
Progress In Electromagnetics Research, Vol. 117, 299–319, 2011

LINEAR ARRAY SAR IMAGING VIA COMPRESSED
SENSING

S.-J. Wei *, X.-L. Zhang, and J. Shi

School of Electronic Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China

Abstract—In recent years, various attempts have been undertaken
to obtain three-dimensional (3-D) reflectivity of observed scene from
synthetic aperture radar (SAR) technique. Linear array SAR
(LASAR) has been demonstrated as a promising technique to achieve
3-D imaging of earth surface. The common methods used for LASAR
imaging are usually based on matched filter (MF) which obeys the
traditional Nyquist sampling theory. However, due to limitation in the
length of linear array and the “Rayleigh” resolution, the standard MF-
based methods suffer from low resolution and high sidelobes. Hence,
high resolution imaging algorithms are desired. In LASAR images,
dominating scatterers are always sparse compared with the total 3-
D illuminated space cells. Combined with this prior knowledge of
sparsity property, this paper presents a novel algorithm for LASAR
imaging via compressed sensing (CS). The theory of CS indicates
that sparse signal can be exactly reconstructed in high Signal-Noise-
Ratio (SNR) level by solving a convex optimization problem with
a very small number of samples. To overcome strong noise and
clutter interference in LASAR raw echo, the new method firstly
achieves range focussing by a pulse compression technique, which
can greatly improve SNR level of signal in both azimuth and cross-
track directions. Then, the resolution enhancement images of sparse
targets are reconstructed by L1 norm regularization. High resolution
properties and point localization accuracies are tested and verified by
simulation and real experimental data. The results show that the CS
method outperforms the conventional MF-based methods, even if very
small random selected samples are used.
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1. INTRODUCTION

Three-dimensional (3-D) synthetic aperture radar (SAR) imaging has
received a growing interest recently. Compared with 2-D images
received by traditional SAR technology [1–4], 3-D SAR images of
illuminated scene can give much more details to understand and
identify target characteristics, which are significant for many important
civilian and military applications (such as 3-D digital maps, stereo city,
target detection and identification, and flight navigation). Hence, 3-D
SAR is an emerging research field and will play an important role in
the next SAR products.

Up to now, some different 3-D SAR imaging techniques have
been proposed. The most popular SAR 3-D imaging technique
is interferometric SAR (InSAR) [5–7]. But InSAR cannot extract
the heights of different scatterers in the same range-azimuth cell.
In the past decade, Tomographic SAR (TomoSAR) technique has
been presented, which extends the synthetic aperture principle into
the elevation by slightly different multi-pass track [8, 9]. TomoSAR
allows to extract different height scatterers in each given range-
azimuth cell and provides the true 3-D images of illuminated scene.
However, TomoSAR suffers from some obvious defects, e.g., shadow,
layover, geometrical deformation in image due to working in the side-
looking mode [10], and high cost due to a large number of repeat-
passes. These defects result in that TomoSAR cannot be widely
applied in practice. To overcome above-mentioned disadvantages
of TomoSAR, a new linear array SAR (LASAR) down-looking 3-D
imaging technique has been developed in recent years [11, 12]. LASAR
obtains range resolution by pulse compression of chirp echo signal
and receives azimuth and cross-track (CT) dimensional resolution
from a 2-D virtual aperture which is formed by a linear array
antenna (LAA) movement perpendicular to flight direction. Unlike
TomoSAR restricted by the side-looking mode, LASAR can work in
a flexible mode, including side-looking, forward-looking and down-
looking. Nowadays, some standard algorithms have been developed
for LASAR 3-D imaging, such as 3-D Range-Doppler algorithm [13],
Chirp Scaling algorithm [14], and 3-D Back-Projection algorithm [15].
But these algorithms are mostly based on data independent matched
filter (MF) theorem which requires a large number of uniform samples
to obey the Nyquist rate. In addition, the focussing of LASAR data
based on MF-based methods is usually analogous to SINC function and
limited by the “Rayleigh” resolution, and generates a value of −13.4 dB
sidelobe fuzzy [16, 17]. Hence, though simple to implement and fast to
computation, MF-based methods suffer from low resolution and high
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sidelobe interference in the images. Moreover, the resolution of MF-
based methods in azimuth-CT directions depends on the size of 2-D
synthetic aperture plane. Therefore, to achieve high resolution by MF-
based methods in azimuth-CT directions, a large virtual 2-D aperture
is required. Specially, the required length of LAA must be always
tens or even hundreds of meters. In practice, due to the platform size
and load restraint, the length of this fixed LAA is limited to several
meters. Then the 2-D virtual aperture is not large enough for achieving
a satisfactory resolution value in azimuth-CT plane, and CT resolution
is often at least an order of magnitude lower than resolution in range
direction. Hence, how to improve imaging resolution with the limited
length of LAA is the main problem of LASAR 3-D imaging at present.

In recent years, an emerging theory of compressed sensing (CS)
has caused widespread concern, which brings about a revolutionary
breakthrough to sparse signal reconstruction [18, 19]. In CS, the
compressible signal can be exactly recovered by incoherent linear
projection using just a small number of random measurements.
Now CS has been discussed and studied widely in different areas,
including medical imaging, communications, image reconstruction,
radar imaging, remote sensing, analog to information conversion.
Some applications of CS in SAR imaging are also concerned about
recently [20–24]. Most of these papers used CS to reconstruct high
resolution image of sparse targets, such as ships, cars and aerial targets.
In [25], we also analyzed high resolution properties of CS in SAR 2-
D imaging, but the results demonstrate that CS method is sensitive
to noise, and the exact reconstruction requires high SNR level (SNR
≥ 10 dB) of raw echo. Nevertheless, the echo signals of SAR are
always interfered by strong noise in actual circumstances. Hence, the
high SNR is difficult to achieve for SAR raw echo. Furthermore,
the 3-D illuminated scene has sparse property because it contains
only a very small domain scatterers compared with the total space
cells. But it is no longer sparse when projected onto the 2-D range-
azimuth plane in traditional SAR. Then CS method fails in these
“non-sparse” scenes imaging (such as mountains and urban areas)
which are the main products of traditional SAR. Therefore, CS is more
suitable for 3-D SAR than traditional SAR. An inversion approach to
reconstruct elevation sparse scatterers based on CS has been presented
for TomoSAR 3-D imaging in [26]. Its super-resolution properties in
tomography elevation are demonstrated by TerraSAR-X data. In [27],
a similar approach for TomoSAR elevation reconstruction using CS
was presented, and its performance was validated compared with the
truncated singular value decomposition technique. However, these CS-
based methods for TomoSAR imaging mentioned above only achieved



302 Wei, Zhang, and Shi

super-resolution for 1-D (elevation direction) targets reconstruction.
To overcome the disadvantages of MF-based methods and improve

the imaging quality of LASAR, inspired by CS theory and combined
with the sparse feature of 3-D scene, (i.e., only a few number of
scatterers with the same height are present in the azimuth-CT plane),
this paper presents a novel approach for LASAR 3-D imaging based
on CS. In our case, sparseness requires a small number of scatterers
in the same range cell. Instead of conventional sampling at Nyquist
rate, only a small number of random selected samples are used for
measurements.

The organization of the paper is as follows. Section 2 contains
a brief description to LASAR data acquisition model and traditional
MF-based imaging methods. Section 3 gives an introduction of CS
basic theory and presents the 3-D imaging algorithm of LASAR via
CS. Numerical simulated and real experimental results are presented
in Section 4 along with a performance analysis. Finally, a summary is
given in Section 5.

2. LASAR IMAGING MODEL

In this section, we mainly describe the principle of LASAR imaging,
with special emphasis on the geometry and signal model. Suppose
that LASAR works in down-looking mode. The simple geometrical
model of LASAR is illustrated in Figure 1. The platform is moving
along axis y corresponding to azimuth direction, at altitude H with
constant velocity v. Axis x is CT direction which is parallel to LAA,
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Figure 1. The geometric model of LASAR down-looking imaging.



Progress In Electromagnetics Research, Vol. 117, 2011 303

and the height axis z denotes range direction. Hence, the image space
coordinate of LASAR corresponds to Cartesian coordinate. The length
of LAA is Lc with Nc elements. The interval of adjacent elements is
di, with i = 1, . . . , Nc − 1.

A reference point scatterer with radar cross section (RCS) σ(Pw)
is supposed at position Pw = [xs, ys, zs]T . At slow time n, the
distance between scatter Pw and the ith LAA element is R(n, i;Pw) =
‖Pr(n, i)−Pw‖2, and Pr(n, i) = [xp, yp,H] is position of the ith LAA

element with xp =
i∑

k=1

dk and yp = vn. Suppose that radar transmits

a linear frequency modulated (LFM) signal [28, 29]. The received echo
of the ith LAA element for the point scattering Pw can be expressed
as

sm(t, n, i;Pw) = α(Pw) exp(−j2πfcτ) exp
[
jπfdr(t− τ)2

]
,

|t| ∈ T/2 (1)

where fc denotes carrier frequency; fdr is LFM chirp rate; T is pulse
repetition time; τ = 2R(n, i;Pw)/C denotes the echo delay; C is the
speed of light in air. The first exponent term contains the target’s
information in azimuth-CT plane [30, 31]. The second exponent term
expresses the target’s range information [32]. For a 3-D measured scene
Ω, the received signal can be written as

Sc(t, n, i) =
∫

Pw∈Ω

α(Pw) exp(−j2πfcτ) exp
[
jπfdr(t− τ)2

]
dPw (2)

If we separate the 3-D scene reflectivity into grid points of N ′ and
express the measured samples with vector Sc, we can parameterize (2)
in terms of reflectivity vector f ∈ RN ′

and delay-Doppler function
A ∈ CN×N ′

as follow.
Sc = Af (3)

where f = [α1, α2, . . . , αN ′ ]T , A = {exp(−j2πfcτj) exp[jπfdr(ti − τj)2]},
1 ≤ i ≤ N and 1 ≤ j ≤ N ′.

The conventional MF-based methods for LASAR 3-D imaging are
mainly achieved by signal autocorrelation to obtain the maximum SNR
of output image [33–36]. The simple expression of output image for
MF-based methods can be written as

f̂ = AHAf (4)

Because AHA 6= I is not a unit matrix, the autocorrelation between
the columns of matrix A could cause ambiguity for reflectivity f
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reconstruction. The detail focused signal of LASAR can be expressed
as follow.

So(r, x, y) ≈
N∑

s=1

σ(Pw) exp
(
−j

4πR0

λ

)
· sinc

(
r − rs

ρr

)

·sinc
(

x− xs

ρc

)
· sinc

(
y − ys

ρa

)
(5)

where the function sinc(x) = sin(πx)/(πx). Then the resolution of
range, azimuth and CT directions can be expressed respectively as
bellow.

ρr =
C

2Br
, ρa =

λH

2La
, ρc =

λH

2Lc
(6)

where, Br denotes the bandwidth of LFM signal; La ≈ λH/D is the
length of azimuth synthetic aperture; D denotes the real aperture of
antenna; λ denotes radar wavelength.

From resolution formulas (5) and (6) of LASAR, the focused
signals in azimuth and CT direction are similar, and both are SINC
function, which suffer from high sidelobes interference. The CT
resolution is determined by the length of LAA, and azimuth resolution
depends on the length of synthetic aperture. In order to observe large
area, LASAR platform must work at a high altitude. In this case,
a large 2-D synthetic aperture on azimuth-CT plane is required to
obtain high resolution. Then the length of LAA to form the 2-D
synthetic aperture must be long enough. However, the length of LAA is
limited by the platform in practice. So the 2-D resolution of azimuth-
CT directions is often lower than that in the range. To overcome
these disadvantages of conventional MF-based methods, a new imaging
method of LASAR based on the theory of CS is introduced in the next
section.

3. LASAR IMAGING VIA CS

CS is a new theory which enables the reconstruction of sparse signals to
only a small number of linear measurements compared with traditional
Nyquist rate. The theory of CS states that a K-sparse signal a = Ψx
of length N in basis Ψ can be exactly recovered with high probability
from O(K log(N/K)) measurements by solving a convex optimization
problem via l1 norm [18]. The reconstruction step of CS can be simply
formulated as follow.

min ‖x‖1 s.t ‖y −Θx‖2 < ε (7)
where, y = Φa is measurement vector with length M ; Θ = ΦΨ ∈
RM×N denotes the measurement matrix with M ¿ N ; ε bounds
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the amount of noise in data. There are some sparse approximation
algorithms to recover the sparse signal x from measurements y
in (7) recently, including basis pursuit (BP) [37], orthogonal match-
pursuit (OMP) [38], and regularized orthogonal matching pursuit
(ROMP) [39].

However, to guarantee the stable solution for CS reconstruction,
the following conditions must be hold [18]. First, the signal a must be
sparse expression in the basis Ψ. Second, the sensing matrix Φ and the
basis Ψ must be mutually incoherent. Third, the measurement matrix
Θ must follow the restricted isometry property (RIP) requiring that
(1 − δK)‖η‖2

2 ≤ ‖Θη‖2
2 ≤ (1 + δK)‖η‖2

2, where η is any vector having
K nonzero coefficients, and δK ∈ (0, 1). The smaller the value δK is,
the better the sparse signal can be reconstructed. The RIP is closely
related to an incoherency property. When the measurement matrix is
constructed by Gaussian random matrices or random partial Fourier
basis, it performs well for RIP [40].

The first prerequisite for CS reconstruction is that the signal must
be sparse or compressible in some representation. Mostly this premise
of CS cannot be met in traditional SAR 2-D imaging, because its
target space is non-sparse after the 3-D illuminated scene projected
into range-azimuth plane. Unlike traditional SAR, the imaging space
of LASAR directly corresponds to the 3-D illuminated scene. There are
non-penetrating and shadow areas in the observed scene of LASAR and
no scatterers in atmosphere. Consequently, scattering targets cover
only a small part of the total image cells. For example, let us consider
the illuminated scene in Figure 1, we can see that this scene is non-
sparse for traditional SAR, but it is very sparse for LASAR because
the slice of scene with the same range contains only a few scatterers,
and these scatterers are extremely sparse compared to the total cells on
the slice plane. Thus, spatial sparsity is a common feature in LASAR
target space, which is not exploited by traditional MF-based methods
at all. Due to this prior sparse feature of scatterers in 3-D space, CS
is well suited for LASAR imaging.

In practice, the raw echo signals acquired by the LAA often
contain strong noises. In such situations, the strong noises will affect
the sparsity of echo signal and cause the precision of CS reconstruction
degrade dramatically and bring about lots of artificial targets in image.
In the presented method, range focussing of LASAR raw data is firstly
achieved by pulse compression technique which can greatly suppress
noise interference. After range compression, an appropriate basis for
LASAR signal needs to be constructed. According to (1) and (5),
the signal of the ith LAA element after range compression and range
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migration correction can be expressed as

Sc(r, n, i) =
∫∫ {∫

α(Pw) exp
[
jπfdr(t− τ)2

]⊗ exp
(−jπfdrt

2
)
dr

}

· exp(−j2πfcτ)dxsdys

=
∫∫

A(rs) · sinc [(r − rs)/ρr]

· exp
[
−j

4π

λ
R(r, n, i; xs, ys)

]
dxsdys

=
∫∫

γ(r, n, i; xs, ys) · exp
[
−j

4π

λ
R(r, n, i;xs, ys)

]
dxsdys,

1 ≤ n ≤ Na, 1 ≤ i ≤ Nc (8)

where γ(r, n, i;xs, ys) = A(rs) · sinc[(r − rs)/ρr] is amplitude of range
compression signal, and R(r, n, i; xs, ys) denotes the distance between
the scatterer on the azimuth-CT plane of range cell r and the ith LAA
element position at slow time n. ⊗ denotes convolution symbol. For
the sake of simplicity, γ(r, n, i; xs, ys) and R(r, n, i; xs, ys) are replaced
by γ(xs, ys) and R respectively. The distance can be expressed in
Taylor series as follow

R=
√

(xp − xs)
2+(yp−ys)

2+r2 ≈ R0+
x2

p + y2
p − 2xpxs − 2ypys

2R0
(9)

where R0 =
√

x2
s + y2

s + r2 is the distance between range cell r and the
reference LAA element. Furthermore, discarding the constant factor
and compensating the quadratic terms, (8) can be expressed as

Sc(r, n, i) =
∫∫

γ (xs, ys) · exp
[
j

4π

λR0
(xsxp + ysyp)

]
dxsdys (10)

Assume that the targets are point-like reflectors. The continuous
space model of (10) can be approximated by discrete scatterers on the
azimuth-CT plane. Let the number of image grid points in azimuth and
CT directions the same as the number of pulse repeat period Na and
LAA elements Nc, respectively. Then, the total number of observed
points is N = Na ·Nc. LASAR signal in (10) can be expressed as

Sc(r, n, i) =
Nc∑

n=1

Na∑

i=1

γ (xn, yi) · exp
[
j

4π

λR0
(xpxn + ypyi)

]
(11)

Converting (11) to vector form as follow.

Sc(r, n, i) = ψ(r, n, i)T γ(r), 1 ≤ n ≤ Nc, 1 ≤ i ≤ Na (12)
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where ψ(r, n, i) is interpreted as an N -elements measurement vector
with ψj = exp[j4π(xpxj + ypyj)/λR0], 1 ≤ j ≤ N and 1 ≤ p ≤ N .
γ(r) denotes an N -elements discrete reflectivity coefficient vector in
the range cell r.

The received signal of azimuth-CT plane after range compression
is rearranged to an N -element vector as

S(r)=[Sc(r, 1, 1), Sc(r, 1, 2), . . . , Sc(r, 1, Nc), . . . , Sc(r,Na, Nc)]
T (13)

Then the relationship between the scattering coefficient vector γ(r) and
measured data S(r) can be compactly written as linear representation
model.

S(r) = Ψ(r) · γ(r) (14)

where Ψ(r) ∈ CN×N denotes the sparse basis function of LASAR
signal after range compression. Assume the distance function Rpj =
xpxj + ypyj . The basis function Ψ(r) can be expressed in a form of
Fourier basis matrix as follow.

Ψ(r) = [ψ(r, 1, 1), ψ(r, 1, 2), . . . , ψ(r, 1, Nc), . . . , ψ(r,Na, Nc)]
T

=




exp
(
j 4π

λR0
R11

)
exp

(
j 4π

λR0
R12

)
. . . exp

(
j 4π

λR0
R1N

)

exp
(
j 4π

λR0
R21

)
exp

(
j 4π

λR0
R22

)
. . . exp

(
j 4π

λR0
R2N

)

...
...

. . .
...

exp
(
j 4π

λR0
RN1

)
exp

(
j 4π

λR0
RN2

)
. . . exp

(
j 4π

λR0
RNN

)




(15)

According to CS theory, the sparse signal γ(r) ∈ RN can be well
reconstructed using only a small number of samples M(M ≤ N).
The small number of measurements Sp can be obtained by projecting
the signal vector S(r) into a sensing function Φ. To successfully
reconstruct, the sensing matrix Φ must be mutually incoherent with
the basis matrix Ψ, and the greater the incoherence is, the smaller
number of measurements are needed. The mutual coherence can be
defined as

µ(Φ, Ψ) = max
i,j

|〈φi, ϕj〉|
‖φi‖2 ‖ϕj‖2

(16)

where φi are rows from the measurement matrix Φ, and ϕj are
columns from the basis matrix Ψ. This coherence is bounded by
1/
√

N ≤ µ(Φ, Ψ) ≤ 1. When the value of µ(Φ, Ψ) is 1/
√

N , matrix
Φ and Ψ are completely incoherent. In [19] and [22], it shows that
random matrix performs Φ well. In this paper, we randomly select
M columns for basis matrix Ψ as the measurement functions Φ. The
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randomly selected matrix can be expressed as

Φ =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1




M×N

(17)

In this case, as all rows from matrix Φ are unit vectors, the mutually
coherent µ(Φ, Ψ) obtains the minimum value 1/

√
N . It means that the

sensing matrix Φ and the basis Ψ are completely incoherent.
Then, if we consider noise in LASAR signal, the randomly selected

signal can be written as

Sp = ΦΨγ + n = Θγ + n (18)

where Θ = ΦΨ ∈ CM×N denotes the measurement matrix of LASAR
signal after range compression, and n accounts for the additive white
Gaussian noise. Θ is a random partial Fourier matrix that measures
only M elements of γ(r) located at the positions of M randomly
selected columns. Hence, the measurement matrix Θ follows the RIP
required in CS reconstruction. Given the observed vector Sp and the
measurement matrix Θ, the reflectivity signal γ can be recovered from
the solution of a convex optimization problem based on l1 norm.

min ‖γ‖1 s.t ‖Sp −Θγ‖2 < ε (19)

The detailed estimation of ε is discussed in [41]. Then in our case, if the
number of randomly selected samples M meets the requirement M ≥
O(K log(N/K)), the resolution to (19) is exact with overwhelming
probability.

4. RESULTS OF SIMULATION AND EXPERIMENTAL

In this section, some numerical simulated and real experimental data
are used to evaluate the imaging performance of CS method in the
case of different samples and SNR level. To compare conventional MF-
based methods with CS approach, the processing is also implemented
for back-projection (BP) algorithm, because it is a time-domain MF-
based algorithm which can be used to sparse samples focussing.

4.1. Simulated Results

Assume that SAR platform works at altitude H = 1000m with carrier
frequency fc = 10 GHz. The bandwidth of transmitted chirp signal is
Br = 150 MHz. The real aperture in azimuth is D = 2 m. The number
of azimuth and range samples (both obey Nyquist rate) are Na = 128
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(a) (b)

Figure 2. The original scene for simulation. (a) The Shepp-Logan
phantom scene. (b) The 3-D Mount Washington terrain.

and Nr = 128, respectively. A full-element LAA consists of Nc = 121
elements. The interval of adjacent elements is 0.125 m. Then, the total
length of LAA is about 15m. According to the resolution formula of
MF-based BP method in (6), the resolution of range, azimuth and CT
are ρr ≈ 1 m, ρat ≈ 1m and ρct ≈ 1m, respectively. Two discrete
simulated scenes are tested, which are shown in Figures 2(a) and (b).
One is a 2-D Shepp-Logan phantom, and the other is a 3-D Mount
Washington terrain with the same scattering coefficients.

We first study the algorithm performance of CS method related
to the number of samples. Figure 3 shows the slices of imaging results
of the Shepp-Logan phantom scene using both MF-based BP and CS
algorithms with different numbers of random samples (M = 15488,
6000, 3000, 1500 respectively). The size of the original phantom scene
is 64× 64 with K = 1686 nonzero pixels. Intuitively, the results show
that traditional MF-based BP algorithm suffers from high sidelobe
interferences even if total M = 15488 samples are used. Moreover,
the sidelobes grow much larger with the number of samples decreases.
Hence, the fewer measurements are used, the worse results of MF-
based BP algorithm are. It is obvious that CS method successfully
suppresses sidelobe and clearly reconstructs both the positions and
amplitudes of actual targets, even with much less samples compared
to BP algorithm. In addition, the performance of CS based method has
no remarkable change when the number of randomly selected samples
satisfies M ≥ O(K log(N/K)) ≈ 2160 (in this simulation N = 4096,
K = 1686), in the case of M = 15488, 6000, 3000. But when the sample
number is smaller than 2160, for example, M = 1500, CS results will
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All samples 6000 samples 3000 samples 1500 samples

Figure 3. Imaging results of Shepp-Logan phantom with different
number of samples. The top low shows the results of MF-based BP
method, the bottom row shows the results of CS method. The samples
number selected from left to right is all, 6000, 3000, and 1500 samples.

generate some false values in no target positions and lose some targets.
Figure 4 shows the imaging capabilities of CS method under

different noise conditions compared with MF-based BP algorithm using
6000 random selected samples. An additive Gaussian white noise
is added in the simulated raw echo to generate different SNR levels
(SNR = 20 dB, 10 dB, 0 dB, −10 dB). The results demonstrate that
traditional MF-based BP algorithm is robust to noise. CS method
performs well for the scene reconstruction in the case of SNR = 20 dB,
10 dB, 0 dB. When the SNR is reduced to −10 dB, the CS method
performance degrades dramatically, but still outperforms the MF-
based BP algorithm. To quantitatively analyze the impact of noise
on the image quality, the normal mean squared error (MSE) of MF-
based BP method and CS method are plotted in Figure 5 with different
SNR levels from −15 dB to 25 dB. For a given SNR, we make 100
trails Monte Carlo simulations. It is observed that the presented CS
method has much smaller MSE than MF-based BP method when the
SNR is larger than −10 dB, but is more sensitive to noise than BP
method. According to the discussion in [25], there is a serious error
for the reconstruction of CS method directly applied for SAR raw echo
when SNR is lower than 10 dB. But the present CS method combined
with pulse compression in range direction can achieve high resolution
reconstruction for lower SNR, because range compression in CS method
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can improve the amplitude and power of raw signal to
√

Nr and Nr

times. It means that the SNR can be increased by a factor Nr after
range compression.

Figure 6 shows the imaging results of the 3-D mountain scene by
MF-based BP algorithm and the CS method respectively. The echo
signals are added by Gaussian white noise with SNR = 0 dB. After

SNR = 20 dB SNR = 10 dB SNR = 0 dB SNR = -10 dB

Figure 4. Imaging results with different SNR level using only
6000 samples. The top low shows the results of MF-based BP method,
the bottom row shows the results of CS method. The SNR level left
to right are SNR = 20, 10, 0, −10 dB.
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Figure 5. The normalized MSE of BP and CS method for Shepp-
Logan reconstruction versus different SNR.
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(a) (b) (c)

Figure 6. Reconstructed images of the 3-D mountain scene for an
SNR of 0 dB. (a) MF-based BP result with all samples. (b) MF-based
BP result with 1500 samples. (c) CS result with 1500 samples. The
top 15 dB magnitude image voxels are displayed.
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Figure 7. The slices of reconstructed results for the 3-D mountain
scene. (a) Original scene. (b) MF-based BP result with all samples.
(c) MF-based BP result with 1500 samples. (d) CS result with
1500 samples.

range compression, the 3-D image of MF-based BP method using all
echo samples is shown in Figure 6(a). Figures 6(b) and (c) display the
3-D images received by BP and CS method with only 1500 randomly
selected samples respectively. The results show that BP algorithm
using 1500 echo samples suffers serious high sidelobe and generates lots
of false targets in 3-D mountain area, but CS method with the same
samples still obtains the correct target positions with fewer clutters.
As seen obviously, the altitude slices of the original mountain scene
and the reconstructed results are presented in Figure 7. The results
also support the conclusion that CS method performance is better than
MF-based BP method even if very small number of samples is used.
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4.2. Experiments Results

In order to verify the 3-D imaging capabilities of LASAR, we have
developed a ground LASAR experiment system (the detail is presented
in [42]). The carrier frequency of system is fc = 9.618GHz. The
bandwidth of chirp signal is Br = 120 MHz which can provide Lc =
1.25m resolution in range direction. The length of virtual LAA is
designed as 1 m with adjacent elements interval of 0.01m in this
experiment. To facilitate analysis for the performance of presented
CS method, a simple experiment scene is set up which only consists
of some balls on the ground. Since the diameters of these balls are
small enough, they can be taken as point targets. The ground LASAR
system and the balls scene are shown in Figure 8(a). In Figure 8(b), the
echo signal after range compression is presented, and the total samples
in azimuth-CT plane is N = 2980.

In the first experiment, the referenced ball, which can be seen as
an ideal single scatterer, is used to analyze the point spread function
(PSF) of both MF-based BP method and CS method. Since range
resolution is equal in both methods, for the sake of simplicity, we only
give the slice images of balls in azimuth-CT plane rather than the
complete 3-D images. Figure 9 shows the 2-D azimuth-CT imaging
slices of the referenced ball using MF-based BP and CS method
respectively. All the images are normalized to [0, 1]. Figure 9(a)
demonstrates BP method result with all samples. Figures 9(b) and (c)
display BP and CS method results with 10% samples respectively.
From Figure 9, the PSF of MF-based BP method using all samples
is similar to 2-D SINC function. This PSF is limited by “Rayleigh”
resolution and impacted by high sidelobes. When the random samples
is decreased to 10% with M = 298, the sidelobe in MF-based BP
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Figure 8. The ground-based LASAR experiment system and echo
signal. (a) The LASAR system and the tested scene. (b) The received
echo signal of the tested scene after range compression.
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Figure 9. Images of the referenced ball on azimuth-CT plane. (a)
MF-based BP result with all samples. (b) MF-based BP result with
10% samples. (c) CS result with 10% samples.
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Figure 10. The PSF of the referenced ball. (a) CT direction. (b)
Azimuth direction. The maximum 60 dB is displayed.

image is dramatically increased which causes target’s location and
amplitude fuzzy. However, CS method can faithfully reconstruct the
referenced ball image with low sidelobe, and some false weak targets
appear because of noise interference. The PSF of MF-based BP and
CS method in azimuth and CT direction are shown in Figures 10(a)
and (b), respectively. It is obvious that CS method obtains much
higher resolution and lower sidelobe level than MF-based BP method
even though 10% samples are used. Note that the PSF of CS in no-
target positions is labeled by −60 dB. Actually the value is smaller
than −60 dB in these areas.

In the second experiment, the two iron balls in the same range
cell are used to verify the high resolution capability of CS method
via different length of LAA. Figure 11 shows the results of BP and
CS method with different lengths of LAA of 1 m, 0.5 m and 0.25m,
respectively. Here, the distance between the two scatterers is about
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Figure 11. Images of two balls with different length of LAA (left: BP
result with all samples, middle: BP result with 10% samples, right:
CS result with 10% samples,). (a) The length L = 1 m. (b) The length
L = 0.5m. (c) The length L = 0.25m.

3.9m in CT direction. The results demonstrate that the resolution of
MF-based BP method deteriorates with the length of LAA decreases.
When the length of LAA is 1m, the ideal resolution under MF theorem
is about 0.75m. In this situation, both methods can distinguish the two
scatterers clearly. However, if the length of LAA changes to 0.25m,
the ideal resolution of MF-based method is about 3.2 m. Hence BP
method no longer distinguishes them clearly because their amplitudes
are mixed together. But CS method still can separate them perfectly.
According to the results using a small number of samples and a shorter
length of LAA, the CS method still performs better than conventional
MF-based BP method.
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5. CONCLUSIONS

In this paper, a CS-based approach is presented for resolution
enhancement and sidelobe reduction in LASAR 3-D imaging. First
we accomplish range focussing by pulse compression and convert
the LASAR signal model to a linear measurement model. Then a
measurement matrix is constructed from randomly selected partial
Fourier basis. And high resolution in azimuth-CT plane is achieved
via CS l1 norm reconstruction. Combined with pulse compression
in range direction, the presented method is able to suppress strong
noise interference and applied to LASAR raw data with low SNR
level. Simulations and real experimental data are used to test
the performance of CS method. The results demonstrate that the
presented CS method can achieve much higher resolution and lower
sidelobe level than the traditional MF-based BP method for LASAR
imaging even with a very small number of measurements.
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