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In this paper we present a straightforward technique for assessing and realizing the maximum control

moment effectiveness for a launch vehicle with multiple constrained rocket nozzles, where elliptical deflection

limits in gimbal axes are expressed as an ensemble of independent quadratic constraints. A direct method of

determining an approximating ellipsoid that inscribes the set of attainable angular accelerations is derived. In

the case of a parameterized linear generalized inverse, the geometry of the attainable set is computationally

expensive to obtain but can be approximated to a high degree of accuracy with the proposed method. A linear

inverse can then be optimized to maximize the volume of the true attainable set by maximizing the volume of

the approximating ellipsoid. The use of a linear inverse does not preclude the use of linear methods for stability

analysis and control design, preferred in practice for assessing the stability characteristics of the inertial and

servoelastic coupling appearing in large boosters. The present techniques are demonstrated via application to

the control allocation scheme for a concept heavy-lift launch vehicle.

I. Introduction

The use of optimal control allocation has received extensive attention in the literature, particularly in the context

of aircraft control.1,2 Typically, aircraft are designed with significantly overlapping control moment effectiveness at a

particular flight condition, so the resultant control allocation problem is underdetermined. Likewise, in the context of

launch vehicle dynamics, the development of large, heavy-lift rockets has led to renewed interest in the applications

of optimal control allocation schemes to systems with multiple gimbaled rocket nozzles.

In order to enhance performance margins, crew safety, and likelihood of mission success in the event of severe in-

ternal and external disturbances, it is desirable to design a control allocation mechanism that is capable of effecting the

maximum possible angular accelerations on the vehicle while minimizing the opportunity for saturation of the control

actuators. However, straightforward techniques such as daisy chaining and cascaded inverses3 are undesirable since

they are fundamentally a function of the magnitude and direction of the applied angular acceleration command; the

resultant nonlinearity precludes the use of linear stability analysis techniques,4 often considered mandatory for human-

rated launch systems. Unlike in some aircraft where actuator servoelastic coupling and inertial reaction torques may

be ignored under the premise that the control allocation algorithm provides exactly the required angular acceleration,

these effects are non-negligible and sometimes dynamically significant for large flexible rocket vehicles.4,5 The use of

multiple engines with varied low-frequency servodynamics requires that the exact combination of actuators to be em-

ployed at any flight condition is known; for stability analysis, it is insufficient to assume that the angular acceleration

command is automatically achieved by the control allocator in light of the dynamics affecting the motion of applied

thrust and the inertial coupling of the relatively heavy nozzles themselves.

In the case of gimbaled rocket engines, the maximum control deflection is limited by the linear travel of the

actuators, which are often of the high-power hydraulic type. The nozzles of liquid-fueled motors are usually suspended

from a two-degree of freedom gimbal hinge attached forward of the thrust chamber; in the case of a solid-fueled motor,

a flexible bearing is used. The actuators are applied in pairs spaced 90 degrees apart about the thrust vector to effect

local pitch and yaw deflection of the engine bell. It is sufficient in either case to model the thrust force as a two-

degree-of-freedom vector pivoting in space, with the thrust force applied at the pivot point. Neglecting losses due to

the geometry of the linkage between the linear actuator and the angular motion of the nozzle, the motion is constrained

approximately within a rectangular boundary. Additional constraints, such as clearance among adjacent nozzle bells

and/or thrust structure, may further limit the allowable nozzle motion.
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Multi-actuated thrust-vector control systems of this type are common in large launch vehicles, and are in fact (for

the unconstrained case) almost an ideal benchmark problem for control allocation given that most multiple-nozzle

configurations yield redundant control authority in all three control axes. If the thrust vectors are symmetric and

nominally aligned along the body thrust axis (Figure 1), the allocation problem is near trivial owing to the obvious

thrust vector mixing that must occur in order to generate separate roll, pitch, and yaw accelerations. However, if the

nozzles are asymmetrically located and canted with respect to the control axes (Figure 2), the solution of the control

allocation problem that generates the required accelerations is not straightforward.

Figure 1. Symmetric actuation; Gemini-Titan launch vehicle

(Image credit: NASA)

Figure 2. Asymmetric actuation; Space Shuttle launch vehicle

(Image credit: NASA)

Reaching the hardware saturation limits is undesirable due to potential damage to the actuator and/or the thrust

structure, so the actuator command is usually software-limited to a value slightly less than the hardware boundary.

The implementation of the software limits may take into account the potentially complex constraint boundaries, or

may adopt the simplified approach of applying a root-sum-square angle constraint to the nozzle deflection. It is often

convenient, and perhaps optimal, to constrain nozzle motion to an elliptical boundary, especially in order to mitigate

nozzle bell interference. In the present research, we are concerned with the case where nozzle travel of any actuator

pair is limited by a constraint boundary prescribed as an ellipse normal to the undeflected thrust direction. The thrust

directions are defined as small rotations about the 2,3 axes of a coordinate frame whose 1-axis is aligned with the

undeflected thrust.

Much of the existing literature on control allocation1,6 treats extensively the case where the applied moment is

linear in the controls and the actuator saturation constraints are independent and symmetric with respect to a single

actuator degree of freedom η; that is,

|η| ≤ 1. (1)

In our application, the moment is linear in the controls for small deflections, but each actuator constraint function ci

applies to two degrees of freedom, such that

δi =
[

η1
i
η2

i

]T
, ci(δi) ≤ 1. (2)

One particularly difficult problem in the design of control allocators is the determination of the geometry of the set of

attainable angular accelerations that are achievable using a particular allocation strategy. Efficient numerical methods

that handle single-degree-of-freedom constraints have been developed extensively, but no such techniques exist for

elliptically-constrained systems. As will be shown, the convenient properties of the calculus of ellipsoids7 can be used
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to rapidly and efficiently estimate the geometry of the attainable control accelerations. The resultant approximation

can then be used in the formulation of a computationally superior objective function for rapid numerical optimization

with respect to a parameterized allocation mechanism.

II. Control Allocation With Elliptical Constraints

A. Control Mapping for Multiactuated Rockets

The general linear control allocation problem is concerned with the mapping of the deflections of m actuators into

an n-dimensional moment space, and the relationship of a closed, bounded, and convex set Ω of admissible control

deflections in Rm to its associated closed, bounded, and convex set of achievable moments Φ in Rn. In this application,

we consider an m = 2k-dimensional control deflection space, consisting of k nozzles each with two degrees of freedom,

and its relationship to a n = 3-dimensional moment space‡ of instantaneous angular accelerations about some fixed set

of body axes of a rigid body.

Consider the Euler equations of rigid body motion given by

Jω̇ + ω×Jω = g (3)

where ω are the instantaneous rates about a body-axes frame fixed at the center of mass; J is an appropriate inertia

tensor, and g ∈ R3 is the applied torque. Let the torque be given by an affine linear transformation of the control vector

∆,

g = σ + M∆ (4)

where M is the moment matrix, σ is the residual, and

∆ =
[

δT
1
δT

2
. . . δT

k

]T
(5)

consists of the angular deflection vectors δi ∈ R2 over k actuators, so ∆ ∈ R2k and M ∈ R3×2k. We have assumed that

the applied moment is linear and symmetric in the controls ∆.

Consider the nozzle and constraint geometry shown in Figure 3. For a rocket nozzle with scalar thrust Fi oriented

nominally along a body frame unit vector ui, the moment contribution due to an actuator deflection is given by

gi = r×i [Tθ] Fiui (6)

where [Tθ] is the kinematic transformation relating the nozzle thrust direction to the undeflected thrust direction unit

vector. If the rotation is small, [Tθ] can be expanded using the skew-symmetric small rotator and

gi = r×i Fiui − Fir
×
i u×i θi (7)

where θi ∈ R3 is a vector of small rotations. The former component is moment due to undeflected thrust and the latter

is a linear function of the change in thrust direction θi. It follows that the net torque can be expressed as

σ + M∆ =

k
∑

i=1

r×i Fiui −
k
∑

i=1

Fir
×
i u×i
[

T BG
i

]

δi (8)

if
[

T BG
i

]

∈ R3×2 is a partial transformation that maps the rotations δi in gimbal frame coordinates (G) into the body

frame.

‡For numerical and practical convenience, the space Φ is that of angular accelerations in R3. For consistency with the literature, we will refer to

this as a moment space.
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Figure 3. Nozzle and constraint geometry

It is possible to block diagonalize the
[

T BG
i

]

and express M as

M =
[

M1 M2 . . . Mk

] [

T BG
]

=
[

−F1r×
1

u×
1
−F2r×

2
u×

2
. . . −Fkr×

k
u×

k

] [

T BG
]

. (9)

We are interested in the effects of perturbations in the δi on the angular acceleration ω̇. To that end, we linearize

(3) about ω0 = 0 and solve for ω̇ to find

ω̇ = J−1σ + J−1M∆ = ρ + B∆ = Γ. (10)

Without loss of generality, we assume that there exists a set of ui,
[

T BG
i

]

such that ρ = 0; that is, there is a trim

solution of vehicle nozzle cant angles at each flight condition that provides no residual angular acceleration. Thereafter,

we consider only the linear mapping Γ = B∆, and as in (9), we partition B such that

B =
[

B1 B2 . . . Bk

]

and each Bi ∈ R3×2 so we can also write Γ =
∑

γi, where γi = Biδi.

Finally, we suppose that the maximum travel of each control vector δi is bounded by the elliptical constraint

δTi R−1
i δi ≤ 1, Ri = RT

i ≻ 0 (11)

where Ri ∈ R2×2 is the shape matrix of the constraint ellipsoid E(Ri), and is a symmetric positive definite matrix. In

most cases, the axes of the constraint ellipse described by (11) are aligned with the actuator deflection axes, so Ri is

diagonal, and the lengths of the major and minor axes are given by the square root of the diagonal entries (eigenvalues)

of R−1
i

.

B. Topology of the Constraints

In defining a constraining ellipsoid Ei(Ri) associated with each δi, we have defined a closed and bounded convex

set ξi for each δi given by

ξi =
{

δi ∈ R2 | δTi R−1
i δi ≤ 1

}

. (12)

The admissible controls ξi are k subsets of R2 or equivalently a convex subset Ω of Rm. Each ξi has associated with

it an image in R3 given by the mapping Bi. Necessarily, the image of ξi in R3 is a degenerate ellipsoid (an ellipse) that
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is symmetric about the origin (under the assumption ρ = 0) and whose principal axes are oriented with respect to a

particular basis in R3 by some linear transformation. Each Bi can be used to determine the associated shape matrix Qi

that describes the image of ξi in R3, an ellipsoid E(Qi) given by

Ξi =
{

γi ∈ R3 | γT
i Q−1

i γi ≤ 1
}

.

Let us assume that for each set ξi and its associated map Bi, there exists a unique inverse shape matrix Q−1
i

such

that

δTi R−1
i δi = γ

T
i Q−1

i γi = 1. (13)

That is, for each admissible control deflection δi that is on the constraint boundary, there is an associated γi = Biδi
such that γT

i
Q−1

i
γi = 1. Suppose that P⋆

i
is the unique generalized inverse of Bi that satisfies the Moore-Penrose

conditions8 such that R(P⋆T
i

) = R(Bi). We therefore have excluded R(Bi)
⊥ = N(BT

i
) in computing P⋆

i
9, and P⋆

i

satisfies BiP
⋆
i
= I. Letting δi = P⋆

i
γi, we find from (13) that

γT
i P⋆T

i R−1
i P⋆i γi = γ

T
i Q−1

i γi

and it follows that the shape matrix

Q−1
i = P⋆T

i R−1
i P⋆i .

One also observes that the direction in R3 normal to the degenerate ellipsoid Ξi is in the null space of BT
i

, and

N(BT
i

) = N(Q−1
i

). Also, since E(Qi) is degenerate, Q−1
i

is singular and thus Qi is ill-defined.

i
T
Ri
−1i=1

i
T
Q i

−1i=1

Bi

ℝ3 ℝi

2

N Bi
T 

Figure 4. Topology of constraints in R3 and R2

Recall from (8) that the moments are linear in the controls and symmetric about the origin. It follows that the

attainable moment set (AMS), denoted by Φ, can be formed from the Minkowski sum of the Ξi, the geometric sum of

the images of the admissible controls ξi under the transformations Bi;

Φ = Ξ1 ⊗ · · · ⊗ Ξk =
⋃

γ1∈Ξ1

· · ·
⋃

γk∈Ξk

{γ1 + · · · + γk} . (14)

The AMS Φ is therefore the sum of k degenerate ellipsoids in R3, yielding, if rank(B) = 3, a volumetric closed,

bounded, and convex set. The set Φ is not, in general, an ellipsoid, but is bounded by an arbitrary (not necessarily

smooth) manifold ∂(Φ). We note that the boundary of the set computed from geometric sum (14) is exactly the image

in R3 under the linear map B of the m-dimensional smooth manifold ∂(Ω) bounding the controls ∆.

C. Linear Inverses

The linear control allocation problem is concerned with determining a suitable generalized inverse P for B; we

desire a control vector ∆ such that the angular acceleration is prescribed, that is, Γ = ω̇c, and

∆ = Pω̇c.
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We are concerned with the class of commands ω̇c such that a solution exists where Γ = ω̇c and no constraints on the

actuator motion are violated. The control allocation problem can be expressed as the constrained minimization that is

well-addressed through a least squares procedure. If a solution does not exist within the constraint boundaries such

that Γ = ω̇c, it is often tempting to pursue least squares methods that minimize the norm ‖ω̇c − B∆‖2 subject to the

constraints, but one often is led to a minimum norm solution that does not satisfy the additional condition that the

achieved angular acceleration is collinear with the commanded angular acceleration. This situation causes undesirable

coupling of the control axes and is a nonlinear inverse with respect to the commanded acceleration. This type of

solution is avoided in the present application by scaling the angular acceleration command to lie within the attainable

moment set, if the geometry of the attainable moment set is known.

The linear control allocator is in general a right generalized inverse P such that BP = I. If B is not rank deficient

and the number of effector degrees of freedom m = 2k > n, the system is underdetermined and a solution is not unique.

In the most general case, the minimum number of parameters that uniquely determine the inverse P is (m − n)n1, and

each of these parameterized family of linear inverses has associated with it a unique subset of the AMS which we will

denote Φ⋆. We refer to the subset Φ⋆ as the attainable moment subset under a particular transformation. The set Φ⋆

is a proper subset of Φ; the map B (and the associated family of right inverses P) are linear transformations that map

a point in the control deflection set Ω onto ∂(Φ) or into its interior. This leads to the following theorem.

Theorem. Given the linear map Γ = B∆, Γ ∈ Rn, ∆ ∈ Rm, m > n, a compact, convex geometric constraint ∆ ∈ Ω, and

any linear allocator P satisfying BP = I, the associated particular AMS Φ⋆ ( Φ, a proper subset of the total AMS Φ.

Proof. The following proof is similar to that given by Durham1 and is fundamental in the linear allocation problem.

Consider the subset of controls Ψ = {∆ ∈ ∂(Ω)} that lie on the boundary ∂(Ω). Since Ω is bounded, the span of Ψ is

necessarily m. Suppose that Φ⋆ = Φ, then B∆ ∈ ∂(Φ) and PΓ = PB∆ ∈ ∂(Ω) ∀∆ ∈ Ψ, so ∆ = PB∆ ⇒ (PB − I)∆ = 0

∀∆ ∈ Ψ. It follows that Ψ = {∆ ∈ Ω ∩ N(PB − I)|B∆ ∈ Φ}. If this is true, span (N(PB − I)) = m ⇒ PB = I, which

cannot hold if m > n, a contradiction. �

A key consequence of the above theorem is that there is no inverse P that maps every point on ∂(Ω) to ∂(Φ).

Intuitively, the null space of (PB− I) (those controls that contribute to the boundary of Φ⋆) is precisely the orthogonal

complement of the null space of B (those controls that do not affect Γ). Every particular inverse P allows access to

some subset of Φ, and a plausible design goal of a control allocator is to shape the particular inverse to make this

subset as large as possible. The true shape of Φ⋆ under elliptical constraints is difficult to determine directly. It can

be analyzed numerically using a bisection search along unique gridded directions on the unit ball, each yielding a

maximum attainable command magnitude in particular direction. The total geometry is then found using the convex

hull of these gridpoints, with accuracy increasing as the number of unique directions increases. This technique is

effective but extremely computationally intensive, and is not well-suited to forming a scalar objective function for

optimization. Instead, ellipsoidal techniques can be applied to approximate Φ and Φ⋆.

D. Approximation of Attainable Moment Set

It has been shown that the AMS can be approximated optimally by a convex set inscribing it,2 and the concept

of an ellipsoidal approximation to the AMS has also been discussed, although only via a graphical interpretation.10

Determination of a single candidate approximating ellipsoid that well-describesΦ can be determined as one of a family

of tight approximating ellipsoids E(Q) parameterized by the vector l ∈ Rn. The approximation

E(Q[S (k)]) ⊆
k
∑

i=1

Ei(Qi)

with

Q[S (k)] =

















k
∑

i=1

S iQ
1/2

i

















T 














k
∑

i=1

S iQ
1/2

i

















(15)

and the orthogonal matrices

S (k) = {S 1, . . . , S k}, S T
i S i = I
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is a tight approximation along direction l if its support11

(ρ(l | E(Q[S ]))2 =

















k
∑

i=1

(lT Qil)
1/2

















2

.

A tight approximation is possible along the unit vector l ∈ R3 if the vectors S 1Q1l, S 2Q2l, . . . , S kQkl are aligned, that

is, if there exist ki j such that

S iQ
1/2

i
l = ki jS jQ

1/2

j
, ki j = k−1

ji (16)

or equivalently, that the matrices S i are such that S iQ
1/2

i
l = λi p for some vector p ∈ Rn

, 0. By varying l over the unit

ball, we can map out the entirety of ∂(Φ); each internal approximation is tangent to the manifold at a minimum of two

points (along ±l). If a single approximation is to be chosen, it is associated with a particular direction line. Given a

suitable choice of the direction of approximation l, we must compute the matrices S i to satisfy (16). Let S 1 = I,

vi = Qil

wi = Qi+1l

and normalize vi, wi as v̂i = vi/ |vi|, ŵi = wi/ |wi|. We then compute a singular value decomposition12 (SVD) such that

vi = UvΣvV
T
v

wi = UwΣwVT
w

and a suitable transformation is found from

S i+1 = UwVwVvU
T
v . (17)

Using (17) and (15), we finally have the approximation

E(Q[l]) ≈ Φ (18)

noting that

E(Q) =
{

Γ ∈ R3 | ΓT Q−1Γ ≤ 1
}

.

One possible choice of l yields the unique internal ellipsoid with maximum volume13 (the John ellipsoid), but this

is not necessarily the best choice in terms of the flight dynamics. We can choose l parametrically via some other means

(for example, to emphasize a preferred maneuvering axis).

An example of the approximation of the AMS is shown in Figures 5 and 6. The boundary of Φ is formed from the

moment span of a four-nozzle configuration with two large, high authority booster engines and two small core engines.

The core engine constraints are elliptical while the booster constraints are circular. The modeled moment of inertia of

the vehicle is diag(
[

1.09 3.76 4.83
]

) × 108 slug − ft2; the engine parameters are given in Table 1.

The true boundary has been found via the convex hull of a family of approximating ellipsoids12 while the single

approximation is along only the direction l =
[

0 0 1
]T

. The two-dimensional projection illustrates the complex

shape of the boundary; where an intersection occurs, the boundary of the ellipsoid E(Q) is tangent to the manifold

∂(Φ).

Engine Type Location (ft) Thrust (lbf) Orientation Angle Constraint

1 Booster r1 =
[

−87.2 −20.7 0
]T

F1 = 2.27 × 106 u1 =
[

1 0 0
]T

4◦, circular

2 Booster r2 =
[

−87.2 +20.7 0
]T

F2 = 2.27 × 106 u2 =
[

1 0 0
]T

4◦, circular

3 Core r3 =
[

−86.7 −5.42 0
]T

F3 = 4.63 × 105 u3 =
[

1 0 0
]T

5◦ pitch, 7◦ yaw, elliptical

4 Core r4 =
[

−86.7 +5.42 0
]T

F4 = 4.63 × 105 u4 =
[

1 0 0
]T

5◦ pitch, 7◦ yaw, elliptical

Table 1. Example vehicle parameters
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Figure 5. Ellipsoidal approximation of Φ (3-axis) Figure 6. Ellipsoidal approximation of Φ (pitch-roll axes)

E. Approximation of the AMS Under a Particular Inverse

In order to choose an appropriate P, the geometry of Φ⋆ must be determined so as to assign to each Φ⋆ some order

of merit. The ellipsoidal approximation (18) can be used to closely approximate the geometry of Φ⋆.

Let P be a particular generalized inverse that satisfies BP = I; partition P as

P =
[

PT
1

PT
2
. . . PT

k

]T

and let B⋆
i

be a Moore-Penrose inverse such that PiB
⋆
i
= I. Consider that there exists in Rm an image of E(Q) which

can be partitioned into k projections onto the constraint subspaces. Since E(Q) is an ellipsoid with center at the origin,

its image under linear transformation must also consist of ellipsoids in R2 with centers at the origin. Suppose that the

shape matrix of the image of Q in each of k subspaces is denoted by R⋆
i

; we then have

ξ⋆i =
{

δi ∈ R2 | δTi R⋆−1
i δi ≤ 1

}

.

Noting that δi = PiΓ and computing a suitable generalized inverse B⋆
i
= P

†
i
, we again note that ΓT Q−1Γ = δT

i
R⋆−1

i
δi

and substitute Γ = B⋆
i
δi to find that

R⋆−1
i = B⋆T

i Q−1B⋆i .

The sets ξ⋆
i

and ξi, as a consequence of the aforementioned theorem, cannot be equal. Therefore, there exist two

distinct cases. In the first case, the inverse map does not generate controls that violate the constraint boundaries. In this

case, ξ⋆
i
⊂ ξi, and the ellipsoid E(R⋆

i
) is an inclusion of E(Ri). In the second case, some portion of the inverse image

lies outside the constraint boundary, and some lies within it (Figure 7). That portion that forms Φ⋆ is the portion that

is admissible, and therefore consists of the intersection ξ⋆
i
∩ ξi of two ellipsoids.

We have uncovered the complication that, to the accuracy of our foregoing approximation, while the total AMS Φ

is the geometric sum of degenerate ellipsoids in R3, the particular AMS Φ⋆ is in fact the geometric sum of, at most,

the linear mapping of each of k sets each formed by the intersection of two ellipsoids in R2. The latter geometry

is non-trivial to compute, but it becomes clear that the intersections in R2 can be approximated to a high degree of

accuracy via the use of another parametrized ellipsoid! In the trivial case of inclusion, the approximation is exact.

Conveniently, the internal approximation of the intersection of two ellipsoids with zero center in R2 has a closed-form

solution,14 given by

E(R̂i[l]) = E












(R⋆−1
i
− R−1

i
)llT (R⋆−1

i
− R−1

i
)

lT (R⋆−1
i
− R−1

i
)l













.

The determination of an inclusion versus an intersection is readily determined based on the sign of the eigenvalues of

(R⋆−1
i
− R−1

i
).
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T
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−1
=1
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2

i
T
Ri

✶−1
i=1

i
✶
∩i

Figure 7. Topology of constraints under a particular inverse

Each new approximation E(R̂i) ≈ ξ⋆i ∩ ξi can be mapped back into R3 using the original transformation P⋆
i

, where

Q⋆−1
i = P⋆T

i R̂−1
i P⋆i .

The ellipsoidal approximation E(Q⋆) to Φ⋆ is then found from the Minkowski sum of the E(Q⋆
i

), again using the

same procedure (15-18).

An example of the ellipsoidal approximation of a particular inverse is shown in Figures 8 and 9. The true boundary

of Φ⋆ is determined numerically as the convex hull of a set of points along unique directions on the unit ball, each

determined via a bisection search to a small tolerance. The internal ellipsoidal approximation to Φ⋆ is tight along the

direction line l =
[

0 0 1
]T

.

Figure 8. Ellipsoidal Approximation of Φ⋆ (3-axis) Figure 9. Ellipsoidal Approximation of Φ⋆ (pitch-roll axes)

III. Applications

A. Minimal Parameterization of the Weighted Generalized Inverse

Through the use of a weighted least squares allocator, the number of free parameters in determining a generalized

inverse that satisfies other optimality conditions can be considerably reduced, and this parameterized inverse can be

optimized using the ellipsoidal approximation of the AMS.

There exists a unique solution that minimizes the weighted square of control deflection,6 given by the cost function

H =
1

2
∆T R∆ + λT (ω̇c − B∆) (19)
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where R ∈ R2k×2k is a symmetric, positive-definite matrix (analogous to the measurement covariance matrix in the

least squares estimation dual problem)15 and λ is a vector of Lagrange multipliers in the usual sense. We have the

necessary conditions

∇∆H = R∆ − BTλ = 0 (20)

∇λH = ω̇c − B∆ = 0 (21)

Letting the weight matrix W = R−1, we solve (20) for λ to find ∆ = WBTλ; it follows from (21) that ω̇c−BWBTλ =

0 and finally we arrive at the well-known weighted least squares solution

∆ = WBT (BWBT )−1ω̇C (22)

with the associated right generalized inverse

P(W) = WBT (BWBT )−1, (23)

a variation of the Moore-Penrose generalized inverse.8

By constraining the selection of generalized inverses to the family of weighted least squares generalized inverses,

the number of parameters is reduced. Without loss of generality, we may assume that for any measure of the optimality

of P (e.g. volume), the optimal weighting is diagonal and therefore has only m = 2k parameters. In fact, given certain

symmetry properties of the physical problem, the number of parameters may be further reduced to k. The argument

again has an analog in estimation; the weight matrix can be diagonalized since there always exists an orthonormal

transformation T which expresses B such that the constraint ellipse eigenaxes are aligned with the commanded degrees

of freedom, and W̃ = TWT T . Note that this has already been loosely assumed in introducing the gimbal-to-body

transformation [T BG] in equation (9), which also eliminates the redundant actuator degrees of freedom.

Illustrative of the value of the ellipsoidal approximation, as a simple example we compute the volume of the AMS

as a function of a scalar-parameterized least squares inverse P(α). The parameter α is the relative weighting among

the degrees of freedom associated with two solid rocket boosters (high thrust, large moment arm, and small angle

constraints) and two core engines (low thrust, small moment arm, and large angle constraints), where W = diag(w)

and

wi =















α2, i = 1 . . . 4

(1 − α)2, i = 5 . . . 8
.

In Figure 10, the numerically-derived volume is compared with the log determinant of the inverse shape matrix of the

approximation E(Q⋆). As anticipated, minimization of log det(Q⋆−1) corresponds to simultaneous maximization of

the volume of the associated parameterized AMS, enabling the rapid computation of a scalar cost function for more

complex optimization routines involving a parameterized inverse dependent on multiple parameters.
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Figure 10. Approximation Correlation to Numerically-Derived Volume
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B. Real-Time Steering Limiting

Finally, we note one additional application of the approximation (18): in flight software it is often necessary to limit

the commanded actuator deflection to a value less than the hardware limits so as to avoid commanding the actuators

to the hardware stops which might result in servo damage or nozzle bell interference. With numerous actuator degrees

of freedom and independent sets of constraints, a software limiting algorithm must separately compute, for example,

each δT
i

R−1
i
δi and reduce individual deflection commands until all constraints are satisfied. Under these conditions,

not only is the achieved angular acceleration Γ , ω̇c, the collinearity condition is violated. Instead, in the case that

ω̇T
c Q⋆−1ω̇c > 1, the software algorithm must simply find a constant k such that

√
k(ω̇T

c Q⋆−1ω̇c) = 1, implying that

k =















1, ω̇T
c Q⋆−1ω̇c ≤ 1

(

ω̇T
c Q⋆−1ω̇c

)−2
, ω̇T

c Q⋆−1ω̇c > 1.

The scaled angular acceleration command ˜̇ωc = kω̇c is then guaranteed not to saturate any actuator, and the

achieved acceleration is in the same direction as that commanded.

IV. Discussion & Conclusions

In this paper we have developed and applied a direct, efficient mechanism for determining an accurate ellipsoidal

approximation of the attainable moment set of a linear mapping of controls subject to a particular linear inverse

and independent elliptical constraints. The formulation is well-suited to applications where elliptical constraints are

more physically realistic than decoupled saturation constraints, especially with regards to the control of multi-actuated

launch vehicles with vectored nozzles. While various nonlinear solutions of the associated constrained least-squares

problem exist and can be obtained on-line algorithmically, the unique stability analysis requirements of flexible launch

vehicles are better satisfied by a linear inverse. The present techniques allow an optimal parameterized linear inverse,

such as a weighted least squares inverse, to be determined offline as a function of flight condition. Accompanied by

an internal approximation of the boundaries of the attainable moments implemented as a steering limit algorithm, the

present technique offers a unique and efficient mechanism for obtaining higher-performance thrust vector control.

While the methods presented herein are leveraged on rapid numerical analysis, this novel concept of determining

the attainable moments subject to elliptical constraints has the potential to be extended to an analytic method of

optimization. Currently, rapid approximations to the optimal weighted least squares solution, sufficiently precise

to allow implementation in the flight software, can be determined for the special class of problems with circular

constraints. However, a search for a closed-form approach that handles the general case is the subject of future work.

Such algorithms are potentially beneficial for real-time adaptation to actuator failures and time-varying constraint

boundaries.
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Introduction

Renewed interest in the development of large, new Heavy Lift Vehicles (HLV) has motivated 
research in the area of control allocation for systems with multiple rocket nozzles

Rocket nozzle allocation can be treated as a trivial control allocation problem for simple, 
symmetric systems with symmetric constraints

More complex geometries (e.g. Shuttle-derived) can benefit from an optimal allocator approach
Example: least squares allocator; minimum control deflection

We are concerned with handling general systems that have complex constraints and asymmetry
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Constrained Control Allocation for Multiactuated Rockets

Multi-actuated thrust vector controlled systems are well-posed for control allocation
Typical redundant control authority in 3 axes with two or more nozzles
Some configurations may have nine or more nozzles, each with two degrees of freedom

Existing constrained solutions to the allocation problem exist and can be implemented online
In the face of constraints, a potential solution are Constrained Least Squares (CLS) algorithms
Often does not yield a moment collinear with command

Requires online iteration/optimization
Other constrained solutions include daisy chaining, etc.

A nonlinear solution

The constrained thrust vector control allocation problem differs from the aircraft problem
Each control input has two degrees of freedom
Saturation constraints are insufficient to represent the constraint boundary.  Coupled constraints 
apply to two degrees of freedom each
Due to significant servoelastic coupling, the choice of effector mixing at a given flight condition 
affects the stability of the closed-loop structural-dynamic system
Linear allocators are preferred to enable linear stability analysis of the short period dynamics for 
flight certification
A linear allocator can be computed online based on optimal parameterization (e.g. a weighting 
matrix)
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Thrust Vector Geometry

4

Large booster thrust vector control (TVC) typically uses a 
pivoting nozzle with two actuators at 90 degree spacing 
about the undeflected thrust vector

The geometric constraint boundary is approximately 
square, with round “corners” due to geometry of the 
actuator mechanism
The two degrees of freedom of the actuator are arbitrarily 
aligned with the body axes; sometimes called “rock” and 
“tilt” (RSRMV) or “pitch” and “yaw” (SSME)
We model the constraints conservatively as an ellipse, 
which is commonly used to size the thrust structure 
geometry
Software angular limits on TVC travel are required to 
avoid actuator hard-stops (actuator damage), nozzle bell 
interference, launch structure contact, and plume 
impingement
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Analyzing Control Effectiveness

The torque due to a single TVC deflection

For small angles, is given by

The total torque is then

(residual + moment)

The quantity

is a control vector and each                     represents the two degrees of freedom for each effector.
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Analyzing Control Effectiveness (cont’d)

We can write the torque in matrix form as 

The applied angular acceleration in the linearized Euler equations is therefore

with the partitioning

Assuming                     due to static cant or trim, we have the linear map

or equivalently
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Elliptical Constraints

Consider the constraint on each effector given by 

so the admissible controls lie within the set

The union of these sets yield       , the set of admissible controls in         .

has an image       under the transformation      .  

We refer to it as the attainable moment subset* (AMS).

There are only n directions in          that generate moments – all others generate local loads! 
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Elliptical Constraints in … 

For each constraint ellipse               , we postulate that there exists its image in        .

We can solve for it directly!  Given the Moore-Penrose inverse satisfying                        ,

is a degenerate ellipsoid in          .
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The Total AMS

The true AMS, attainable under some (nonlinear) inverse, is found from the Minkowski sum of the 
images of k degenerate ellipsoids;

The AMS is not, in general, an ellipsoid, but can be approximated by one (or many). 
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The Particular AMS

We also define the particular AMS, that which is accessible under a particular linear inverse that 
satisfies 

such that

We refer to       as an allocator or particular inverse.

There are infinitely many      ; the family of least-squares allocators parameterized by a weight 
matrix that minimizes 

is often a good choice.

There is no linear inverse that can access the entirety of the true AMS.

In order to optimally parameterize the particular AMS to be “good”, e.g., maximum volume, we 
must be able to determine its geometry

The total or true AMS is relatively easy to find; the particular AMS is very difficult to find
Must rely on a numerical method in the case of box/saturation constraints
Numerical methods are expensive and difficult to use for optimization

Using ellipsoidal approximations, we can solve for the particular AMS directly.
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Inverse Mapping – Particular AMS

As a consequence of a linear inverse, some of the total AMS’s image falls outside the constraint 
boundaries;

The image of the intersection of these sets under       forms the particular AMS         .

Using an ellipsoidal approximation technique, we can find a very good internal approximation.
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Ellipsoidal Approximation of Particular AMS

First, we determine the tight internal approximation of the total AMS

The inverse image, or projection of               on the constraint boundaries is determined; 

The internal approximation of the intersection                    has a closed form solution given by

(exempting inclusion, a trivial case)

Finally, we map the intersection approximations back into         and find their geometric sum, 
using
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Ellipsoidal Approximation to 

The volume (log det) of the ellipsoidal approximation is correlated with the actual geometry, 
found (expensively) using a convex hull algorithm.

The direct method can be used to optimize the volume of          and find the best generalized 
inverse as a function of flight condition.

The internal ellipsoid can also be used as a saturation limiter in the flight software.
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Discussion and Conclusions

A novel technique for determining the attainable moment subsets under linear mapping has been 
presented

Exploits the special properties of elliptically constrained systems to avoid exhaustive numerical 
analysis to determine the geometry of the AMS

Applications to launch vehicles with least-squares linear allocators yield optimally-parameterized 
inverses that maximize control authority and performance margin

Most launch vehicles already use a special case of a least-squares allocator
The present results generalize the theory somewhat for complex geometries and non-trivial cases 

with, for example, arbitrary cant angles

Future work involves possible analytic maximum volume solutions to the least-squares allocator 
under certain conditions

Possible extension to time-varying constraint boundaries for better real-time adaptation to degraded 
or failed actuators
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