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Abs t r ac t  

The results of this paper give the theoretical fundaments on which Matsui's 
linear cryptanalysis of the DES is based. As a result we obtain precise 
information on the assumptions expficitely or impficitely stated in [2] and 
show that the success of Algorithm 2 is underestimated in [2]. We also 
derive a formula for the strength of Algorithm 2 for DES-fike ciphers and 
see what is its dependence on the plaintext distribution. Finally, it is 
shown how to achieve proven resistance against linear cryptanalysis. 

1 Linear Cryptanalysis of a DES-like Cipher 

We consider a DES-like i terated cipher consisting of r rounds of iteration 

XL(i + 1) = XR(i) 

XR(i + 1) = XL + f(E(XR(i)) + Ki) 

at the rounds i = 1 , 2 , . . . , r -  1, and 

eL = X L ( r )  -]- f(E(XR(r)) + Kr)  

cR = xR(r) 

Here we have denoted by Ki the round key used at the ith round and by X(i) ---- 
(XL(i), XR(i)) the input to the i th round with its left and right halves. Hence 
X(1)  = P = (PL, PR) is the plaintext and C = (CL, CR) is the ciphertext. 
In [2] M. Matsui introduces the linear cryptanalysis method to recover with high 
probabil i ty  certain key bits using sufficient large number  of known plaintext- 
ciphertext pairs. The main part  of this at tack is a procedure called Algori thm 2 
which can be used to recover 12 bits of a DES-key. Let us give a short description 
of this procedure. 
First the round function is analyzed to find linear approximations of the function 
f of the form 

b(i). f (Z)  = ci " Z 
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which holds with probability Pi over the uniform distribution of the random 
variable Z and such that I Pi - �89 1 is non-negligible. Then r - 2 of such approx- 
imations are chained to obtain a linear approximation over r - 2 rounds from 
the second to the second last round of the form 

a . X + b . Y + c . ( k 2 , . . . , k r - 1 )  = 0 (1) 

where X = X(2) and Y = X(r) and k = (k2, . . . ,  kr-1) is the vector formed by 
concatenating the unknown round keys ki used at the rounds i = 2 , . . . ,  r -  1. 
The probability of (1) over the distribution of X is denoted by p(a, b, c; k). This 
probability should not be equal to �89 In his analysis Matsui implicitely assumes 
that that the inputs to f at different rounds are independent and uniformly 
random and obtains an estimate 

r - -1  
1 2r_ 3 1 p(a,b,c;k) ~ -+2 I I ( P i -  ~) (2/ 

i = 2  

using the classical "piling-up" lemma. Let us denote by p(a, b, c) the average of 
p(a, b, e; k) taken over k. If the round keys Ki are independent and uniformly 
random then the inputs to f at each round are independent and uniformly 
random and the right hand side of (2) equals to the probability of the linear 
approximate relation 

a . X  + b .Y + c. (K2 , . . . ,Kr -1 )  = 0. (3) 

But the probability of (3) is the average probability of (1). Hence by (2) it is 
essentially estimated that 

p(a, b, c; k) ~, p(a, b, c) (4) 

for almost all k. 
The next step in Algorithm 2 is to substitute in (1) 

X -" (PR, PL + f(E(PR) + kl) 

Y -" ( e L  "{- f ( E ( C R )  '~ kr),  CR) 

to achieve the following approximate relation 

aL �9 PR 4- a f t .  PL "4- bL �9 e L  "4- bR " CR 

+ dR. f(E(PFt) + kl) + bL. f (E(CR) + kr) 
+ = 0 (5) 

which holds with probability p(a, b, c; k) if kl and kr are the correct round keys 
at the first and the last rounds. But if either kl or kr is incorrect then it 
is hypothetized that the uncertainty of (5) increases. In DES the function f 
constitutes of eight parallel substitutions with six bit inputs each. Therefore it 
is possible to design (1) in such a way that only six bits of kl and six bits of kr 
are involved in (5). For each possible 12-bit combination the cryptanalyst, who 
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is given N different known plaintext-ciphertext pairs, counts the number No of 
plaintexts for which 

a L  �9 Pft + aR " P L  + bL " e L  "4- bft �9 Cft 

+ a f t .  f ( E ( P f t )  + kl)  + bL.  f ( E ( C f t )  + k,.) = 0 

holds. The 12-bit candidate is accepted that  maximizes the quantity 

No 1 I I~--~ 
Note that  this step is independent of the vector c in (5) which selects certain 
bits from the round keys k2 , . . . ,  kr-1. 
In [2] Matsui shows that  in order to achieve a predetermined success rate for 
Algorithm 2 the number N of known plaintext needed in the cryptanalysis is 
inversely proportional to I p(a, b, c; k) - �89 12. Based on the estimate (4) Matsui 
obtains 

]p(a, b, c; k) - 1_ ] "~ l P( a, b, c) - 1_ ] (6) 
2 2 

for practically all k and the chosen value of c. The main purpose of this work 
is to show that  (6) and (4) do not hold in general. The Fundamental Theorem 
to be proved in Section 2 implies that  the average of J p(a, b, c; k) - �89 12 over k 
equals to the sum of I p(a, b, c) - �89 [2 over  c. This sum is in general strictly larger 
than I p(a, b, c) - �89 12 for any  c. These values could be equal only in the case 
when there is only one c, i.e., one chain of round approximations, which gives a 
non-negligible positive value of [p(a, b, c) - �89 I. 
It follows that  the average success rate of Algorithm 2 is larger than estimated by 
Matsui in [2]. On the other hand, the success of Matsui's Algorithm i essentially 
depends on the assumption (4) and may be significantly weakened if there are 
more than one c with non-negligible value ]p(a, b, c) - �89 ]. 
We conclude that  Algorithm 2 makes in fact use of a family of linear approximate 
expressions 

a . X  + b . Y  + c . ( K ~ , . . . , K , . _ I )  

where a and b are fixed but  c varies. This means that  the round approximations, 
which uniquely determine c and are uniquely determined by c, can be chosen in 
all possible ways to form a chain of approximations from a .X to b.Y. Hence there 
is a close analog with what is called differentials in differential cryptanalysis [1]. 
In Section 2 we discuss the theory of linear approximation of block ciphers and 
prove a version of Parseval's theorem. Based on this theorem we give a definition 
of approximate linear hull of a block cipher and its potential. In Section 3 we 
determine the potential of the approximate linear hull for DES-like ciphers in 
terms of the probabilities of the approximations of the function f at each round. 
Finally, in Section 4 we show that  with highly nonlinear f one can achieve proven 
resistance against linear cryptanalysis attack. The proofs of the results presented 
in Sections 3 and 4 are omit ted due to space constraints. 
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2 Linear  A p p r o x i m a t i o n  of  a Fu n c t ion  of  T w o  
R a n d o m  Var iab les  

Let F = GF(2)  be the finite field of order two. Let X E F "r' and K E F l be 
random variables and Y = Y ( X ,  K),  Y E F", be a random variable which is a 
function of X and K.  Then we have the following generalisation of Parseval's 
theorem. 

T h e o r e m  1 (The Fundamental  Theorem) I f  X and K are independent and K 
is uniformly distributed, then for all a E F m, b E F n and 7 E F l 

~_, [Px(a . X + b. Y ( X ; k )  = O ) - 1 1 2  = 2- t  
2 

keF ~ 

12 2 -~ ~ I Px(~. x + b. Y ( X ;  ~) + ~,. k = o) - ; = 

keF ~ 

12 E I Px,K(a " X + b " Y ( X ;  K)  + c " K = O) - 

cEF ! 

Proof. Since this theorem holds without the assumption of the independence of 
X and K we give the proof in the general case. 
Let us first recall that  for a Boolean function g of n binary variables and for a 
random variable Z E F" we have 

E P z ( Z  = z ) ( - 1 )  '(z) = 2Pz(g(Z) = 0 ) -  1. 
z 

Applying this simple equality first to the random variable Z = (X, K)  and then 
to the random variable Z = (XIK) ,  we obtain 

I Px,K(a " X + b" Y ( X , K )  + c " K = O) - I- I 2 
2 

ceF ~ 
1 = ~ ~ ( ~  ~ Px,,((x = ~,K = k)(-1)o-'~,(-,')+o") ~ 

cEF t kEF L =EF" 

1 
= 4 E E E Px ,K(X- -x 'K=k) ( -1)a"+b 'v (= 'k )+~ '~  

ceF ~ k,-yeF t x,~EF" 

�9 P x , K ( X  = ~, K = 7) ( -1 )  a'~+b'y(CT)+c'7 

= 2-2l-2 E E P x , K ( X  = alK = k ) ( -1 )  a'~+b'v(='~) 

k,TeF ~ =,fe F" 

�9 P x , K ( X  = ~IK = 7 ) ( - 1 )  a'f+b'v(r E (-1)r 

ceF' 

= 2 -~-2 ~ ( ~_~ PX,K(X = x lK  = k)(--1)a'*+b'Y(*'k)) 2 

kEF ~ xEF '~ 
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since 

= 2 - I  ~ IPx,K(a.X+b.Y(X,K)=OIK=k)--~ 
kEF l 

0 for k r  
- - ( - 1 ) c ' ( k + 7 )  = 2 ! for k = 7 .  
eeF ~ 

In our application Y = Y ( X ,  K)  is a block cipher, or some rounds of it, and 
X is the plaintext and K the uniformly distributed key. We assume, as usual, 
tha t  the plaintex and the key are independent. Let us introduce the following 
notation: 

pot (a ,b;k )  = ] P x ( a . X  + b . Y ( X , k ) + c . k = o ) - l ]  2 
2 

= I P x ( a . X + b . Y ( X , k ) - O ) -  1-12 
2 

pot(a,b,c)  = I Px,K(a . X q-b . Y ( X , K )  q- c. K = O) - ~12 

The quanti ty pot(a, b ; k) is called the potential of the linear approximate expres- 
sion a . X + b. Y ( X ,  k) for key k. The quantity pot(a, b, c) is called the potential 
of the linear approximate expression a . X + b . Y + c . K.  Further we can interpret 
the sum of pot(a, b, c) over c as the potential of the family of linear approximate 
expressions 

a . X  + b . Y  + c . K ,  c E F  l 

We call this family the approximate linear hull ALH(a ,  b) of the block cipher 
Y = Y ( X ,  K )  determined by a and b. Using this terminology we can express the 
result of the Fundamental  Theorem as follows: the average potential of the linear 
approximate expression a �9 X + b. Y ( X ,  k) over the keys is the potential of the 
corresponding approximate linear hull ALH(a ,  b) of the cipher Y = Y ( X ,  K) .  

3 Linear A p p r o x i m a t i o n  of  a DES- l ike  Cipher  

In this section we represent the potential of ALH(a ,  b) of a DES-like cipher in 
the terms of the probabilities of the round approximations. We make use of the 
notat ion introduced in Section 1 and assume that  f is a function from F 'n to P ,  
m > n, and the expansion mapping E from F n to F m is linear. Let E t be the 
transpose of E.  We have the following 

T h e o r e m  2 I f  the round keys of r rounds of a DES-like cipher are independent 
and uniformly random then l =- mr  and for all a and b the potential of A L H  (a, b) 
equals 

4r E I Px ( (a  q- b~ " X = 0 ) -  112 H l p z ( b ~ ,  f ( Z )  = c, . Z)  - 1_ 12 
2 2 

r t i--1 
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w h e r e  

b r = (bL,bR), b i-1 = (biR, biL -4- Et(c,)), for i = 1 ,2 , . . . , r ,  and 

c = (cl,..., cr). 
This  represen ta t ion  of  the  poten t ia l  of  an ALH(a, b) shows the  role of  the  plain-  
tex t  d is t r ibut ion.  Par t icular ly ,  if the  p la in text  is un i formly  r a n d o m  then  the 
s u m m a t i o n  can be t aken  over all c E F l such t h a t  

r r -.....!z 
2 2 

aL + bL + ~ Et(c2i) = 0 and  aR + bn + E Et(c2'-l) = 0 
i----1 i-----1 

(assuming  t h a t  r is even),  since for all o ther  c we have pot(a, b, c) = 0. I f  c 
satisfies these equat ions  we denote  c E S(a, b). In this case the po ten t ia l  of  
ALH(a, b) equals  

7" 

4 r-1 ~ H I P z ( b ~ . f ( Z ) = c i . Z ) - ~ [ 2  
eES(a,b) i = l  

4 R e s i s t a n c e  A g a i n s t  L i n e a r  C r y p t a n a l y s i s  

T h e  linearity of  a funct ion f : F m -+ F n is defined as 

/ : ( f )  = 2 max~ any, b#0] Pz(b" f (Z)  = a -  Z)  - ! [ = 1 - 2 1 - m j ~ f ( f )  
2 

where Z is un i fo rmly  r a n d o m  in F '~ and  A / ( f )  is the nonl inear i ty  of  f (see e.g. 
[3]). Based on T h e o r e m  2 we get the following 

T h e o r e m  3 For r rounds, r > 4, of a DES-like cipher with independent round 
keys and uniformly random plaintext 

2 - l  y ~  I Px(a .  X + b. Y(X;  k) = 0) - 1_ 12 _< 22(m_n)_1~.(f) 4 
2 

keF t 

E x a m p l e s  of  funct ions  of  f which give proven resistance agains t  bo th  differential 
and l inear  c ryp tana lys i s  can be found e.g. in [3]. 
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