSCHEK ${ }^{1}$

Communicated by P. R. Halmos, October 24, 1974
Let $\Lambda=\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ be a sequence of distinct nonnegative real numbers. It is well known that the exponential sums

$$
\begin{equation*}
e_{s}(x)=\sum_{k=1}^{s} a_{k} e^{\lambda_{k} t}, \quad a_{k} \in R, s=1,2, \cdots \tag{1}
\end{equation*}
$$

are dense in $C[A, B],-\infty<A<B<+\infty$, if and only if Müntz' condition $\Sigma_{\lambda_{k} \neq 0} 1 / \lambda_{k}=+\infty$ holds. In this note Jackson-type results on the rate of convergence of the exponential sums (1) are given. Substituting

$$
\begin{equation*}
x=e^{t-B}, \quad t \in[A, B], x \in[a, 1] \tag{2}
\end{equation*}
$$

where $a=e^{A-B}$, we are led to the problem where the functions $f \in C[a, 1]$, $0<a<1$, are to be approximated on [a, 1] by the Λ-polynomials

$$
\begin{equation*}
p_{s}(x)=\sum_{k=1}^{s} b_{k} x^{\lambda_{k}}, \quad b_{k} \in R, s=1,2, \cdots \tag{3}
\end{equation*}
$$

Recently, many optimal or almost optimal Jackson-Müntz theorems on the approximation properties of the Λ-polynomials (3) for the interval [0,1] have been published (cf. J. Bak and D. J. Newman [1] and M. v. Golitschek [2]). Considering intervals $[a, 1], a>0$, one would expect that the Λ-polynomials have even better approximation properties than on $[0,1]$, as the "singular" point $x=0$ might have less influence. Theorems 1 and 2 prove this conjecture.

Theorem 1. Let $0<a<1, M>0$. If Λ satisfies

$$
\begin{equation*}
0 \leqslant \lambda_{k} \leqslant M k \quad \text { for all } k=1,2, \cdots, \tag{4}
\end{equation*}
$$

then for each function $f \in C^{r}[a, 1], r \geqslant 0$, and each integer $s \geqslant r+1$ there exists a Λ-polynomial p_{s} such that for all $a \leqslant x \leqslant 1$

[^0]\[

$$
\begin{equation*}
\left|f(x)-p_{s}(x)\right| \leqslant K_{r} s^{-r} \omega\left(f^{(r)} ; 1 / s\right)+O\left(\rho^{s}\right) \tag{5}
\end{equation*}
$$

\]

where ω denotes the modulus of continuity; $K_{r}>0$ depends on a, M, and r; and $\rho(0<\rho<1)$ depends only on a and M.

Consequently, if the exponents Λ satisfy (4), the Λ-polynomials behave asymptotically as well as the ordinary algebraic polynomials. As the sth width $d_{s}\left(\Lambda_{r \omega}\right)$ of the class $\Lambda_{r \omega}\left(M_{0}, \cdots, M_{r+1} ;[a, 1]\right)$ of functions in $C[a, 1]$ is

$$
d_{s}\left(\Lambda_{r \omega}\right) \approx s^{-r} \omega(1 / s)
$$

(cf. G. G. Lorentz [3, Chapters 3.7 and 9.2]), the Λ-polynomials of Theorem 1 approximate asymptotically optimally in this special sense.

Example. The exponents Λ with $\lim _{k \rightarrow \infty} \lambda_{k}=\lambda \geqslant 0$ satisfy condition (4). For the corresponding problem in $[0,1]$ we could only prove (cf. M. v. Golitschek [2, p. 95]) that there exist Λ-polynomials p_{s} for which

$$
\left|f(x)-p_{s}(x)\right|=O\left(\sqrt{s}^{-r} \omega\left(f^{(r)} ; 1 \dot{/} \sqrt{s}\right)\right), \quad s \rightarrow \infty .
$$

Theorem 2. Let $0<a<1, M>0, \epsilon>0$. Let Λ satisfy

$$
\begin{equation*}
\lambda_{k} \geqslant M k \quad \text { for all } k=1,2, \cdots \tag{6}
\end{equation*}
$$

For each $s \geqslant s_{0}\left(s_{0}\right.$ sufficiently large) let $\psi(s)$ be defined as the largest positive integer for which

$$
\begin{equation*}
\sum_{\psi \leqslant k \leqslant s} \frac{1}{\lambda_{k}} \geqslant-(1+\epsilon) \log \sqrt{a} \tag{7}
\end{equation*}
$$

Then for each $f \in C^{r}[a, 1]$ and each $s \geqslant s_{0}$ there exists a Λ-polynomial p_{s} such that for all $a \leqslant x \leqslant 1$

$$
\begin{equation*}
\left|f(x)-p_{s}(x)\right| \leqslant K_{r} \psi(s)^{-r} \omega\left(f^{(r)} ; 1 / \psi(s)\right)+O\left(\rho^{\psi(s)}\right) \tag{8}
\end{equation*}
$$

where K_{r} depends on a, r, M, and ϵ; and $\rho(0<\rho<1)$ depends on a, M, and ϵ.
Example. Let $\lambda_{k}=k \log k, k=1,2, \cdots, M=1, \epsilon>0$. From (7) we obtain

$$
\psi(s) \approx s^{\sqrt{a}^{1+\epsilon}}
$$

In [1] and [2] it was proved that in [0, 1] the corresponding "rate of convergence" is only

$$
\varphi(s)=\exp \left(-2 \sum_{k=1}^{s} \frac{1}{k \log k}\right) \approx(\log s)^{-2}
$$

The above theorems are proved by the same method used by the author in his earlier paper [2] for Jackson-Müntz theorems on the interval [0, 1]: First the function f is approximated by ordinary algebraic polynomials P_{n} and then each monomial $x^{q}(q=0,1, \cdots, n)$ of P_{n} is approximated by appropriate Λ-polynomials. The full details and further results will be published later.

By the substitution $t=B+\log x$ we obtain from Theorems 1 and 2 immediately the corresponding approximation theorem for the exponential sums (1).

Theorem 3. Let $F \in C^{r}[A, B],-\infty<A<B<+\infty, r \geqslant 0$. Let the best approximation of F be defined by

$$
\begin{equation*}
E_{s}^{*}(F ; \Lambda)=\inf _{a_{k}} \max _{A \leqslant t \leqslant B}\left|F(t)-\sum_{k=1}^{s} a_{k} e^{\lambda_{k} t}\right| \tag{9}
\end{equation*}
$$

If Λ satisfies (4), then

$$
\begin{equation*}
E_{s}^{*}(F ; \Lambda)=O\left(s^{-r} \omega\left(F^{(r)} ; 1 / s\right)\right) \text { for } s \rightarrow \infty \tag{10}
\end{equation*}
$$

If Λ satisfies (6), then for each $\epsilon>0$

$$
\begin{equation*}
E_{s}^{*}(F ; \Lambda)=O\left(\psi(s)^{-r} \omega\left(F^{(r)} ; 1 / \psi(s)\right)\right) \text { for } s \rightarrow \infty \tag{11}
\end{equation*}
$$

where $\psi(s)$ is defined by (7) with $\log \sqrt{a}=(A-B) / 2$.
Remark. The same results are also valid in the L_{p} norms, $1 \leqslant p<\infty$, if the function f (or F) has an $(r-1$)st absolutely continuous derivative in $[a, 1]$ (or $[A, B]$) and $f^{(r)} \in L_{p}(a, 1)$ (or $F^{(r)} \in L_{p}(A, B)$) and if ω denotes the integral modulus of continuity in L_{p}.

BIBLIOGRAPHY

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L^{p}(0,1)$ and $C[0,1]$, Amer. J. Math. 94 (1972), 437-457. MR 46 \#9605.
2. M. v. Golitschek, Jackson-Müntz Sätze in der L_{p}-Norm, J. Approximation Theory 7 (1973), 87-106.
3. G. G. Lorentz, Approximation of functions, Holt, Rinehart \& Winston, New York, 1966. MR 35 \#4642; erratum, 36, 1567.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CALIFORNIA 92502

INSTITUT FÜR ANGEWANDTE MATHEMATIK, AM HUBLAND, 8700 WÜRZBURG, WEST GERMANY

[^0]: AMS (MOS) subject classifications (1970). Primary 41A25; Secondary 41A30.
 Key words and phrases. Approximation theory, exponential sums, Jackson-Müntz theorems.
 ${ }^{1}$ Supported by the German Research Foundation (GO 270/1).

