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Abstract

Objective: To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic
Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven
template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI).

Methods: This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were
separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After
normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest
(ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear
regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score,
ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates.

Results: For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN
Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor
was the Penn UMN Score (p = 0.003).

Conclusions: Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN
Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurode-

generative disease of unknown cause, whose diagnosis requires

evidence of both Upper Motor Neuron (UMN) and Lower Motor

Neuron (LMN) involvement [1]. UMN disease is primarily

assessed clinically, by examining muscle tone and spasticity and

eliciting abnormal or pathologic reflexes. Many studies have

reported the use of Diffusion Tensor Imaging (DTI) to study the

UMN in ALS [2–12], generally finding local alterations in the

diffusion properties of molecular water within the corticospinal

tract (CST). These abnormalities are most commonly character-

ized by elevations in Mean Diffusivity (MD) and reductions in

Fractional Anisotropy (FA).

Studies correlating these DTI changes with clinical assessments

of disease severity have been inconsistent. Some groups report

correlation with clinical UMN metrics and other measures such as

the Revised ALS Functional Rating Scale (ALSFRS-R) or

duration of disease [2–8], but others find poor or no correlation

at all [9–12]. While some of this inconsistency may result from the

wide variety of DTI acquisition, processing, and analysis methods

that were used in these studies [2–12], the unclear relationship

between DTI metrics and clinical measures of UMN dysfunction

does call into question exactly what DTI is measuring and how

well it may serve as a reliable and useful biomarker of ALS.

Therefore, the present study investigated the relationship between

clinically assessed UMN disease and mean MD and FA in the

CST, using multiple linear regression analyses. Unlike previous

work, we used a novel deformable DTI normalization algorithm
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that enabled definition of a consistent, user-independent region-of-

interest (ROI) to estimate mean MD and FA in the CST.

Materials and Methods

Ethics Statement
This study protocol was approved by the institutional review

board of the University of Pennsylvania. Written informed consent

was obtained from all subjects. All clinical investigation was

conducted according to the principles expressed in the Declaration

of Helsinki.

Subjects
Thirty-four patients with ALS were recruited for participation

from consecutive new patients who presented at the ALS

Association Center at Pennsylvania Hospital over a 2-year period,

as well as 13 control subjects with no known neurologic disease.

Each subject was classified using the Revised El Escorial criteria

[1] into one of the following categories: Clinically Definite ALS,

Clinically Probable ALS, or Clinically Possible ALS, by one of two

experienced neurologists (LM, LE), who also performed all clinical

assessments detailed below. Please refer to Tables 1 and 2 for

univariate statistics describing the enrolled subject population.

Exclusion criteria included: age less than 18 years old, history of

other neurological disease, pacemaker or metallic object consid-

ered a contraindication to MR scanning, inability to lie flat in the

MRI scanner, and vulnerable populations including pregnant

women and prisoners. Patients taking riluzole (Rilutek, Bridge-

water, NJ) or who were enrolled in other ALS clinical trials were

not excluded. Clinical assessments and DTI studies were

performed on all subjects enrolled in the study, as detailed below.

Clinical Assessment
At each patient visit to the ALS Center, clinical metrics

including the ALSFRS-R score and a summary score of UMN

disease burden were recorded. The Penn UMN Score (see

Table 3) ranged from 0 to 32, with higher scores corresponding

to greater disease burden, and was comprised of components from

the bulbar segment (0–4 points), and each of the four limbs (0–7

points for each limb). Reflexes were judged hyperactive if either

pathologically brisk, or retained in a weak or wasted limb. For the

bulbar evaluation, single points were allotted each for an abnormal

jaw-jerk reflex, facial reflex, and palmomental sign. An additional

point was added for a score greater than 13 on the CNS-Lability

Scale, a measure of pseudobulbar affect [13]. For the upper

extremities, single points were allotted each for an abnormal

triceps reflex, abnormal biceps reflex, finger flexors, Hoffmann’s

sign, and clonus anywhere in the limb. Additional points were

added depending upon the Ashworth Spasticity Scale [14], with

Ashworth 1 adding 0 points, Ashworth 2–3 adding 1 point, and

Ashworth 4–5 adding 2 points. For the lower extremities, single

points were allotted each for an abnormal patellar reflex, crossed

adduction, abnormal ankle reflex, Babinski’s sign, and clonus, and

similar to the upper extremities, assessment of spasticity added an

additional 0 to 2 points.

We then modified these raw scores, depending upon the results

of prior exam visits. At any single point in time, the reflex

examination may have been confounded in the presence of

advanced LMN disease, so that a previously abnormal reflex may

have ‘‘pseudo-normalized’’ on later exams [15]. Therefore, we

modified the raw score for each segment to the highest of all

previous visits, in order to reflect UMN disease more accurately in

the presence of concurrent LMN disease. For example, if at the

current exam visit, the right upper extremity UMN score was 2,

but previously had been 4, the current score was manually

changed to 4. The sum of these modified UMN scores thus yielded

the Penn UMN Score, from 0 to 32.

Diffusion Tensor Imaging
At a separate visit, Diffusion Tensor Imaging of the brain was

performed on a 3.0T whole-body scanner (Siemens Trio,

Erlangen, Germany), using an 12-channel phased-array head coil,

and a 30-direction single-shot spin-echo diffusion-weighted echo-

planar sequence, GRAPPA acceleration of 3. The diffusion-

sampling scheme consisted of four images with no weighting

(b = 0 s/mm2), followed by measurements along 30 non-collinear/

non-coplanar directions isotropically distributed in space

(b = 1000 s/mm2). Other parameters: TR = 6700 ms,

TE = 85 ms, NEX = 3, FOV = 2456245 mm, matrix = 1126112,

slice = 2.2 mm, gap 0 mm, voxel size 2.1962.1962.2 mm3, scan

time 13 minutes. The time interval from the clinic visit to the DTI

scan date varied from 57 days before to 43 days after the scan. A

similar MRI scan was performed for each control subject, using

the same scanner.

DTI Normalization
The DTI data on the 34 subjects with ALS were spatially

normalized using a high-dimensional deformable registration

algorithm that explicitly optimized tensor orientation for align-

ment of white matter structures, described in more detail

elsewhere [16], as implemented in the software DTI-TK (freely

available at www.nitrc.org/projects/dtitk) [17]. Image pre-pro-

cessing steps included correction for motion and eddy-current

distortion using standard affine registration methods, and auto-

mated brain segmentation to exclude the scalp. Tensors were

estimated voxel-by-voxel using standard least-square fitting

methods, and all non-positive-definite tensors were zeroed. An

initial bootstrap template was generated by affine transforms

registering the tensor data to a freely available DTI template based

upon the IXI brain database [18], and the transformed data were

averaged voxel-by-voxel. This initial template was then improved

by an iterative process, at each step first registering the tensors to

the template, and then forming a new template by averaging the

registered tensors. The process continued until the change

Table 1. Descriptive statistics of metric demographic and clinical variables.

N = 34 subjects Range Mean SD

Age 34–82 years 55 10

ALSFRS-R score 17–46 36 7

Duration of disease 232–2509 days 811 579

Penn UMN score 2–30 14 8

doi:10.1371/journal.pone.0105753.t001

UMN Disease and DTI Metrics in ALS
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between templates from consecutive iterations became sufficiently

small, using the squared Euclidean Distance as the tensor metric.

This algorithm was applied first with affine, then with deformable

(hierarchical dense piecewise affine) spatial transforms, to yield a

final population-specific tensor template. The transformed DTI

data were assessed subjectively for alignment, and misaligned data

were discarded from the analysis. Tensor metrics of FA and MD

were calculated voxel-by-voxel using standard formulas of the

eigenvalues of the transformed tensors in template-space. The

investigator performing these post-processing steps was blinded to

the clinical data. Figure 1 demonstrates how the algorithm was

able to align DTI data. In a separate step, the DTI data from the

Table 2. Descriptive statistics of categorical demographic and clinical variables.

Category Subcategory Result (%)

Sex Women 16 (47)

Men 18 (53)

Handedness Right 28 (82)

Left 4 (12)

Unknown 2 (6)

El Escorial Category Clin. Definite ALS 11 (32)

Clin. Probable ALS 13 (38)

Clin. Possible ALS 10 (29)

doi:10.1371/journal.pone.0105753.t002

Table 3. Penn UMN Score.

Bulbar Subscore (total 0–4):

0–1 Increased jaw-jerk reflex

0–1 Increased facial reflex

0–1 Present palmomental sign

0–1 Score .13 on CNS-Lability Scale

Upper Extremity Subscore (0–7)

0–1 Increased triceps reflex

0–1 Increased biceps reflex

0–1 Present finger flexors

0–1 Hoffmann’s sign

0–1 Clonus (anywhere in limb)

0–2 Additional points for spasticity:

Ashworth 1 (normal tone): 0 points

Ashworth 2–3: 1 point

Ashworth 4–5: 2 points

Lower Extremity Subscore (0–7)

0–1 Increased patellar reflex

0–1 Crossed adduction

0–1 Increased ankle reflex

0–1 Babinski’s sign

0–1 Clonus (anywhere in limb)

0–2 Additional points for spasticity:

Ashworth 1 (normal tone): 0 points

Ashworth 2–3: 1 point

Ashworth 4–5: 2 points

Important note: To counter the confound of pseudo-normalization of reflexes with advanced LMN disease, raw subscores for each segment (bulbar, limbs) were
modified whenever they were found to decrease over time, to the highest of all previous exam visits. For example, if at the current exam visit the right upper extremity
UMN score was 2, but previously had been 4, the current score was manually changed to 4.
The sum of modified UMN scores yielded the Penn UMN score, from 0–32.
doi:10.1371/journal.pone.0105753.t003
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13 controls were individually normalized to the 34-subject

template, also using the DTI_TK software.

Tractography
Deterministic fiber tractography was performed in the tensor

template using the standard FACT method (Fiber Assignment by

Continuous Tracking) developed by Mori et al. [19], and

implemented in MRIStudio software (freely available at www.

mristudio.org). The CST was determined by the following

procedure, as outlined by Wakana [20]. Tracking parameters

included an FA threshold of 0.20 and an inner product threshold

of 0.75 (41u). First, an ROI was drawn by the investigator around

Figure 1. Demonstration of the deformable DTI normalization algorithm used in DTI-TK. Row (A) shows color maps of DTI data
(analogous coronal FA maps) of 4 individuals, with variations in head positioning, shape, and volume. Row (B) shows results after the initial
registration to the IXI brain DTI template, with improved positioning. Row (C) shows results after applying optimized affine transforms, which only
partly correct for shape and volume variations. Row (D) shows results after applying optimized deformable transforms, with considerably improved
alignment of white matter structures and correction for shape and volume differences. These spatial transforms enable tractography, ROI definition,
and statistics measurement to be performed in template space.
doi:10.1371/journal.pone.0105753.g001
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either cerebral peduncle, at the axial level showing the superior

cerebellar peduncle decussation – identified on color maps by its

transverse orientation – and all streamlines passing through this

first ROI were displayed. These streamlines were followed

superiorly, until the branching point separating the primary

motor pathway from all other pathways (i.e. those that do not

proceed to the precentral gyrus, as identified based upon anatomic

landmarks), and a second ROI was placed at an axial level just

above this branching point. The ‘‘AND’’ operation of MRIStudio

identified all streamlines passing through both ROIs. The resulting

fiber tract data were exported as voxelized binary masks, which

served as template-space regions-of-interest in which mean FA and

mean MD could be estimated (see Figure 2). To combine the left-

and right- side data, the following weighted-average strategy was

used: data from each side were first standardized to a mean of 0

and a standard deviation of 1 (for the sample population of 34

subjects), and then averaged together to yield a single bilateral

measure for both FA and MD.

A similar ‘‘control tract’’ analysis was performed to obtain DTI

measures in the forceps major, the fibers connecting the occipital

lobes via the splenium of the corpus callosum, again using the

method as outlined by Wakana [20]. Two ROIs were drawn

encompassing the entire left and right occipital lobes, in the

coronal plane selected at the posterior edge of the parieto-occipital

sulcus, as determined on a parasagittal plane at the level of the

cingulum. Again, the ‘‘AND’’ operation of MRIStudio identified

all streamlines passing through both ROIs.

Statistics
All tests of significance were two-sided with type 1 alpha error of

0.05, unless otherwise indicated. The Mann-Whitney-U statistic

was tested to determine if MD or FA was significantly different

between groups of ALS patients and controls, in the CST.

Multiple linear regression models (‘‘full models’’) were applied

separately using either MD or FA, in the CST or in the forceps

major, as the dependent variable, and using the Penn UMN Score,

ALSFRS-R score, and duration of disease as independent

variables, along with El Escorial category, age, sex, and

handedness as covariates. Indicator (dummy) variables were used

for the categorical data (i.e. El Escorial category, sex, and

handedness). Overall significance of a regression model was

determined by a standard analysis-of-covariance. Separate anal-

yses (‘‘limited models’’) were also performed excluding the

Clinically Possible ALS patients, using either MD or FA in the

CST as the dependent variable, and their respective significant

predictor variables determined from the full model. All statistical

analyses were performed using STATA 12.1 (College Station, TX:

StataCorp LP).

Results

There was a significant difference in both MD (Mann-Whitney-

U, Z = 22.97, P = 0.003) and FA (Mann-Whitney-U, Z = 2.52,

P = 0.01) measured in the CST, between ALS patients and

controls.

The scatterplots of the DTI metrics (MD and FA) measured in

the CST and the clinical metrics (Penn UMN Score, ALSFRS-R

score, and duration of disease) are summarized in a scatterplot

matrix (see Figure S1). Approximate linear relations were

suggested between the DTI metrics and the Penn UMN Score

as well as the ALSFRS-R score. No significant association was

suggested between the DTI metrics and duration of disease. In

figure 3, scatterplots of the DTI metrics MD (3A) and FA (3B)

measured in the CST are shown vs. the Penn UMN score with

superimposed simple regression lines.

Please see tables 4 and 5 for the analysis-of-covariance tables

listing the significance of the predictors in the regression models.

For MD in the CST, the full regression model was significant

(p = 0.02). The Penn UMN Score was a significant predictor

(p = 0.005), as was age (p = 0.03). The ALSFRS-R score and

duration-of-disease were not significant predictors (p = 0.48, 0.74,

respectively), nor were handedness (p = 0.79) or sex (p = 0.53).

Post-estimation analysis showed no significance among the 3 El

Escorial categories (p = 0.74). Please see figure 4A showing the

added-variable plot (partial regression plot) showing the effect of

adding the Penn UMN score to the MD regression model. The

limited regression model excluding the Clinically Possible ALS

patients but including only the Penn UMN Score and age as

predictors was still significant (p = 0.007). The Penn UMN Score

(p = 0.003) remained a significant predictor, and its coefficient

remained within the confidence interval from the full model

analysis. However, age was not a significant predictor in this

model (p = 0.10).

For MD in the forceps major, the regression model was not

significant (F = 0.72, p = 0.67).

For FA in the CST, the regression model was also significant

(p = 0.02). Again, the Penn UMN Score was a significant predictor

Figure 2. ROIs corresponding to the right and left CST, used for template-space measurements. Figure A depicts the regions-of-interest
(ROIs) corresponding to the right (blue) and left (red) corticospinal tracts in template-space, as defined using deterministic tractography. These ROIs
were used to measure Mean Diffusivity (MD) and Fractional Anisotropy (FA) in all subjects. As a reference, figure B shows the course of the
corticospinal tracts through the brain, taken from http://commons.wikimedia.org/wiki/File:Gray764.png.
doi:10.1371/journal.pone.0105753.g002
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(p = 0.003). The ALSFRS-R score and duration-of-disease were

not significant predictors (p = 28, 0.09, respectively), nor were age

(p = 0.20), handedness (p = 0.22), or sex (p = 0.25). Again, post-

estimation analysis showed no significance among the 3 El Escorial

categories (p = 0.99). Please see figure 4B showing the added-

variable plot (partial regression plot) showing the effect of adding

the Penn UMN score to the FA regression model. The limited

regression model excluding the Clinically Possible ALS patients

but including only the Penn UMN score as a predictor was still

significant (p = 0.01), and the Penn UMN Score (p = 0.01)

remained a significant predictor, with its coefficient within the

confidence interval from the full model analysis.

For FA in the forceps major, the regression model was not

significant (F = 0.62, p = 0,76).

Discussion

DTI is a powerful non-invasive method to assess the integrity of

white matter tracts of the upper motor neurons in ALS. In their

seminal report, Ellis et al. found measurable MD increases and FA

decreases in the corticospinal tracts (CST) of patients with ALS

[2]. They also reported that FA correlated with clinical measures

of UMN involvement, but not with disease duration, whereas MD

correlated with disease duration, but not with measures of disease

severity or UMN involvement. Several other early groups similarly

found FA in the CST to be a potential marker of disability, as

measured by ALSFRS-R [3,4,5], and some reports also corrob-

orated the potential of MD as a marker of disease duration [4,5].

Not all reports were consistent, however: one study reported no

correlation between either FA or MD and ALSFRS-R [9];

another reported no correlation between DTI metrics (FA or MD)

and clinical measures (disease duration, disease severity, or extent

of UMN disease) [10]. One potential limitation common to these

early studies was their use of user-drawn ROIs to define the CST,

which likely contributed significant error to the DTI measures, as

well as generally low numbers of subjects, resulting in reduced

power.

More recent reports using newer analysis methods have not

clarified the relationship between DTI metrics and clinical

measures of disease. One study using probabilistic tractography

found no association between FA and rate of disease progression

[11]. On the other hand, another study found areas in the brain,

both in the CST and outside it, with significant correlations

between FA or MD measures and ALSFRS-R [6], using both a

voxel-based analysis and tract-based spatial statistics (TBSS).

Others used deterministic tractography and TBSS to show

significant correlations between CST FA and clinical measures

of UMN disease, but not with MD, nor with ALSFRS-R [8].

Finally, a very recent report using High-Angular Resolution

Diffusion Imaging (HARDI) and probabilistic tractography,

despite the better modeling of the diffusion tensor allowed by

the HARDI sequence, found no correlation between ALSFRS-R

scores and FA in the CST [12]. The wide variety of DTI analysis

methods and requisite multivariate statistical tests likely contrib-

uted to the variability in these results.

In this study, we found that both MD and FA, when measured

throughout the CST using a DTI normalization algorithm, and

appropriately controlled for covariates, showed significant linear

associations with our clinically derived Penn UMN Score. This

finding contrasted with prior reports, which had suggested that FA

was a significant marker for disease severity, but not MD. Since

both FA and MD were derived from the same set of three

eigenvalues that diagonalized the tensor, our finding should not

have been surprising. Indeed, a post-hoc analysis showed a high

negative correlation between MD and FA (–0.80) in our study

data, suggesting a strong interdependence between these two DTI

measures. To avoid statistical problems with multiple compari-

sons, we chose to limit our analysis of DTI metrics to MD and FA,

the two most commonly studied.

Our study also found that the clinical metric that best related to

DTI changes was the Penn UMN Score, not ALSFRS-R or

duration of disease. The UMN score we described, which partially

accommodated for a confounded UMN examination in the

presence of possible LMN disease by incorporating prior visit data,

probably represented an improvement over purely cross-sectional

assessments of UMN disease, although it still would not correct for

the confounding possibility of LMN degeneration at the initial

time point. For ALSFRS-R, the poor contribution to the

regression model was not surprising, since this score has been

known to be affected by both UMN and LMN disease. The reason

why our study failed to corroborate the previously suggested

relationship between DTI metrics and duration of disease was not

immediately apparent, but may have been due to inherent

differences in the patient populations studied. Notably, the

duration-of-disease predictor fell just short of significance

(p = 0.09) in the full regression model for FA.

Figure 3. Scatterplots of DTI metrics and the Penn UMN score.
(A): The scatter matrix of MD (unitless) vs. the Penn UMN Score (unitless
from 0–32) shows an approximate linear relationship. Superimposed
simple regression line is also shown. (B): The scatter matrix of FA
(unitless) vs. the Penn UMN Score (unitless from 0–32) shows an
approximate linear relationship. Superimposed simple regression line is
also shown.
doi:10.1371/journal.pone.0105753.g003
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The regression analyses also found that El Escorial category of

the patient was not a significant contributor to either regression

model. Furthermore, the Penn UMN score remained a significant

predictor in the regressions even after excluding Clinically Possible

ALS cases. These results suggest that all patients with ALS,

regardless of the distribution of their clinical manifestations, share

the same underlying relationship between UMN disease and DTI

changes. Therefore, future research studying the utility of DTI as a

biomarker in ALS may include patients in the Clinically Possible

ALS category.

Our method to measure the DTI metrics, using a high-

dimensional algorithm to normalize the data into a common

spatial frame, and template-space tractography to define the CST,

had important advantages over methods used in other research

articles. First, the method avoided user definition of ROIs, which

not only would have been time-consuming, but also could have

added error and bias. In contrast, using our method, once the

CST was defined by tractography in template-space, subsequent

measures for all subjects were performed using exactly the same,

consistently defined, unbiased ROI. Indeed, prior studies using

more variable ROIs to define the CST may have contained

significant measurement error and/or bias, which may have

obscured the true relationship between DTI metrics and clinical

measures. Finally, our method also would be more suitable for any

future large-scale studies, inasmuch as individual tractography or

ROI definition need not be performed. All that said, adding a

normalization step may have introduced additional pitfalls in the

DTI analysis, as pointed out by Jones and Cercigagni [21]. Despite

these pitfalls, we found a significant relationship between the DTI

metrics and clinical measures.

We purposefully chose a large ROI encompassing both sides of

the corticospinal tract to perform DTI measures in this study.

Most importantly, this single summary metric of DTI abnormality

avoided the multiple-comparison problem that would complicate

voxel-based or tract-based methods, and therefore simplified the

statistics, albeit at the expense of spatial selectivity. Previous studies

have shown variable abnormalities throughout the CST (3, 9).

Therefore, we chose the large-ROI method in order to make it the

most robust, capturing potential abnormalities throughout the

corticospinal tract, while preserving power. As a further benefit, a

single summary measure of DTI abnormality also would have

more straightforward application as a diagnostic test, or as an

endpoint in clinical trials.

It is important to understand that the regression analysis

performed in this study can only test for linear associations

between the Penn UMN score (a clinical assessment) and DTI

metrics in the CST (an MRI measure), but establishing this

relationship does not imply causality. That is, while we did find

that increasing clinical disease burden (i.e. higher Penn UMN

scores) is associated with worsening DTI measures in the CST

(higher MD, lower FA), we cannot conclude that worsening

disease burden directly results in worsening DTI measures. This

limitation is intrinsic to the design of our study.

There were several other limitations to our study. While greater

than others, the number of subjects in our study, 34, was not large.

If multicenter trials are to be performed evaluating DTI as a

biomarker in ALS, the clinical and DTI data should be acquired in

a uniform manner in order to be compiled. The success of the

Penn UMN Score indicates that a similarly comprehensive upper

motor neuron exam should be performed and recorded as the

optimal clinical measure for validation. Moreover, putative

biomarkers should be specified at the outset so that they can be

tested in a formal, prospective fashion. Another limitation to our

study was the need to sum together all the components of the

clinical exam and the DTI exam across body segments. It may be

useful in the future to segment DTI metrics, not only left-vs.-right,

but also by body part (i.e. bulbar, cervical, lumbosacral), and then

correlate these with the clinical data. Finally, limitations of the

diffusion tensor model do not allow full definition of the pyramidal

tract by deterministic tractography, due to the ‘‘crossing fiber’’

problem. As a result, only a portion of the true pyramidal tract was

in fact interrogated by our methods.

Table 4. Analysis of covariance table for full regression models.

MD FA

Source df p-value Df p-value

UMN score 1 0.005 1 0.003

ALSFRS-R 1 0.48 1 0.28

Disease duration 1 0.74 1 0.09

Age 1 0.03 1 0.20

Sex 1 0.53 1 0.25

El Escorial category 2 0.74 2 0.99

Handedness 1 0.79 1 0.22

doi:10.1371/journal.pone.0105753.t004

Table 5. Analysis of covariance table for limited regression models, excluding Clinically Possible ALS.

MD FA

Source df p-value df p-value

UMN score 1 0.003 1 0.01

Age 1 0.10

doi:10.1371/journal.pone.0105753.t005
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One possible concern with our methods is the complexity added

by the DTI normalization step, which theoretically could add

error to the measures. However, the benefits of the DTI-TK

normalization method likely outweigh this complexity and

potential error, and the positive results of our manuscript do

indicate that the method successfully allows meaningful DTI

measurements that correspond to the clinical examination. Two

important differences between the DTI-TK normalization algo-

rithm and other methods are the tensor-based metric used by

DTI-TK to drive the normalization, unlike the scalar metric of FA

used by standard tract-based spatial statistics (TBSS), and the high

number of degrees of freedom in the underlying transform used in

DTI-TK, unlike the few degrees used by standard voxel-based

morphometry (VBM). Given these differences, it is entire possible,

though unproven, that the DTI-TK method significantly im-

proved the registration, and this improvement enabled measure-

ment of DTI metrics that could be related to the clinical

examination. Indeed, one recent study that compared several

methods [22] found DTI-TK to perform the best among 8

normalization algorithms.

At first glance, the use of the maximum prior reflex scores in

calculation of the Penn UMN score may seem problematic;

however, this modification to the Penn UMN reflex score was

performed for an important reason. It is a known phenomenon

that a patient’s reflex examination may artifactually ‘‘improve’’

over time in the presence of increasing lower motor neuron (LMN)

degeneration – that is, a reflex that was previously hyperreflexic

(signaling UMN degeneration) may appear to normalize, and in

cases of end-stage lower motor neuron disease, the reflex will

abolish. This ‘‘improvement’’ does not reflect recovery of the

UMN’s or decreased disease burden, but rather is an indication

that there are not sufficient lower motor neurons remaining to

generate a reflex. To correct for this artifact, the total UMN score

was calculated from the maximum UMN score per segment

during the course of the disease.

In summary, we used an unbiased method to measure DTI

abnormalities in the CST of patients with ALS, and found

significant linear relationships with a clinically-assessed metric of

UMN disease, but not with the ALSFRS-R score or duration of

disease, when controlled for covariates including the El Escorial

category. Contrasting with other reports, we found that both MD

and FA showed significant linear relationships with UMN disease.

This finding has important consequences for future studies using

DTI as a biomarker of UMN disease burden, as both MD and FA

should be studied.

Supporting Information

Figure S1 Scatterplot matrix of DTI and clinical
metrics. This figure shows a scatterplot matrix of the DTI

metrics (MD, unitless; FA, unitless), and the clinical metrics (Penn

UMN Score, unitless scale from 0–32; ALSFRS-R, unitless scale

from 0–42; duration-of-disease, in days). Linear associations are

suggested between the DTI metrics and the Penn UMN Score, as

well as ALSFRS-R score, but not the duration-of-disease. The

asterisks (*) denote the significant relationships between MD and

the Penn UMN Score (p = 0.005) and between FA and the Penn

UMN Score (p = 0.003).

(TIF)
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Figure 4. Added variable plots showing the effect of adding
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significant predictor in the model, with coeff = –0.08, t = –3.35, P = 0.003.
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UMN Disease and DTI Metrics in ALS

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e105753



References

1. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial Revisited:

revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph
Lateral Scler Other Motor Neuron Disord 1: 293–299.

2. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, et al. (1999) Diffusion
tensor MRI assesses corticospinal tract damage in ALS. Neurology 53: 1051–

1058.

3. Graham JM, Papadakis N, Evans J, Widjaja E, Romanowski CA, et al. (2004)
Diffusion tensor imaging for the assessment of upper motor neuron integrity in

ALS. Neurology 64: 2111–2119.
4. Cosottini M, Giannelli M, Siciliano G, Lazzarotti G, Michelassi MC, et al.

(2005) Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral

sclerosis and progressive muscular atrophy. Radiology 237: 258–264.
5. Wang S, Poptani H, Woo JH, Desiderio LM, Elman LB, et al. (2006)

Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at
3.0T. Radiology 239: 831–838.

6. Sage CA, Peeters RR, Gomer A, Robberecht W, Sunaert S (2007) Quantitative
diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34: 486–

499.

7. Sage CA, Van Hecke W, Peeters R, Sijbers J, Robberecht W, et al. (2009)
Quantitative Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis:

Revisited. Human Brain Mapping 30: 3657–3675.
8. Iwata NK, Kwan JY, Danielian LE, Butman JA, Tovar-Moll F, et al. (2011)

White matter alterations differ in primary lateral sclerosis and amyotrophic

lateral sclerosis. Brain 134: 2642–2655.
9. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, et al. (2003)

Diffusion tensor imaging detects corticospinal tract involvement at multiple
levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74: 1250–

1257.
10. Hong YH, Lee KW, Sung JJ, Chang KH, Song JC (2004) Diffusion tensor MRI

as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral

sclerosis. J Neurol Sci 227: 73–78.
11. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, et al. (2006)

Probabilistic diffusion tractography: a potential tool to assess the rate of disease
progression in amyotrophic lateral sclerosis. Brain 129: 1859–1871.

12. Rose S, Pannek K, Bell C, Baumann F, Hutchinson N, et al. (2012) Direct

evidence of intra- and interhemispheric corticomotor network degeneration in

amyotrophic lateral sclerosis: An automated MRI structural connectivity study.

Neuroimage 59: 2661–2669.

13. Smith RA, Berg JE, Pope LE, Thisted RA (2004) Measuring pseudobulbar affect

in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 5 Suppl 1: 99–

102.

14. Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth

scale of muscle spasticity. Phys Ther 67: 206–207.

15. Swash M (2012) Why are upper motor neuron signs difficult to elicit in

amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 83: 659–662.

16. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable

registration of diffusion tensor MR images with explicit orientation optimization.

Med Image Anal 10: 764–785.

17. Zhang H, Avants BB, Yushkevich PA, Woo JH, Wang S, et al. (2007) High-

dimensional spatial normalization of diffusion tensor images improves the

detection of white matter differences: an example study using amyotrophic

lateral sclerosis. IEEE Trans Med Imaging 26: 1585–1597.

18. Zhang H, Yushkevich PA, Rueckert D, Gee JC (2010) A Computational White

Matter Atlas for Aging with Surface-Based Representation of Fasciculi. 4th

International Workshop on Biomedical Image Registration. Lecture Notes in

Computer Science 6204: 83–90.

19. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of

axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:

265–269.

20. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, et al. (2007)

Reproducibility of quantitative tractography methods applied to cerebral white

matter. Neuroimage 36: 630–644.

21. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion

MRI data. NMR Biomed 23 (7): 803–820.

22. Wang Y, Gupta A, Liu Z, Zhang H, Escolar ML, et al. (2011) DTI registration

in atlas based fiber analysis of infantile Krabbe disease. Neuroimage 55: 1577–

1586.

UMN Disease and DTI Metrics in ALS

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e105753


