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Abstract

Planar scenes would appear to be ideally suited for self-
calibration because, by eliminating the problems of occlu-
sion and parallax, high accuracy two-view relationships
can be calculated without restricting motion to pure rota-
tion. Unfortunately, the only monocular solutions so far de-
vised involve costly non-linear minimisations which must be
initialised with educated guesses for the calibration param-
eters. So far this problem has been circumvented by using
stereo, or a known calibration object.

In this work we show that when there is some control over
the motion of the camera, a fast linear solution is avail-
able without these restrictions. For a camera undergoing a
motion about a plane-normal rotation axis (typified for in-
stance by a motion in the plane of the scene), the complex
eigenvectors of a plane-induced homography are coincident
with the circular points of the motion. Three such homogra-
phies provide sufficient information to solve for the image
of the absolute conic (IAC), and therefore the calibration
parameters. The required situation arises most commonly
when the camera is viewing the ground plane, and either
moving along it, or rotating about some vertical axis. We
demonstrate a number of useful applications, and show the
algorithm to be simple, fast, and accurate.

1. Introduction

Camera calibration generally involves some compromise
between automation and accuracy. Accurate calibrations
can be obtained by imaging objects of known metric struc-
ture, such as in the method of Tsai [22], but greater accu-
racy usually requires greater user interaction. Since Tsai,
there has been considerable research into reducing the level
of metric information required without compromising accu-
racy. In particular, accurate planar objects are considerably
easier to obtain than accurate regular solids, and Zhang [23]
has shown how the known 3D structure required by Tsai
can be reduced to known planar structure and unknown mo-
tion. Liebowitz and Zisserman [15] and Sturm and May-

bank [19] use even weaker constraints on a planar object,
such as known angles and length ratios.

Self-calibration relies only on the rigidity of the scene
to extract the calibration, and must therefore process more
image data to constrain the problem. However, it allows
the process to become more easily automated. Indeed, it
is the ability to post-process video sequences for the pur-
poses of pose tracking or structure recovery that makes self-
calibration essential in the special effects industry (eg. [1]).

In between the two extremes are a variety of situations in
which some knowledge about the scene or motion can al-
low the calibration process to be reasonably accurate, while
considerably more rapid and flexible than classical meth-
ods. A typical example of a known motion method is the
non-translating camera algorithm first identified by Hartley
[10]. This algorithm exploits the good approximation to
pure rotation about the optical centre of many typical mo-
tions, such as that made by a camera on a pan-tilt unit.

The most common case of a non-general scene is a planar
structure. Planar scenes have an advantage over pure rota-
tions in general scenes because they provide equally strong
matching constraints, yet allow a translational component
to the motion; the distinct disadvantages of pure rotation
are the large number of potential degeneracies and near-
ambiguities [12], many of which can be resolved by includ-
ing translation.

The disadvantages of general motion in an unknown pla-
nar scene are that each pair of images in a sequence only
provides a small number of constraints on the calibration,
and applying those constraints is non-trivial. Triggs [20]
showed how to do this by using a version of the projec-
tion constraint of the absolute quadric [21]. His method is
extremely flexible, but it is an iterative solution, with no
closed-form counterpart available to initialise the optimisa-
tion. A number of linear solutions have been provided for
the stereo case [5, 13, 14]. However, this work represents
the first closed-form monocular calibration for unkown pla-
nar scenes that includes translation.

In this work we exploit some knowledge of the scene (that
it is planar), and some knowledge of the motion. We show
that when the camera moves about an axis normal to the



scene, a simple, linear calculation will provide the calibra-
tion from just three such motions, in what is essentially a
closed-form solution for Triggs [20]. This commonly oc-
curs when the scene being viewed is the ground plane. We
are particularly interested in controlled calibration, espe-
cially for mobile robotics applications. Consequently we
look at the two main scenarios: (i) a pan-tilt camera rotat-
ing about a vertical pan axis, and (ii) the camera (or scene)
moving along the ground plane. In the latter case, the cam-
era may be on a mobile robot, or simply on a tripod which
is manually repositioned for each image.

1.1. Calibration using the absolute conic

This paper will use the common notational conventions
as established in [11]. In particular, vectors appear in bold
face (x, Π), and matrices in teletype (H, K). In addition, the
camera internal calibration matrix K, with its components of
focal lengths, principal point, and skew, is defined as

K =





αu s u0

0 αv v0

0 0 1



 .

The plane at infinity Π∞ is the plane containing the
points at infinity (directions) and lines at infinity which are
the pre-images of vanishing points and vanishing lines re-
spectively. It is invariant to translation (as the moon appears
to be, for instance). Faugeras et al. [8] introduced the con-
cept of the absolute conic into computer vision, which is a
point conic on Π∞ that is also invariant to rotation as a set.
Its special property is that it projects to the image of the ab-
solute conic, or IAC, ω = K

−1
K
−>, which depends only on

the internal parameters. Finding this conic, or more usually
its dual the DIAC, ω

∗ = KK
>, is equivalent to calibrating

for these parameters (since K can be recovered via Cholesky
decomposition). The IAC and DIAC are point and line con-
ics respectively, and are imaginary in that no real points lie
on them.

Most calibration algorithms directly or indirectly find ω.
One advantage of direct calculation of the IAC is that it is
a simple matter to apply certain common constraints. As
shown by de Agapito et al. [3, 4], the conditions on the ele-
ments of the IAC under the constraints of interest to us are:

1. Zero skew. If s = 0 then ω12 = ω21 = 0.

2. Square pixels. If s = 0 and αu = αv then ω11 = ω22.

3. Fixed principal point. If s = 0, u0 = 0, and v0 = 0,
then ω13 = 0 and ω23 = 0.

4. Focal length only unknown. In this case, all the above
constraints apply.

Just two constraints are required to calculate the focal length
alone. Non-unity aspect ratios, and other principal point
positions, can be taken care of by renormalisation of the
image data or by image homographies.

2. Algorithm details
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Figure 1. The circular points in a planar scene (left), and
their images (right).

Both the methods of Triggs [21] and Demirdjian et al. [5]
are effectively using the same basic algorithm, calculating
the images of the scene plane’s circular points. These are
the (complex) points of intersection of the scene plane with
the absolute conic on the plane at infinity Π∞(see Figure 1).
Since the images of these circular points lie on the image of
the absolute conic, five or more such points are sufficient to
calculate the IAC, and so the calibration. In both methods,
only one conjugate pair of circular points need be explicitly
calculated: the others are related to them by plane-induced
homographies calculated from the images. The way the
two methods differ is in the detection of this initial pair of
points; Demirdjian, with the advantage of stereo imaging,
uses a projective reconstruction to calculate all the scene
horizons, which provide cubic constraints on the circular
points; Triggs must make an iterative search.

The accuracy of both these methods is reliant on obtain-
ing as many images as possible from widely separated view-
points. This is not so much a deficiency in the algorithms as
it is a reflection of the severe lack of constraints provided by
a planar scene. In this work we show that a motion parallel
to the scene allows for easy extraction of the circular points,
and also improves accuracy from a minimal image set.

First we will derive the algorithm from a purely mathe-
matical perspective. Following this we provide a comple-
mentary geometric argument.

2.1. Derivation

A camera with fixed internal parameters K, imaging a
scene plane with normal n at distance d, undergoes rotation
R and translation t. The relationship between image points
x before the motion and x

′ after is then a plane-induced ho-
mography H, ie. x

′ = Hx. In general a homography has
three distinct fixed points corresponding to the three eigen-
vectors of the matrix. It will be shown that if the rotation
axis is perpendicular to the scene plane, then there are two
complex eigenvectors and these lie on the IAC regardless of
the translation.



The homography H is given by

H = KMK
−1

= K

(

R + d−1
tn

>
)

K
−1, (1)

which is the well-known equation derived by Faugeras and
Lustman [6]. The rotation matrix R has one real eigenvector
v, and two complex conjugate eigenvectors e and e

∗ with
eigenvalues λe and λe

∗ . v and the complex eigenvectors
are orthogonal, since v represents the direction of the rota-
tion axis, and e and e

∗ the plane perpendicular to it (which
is invariant to R). Consequently v

>
e = v

>
e
∗ = 0. The

eigenvectors e and e
∗ are imaged as the points (Ke) and

(Ke∗) respectively, and lie on the IAC [11].
In the case that the rotation axis and scene plane are per-

pendicular, we have n = v. If we multiply M by e, we have

Me =
(

R + d−1
tn

>
)

e

= Re + d−1
tv

>
e

= Re + d−1
t.0 = Re = λee . (2)

This shows that e is an eigenvector of M, and therefore (Ke)
is an eigenvector of H. The same argument applies to e

∗.
In this special case, the complex eigenvectors of H are the
images of the eigenvectors of R and thus lie on the IAC re-
gardless of the translational motion.

The complex eigenvectors are identical to those obtained
by a pure rotation (i.e. with t = 0), which corresponds to
the infinite homography, H = KRK

−1, equivalent to a scene
plane at infinity, d = ∞. Note, in the case of general mo-
tion where the rotation axis is not perpendicular to the scene
plane, then for a non-zero translation the complex eigenvec-
tors do not lie on the IAC in general.

2.2. Geometric argument

A plane intersects the plane at infinity in a line L. The
plane’s circular points are the intersection of L with the ab-
solute conic. As Figure 2 shows, all parallel planes intersect
on Π∞ at the same L, and therefore have the same circu-
lar points. Consider the action of rotating the plane about
its normal followed by a translation. Both the rotation and
translation leave the plane orientation, and therefore the in-
tersection line L unchanged, so that L is invariant (as a set).
While in general points on L move along the line, the cir-
cular points are fixed because they are defined by the inter-
section with the absolute conic, which is itself invariant (as
a set) to a Euclidean motion.

Consider now applying the action to a camera viewing the
plane. Since the two points are fixed they have the same im-
age before and after the motion and consequently are fixed
points of the homography. Their image clearly lies on the
IAC, the image of the absolute conic.

The locus of all points in 3-space for which x = x
′

(i.e. have the same image before and after the motion) is
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Figure 2. Parallel planes intersect on Π∞ in a line L. L is
fixed if the planes rotate about a perpendicular axis and/or
translate.

known as the horopter curve. Generally this is a twisted
cubic curve in 3-space passing through the two camera
centres [17]. A twisted cubic intersects a plane in three
points, and these are the three fixed points of the homog-
raphy induced by that plane. In the case of plane-normal
motion, two of the intersection points are at infinity where
the twisted cubic, the scene, and Π∞ coincide.

2.3. Algorithm

This method can be implemented in a number of ways.
At one extreme, we can obtain a single pair of circular
points from a single plane-normal motion, and transfer
those points into other images using general plane-induced
homographies. This, however, is quite heavily reliant on the
quality of those original points. Further special motions will
produce further point pairs to better constrain the problem.

At the other extreme, then, every motion made is a rota-
tion about a plane-normal axis, so every homography calcu-
lated produces circular points that contribute to the calcula-
tion of the IAC. The minimal image set for a full calibration
(all five parameters unknown) in this case becomes six im-
ages, instead of four. However, this algorithm does make
the problem better conditioned, with every image contribut-
ing equally to the constraints, and errors.

The chosen algorithm can then be stated as follows for
scenes containing horizontal planes (generally the ground
plane):

To calibrate a camera from a horizontal plane

1. With the camera at a different ‘attitude’ for each
motion, calculate plane-induced homographies H to
motions about some vertical axis when viewing the
scene plane.

2. Eigendecompose and find the circular points of each
H, their complex conjugate eigenvectors.

3. Fit the IAC to the points using the Direct Linear
Transform [11]. Cholesky decompose its inverse (the
DIAC) to give K, the calibration matrix.



‘Attitude’ refers to the camera’s orientation with respect
to the scene plane at the start of each motion. For a pan-tilt
unit or standard tripod this means varying elevation and/or
cyclorotation. The orientation of the rotation axis with re-
spect to the camera must change in order to provide differ-
ent circular points for each motion.

The standard constraints mentioned in §1.1 (zero skew,
square pixels etc.) can be applied during calculation of the
IAC. Each motion provides two constraints, so in the gen-
eral case the minimal set of motions is three. However, if
zero skew is applied, only two motions are required, and if
the principal point is also known, we only require a single
pair of images.

2.4. Planar motion and plane-normal motion

Any rigid body motion is equivalent to a rotation about
and translation along some axis in space, the screw axis.
The special motion required by our algorithm requires only
that the direction of the screw axis be normal to the scene
plane. In most practically achievable circumstances, how-
ever, to achieve such a motion the translation, or pitch of
the screw, will be zero. This is a planar motion, because the
trajectory of the moving body lies in a plane.
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Figure 3. Planar motion is executed by, for instance, a
robot moving along the ground plane (left), or an active
head rotating about a single axis (right).

Planar motion occurs very commonly, as shown by Fig-
ure 3. We will be looking at cases in which the scene is the
ground plane, and the rotation axis is vertical either because
the camera is on a pan-tilt unit (which usually have vertical
pan axes), or because the camera moves along the plane, or
both.

Planar motion has been extensively studied by Armstrong
and others [2, 7, 18], but the various planar motion calibra-
tion methods proposed are intended for general scenes and
use the fundamental matrix. Our method bears more re-
semblance to other planar scene algorithms, and also in part
to rotating camera algorithms, although they use the infi-
nite homography, which provides additional constraints and
cannot be applied here.

3. Experiments

3.1. Simulation

To assess the sensitivity of the algorithm to various pa-
rameters, it was tested over multiple runs on a simulated

scene consisting of a cloud of random points on a plane in
random position. The camera, which had a calibration vary-
ing around some nominal values, was placed at different
orientations with the respect to the plane and rotated about
an axis perpendicular to it. Except where the effect of addi-
tional motions was being tested, three motions were used in
each case (the minimal set for to solve for all parameters),
providing 3 homographies, and six circular points.

Three different implementations were tested in parallel.
In the most basic, all calculations were kept entirely linear.
In the second, the homographies were obtained using non-
linear minimisation. In the third, the zero skew constraint
was applied to the linear calibration. Finally for compari-
son, all homographies were assumed to have been derived
from pure rotations, and a rotating camera algorithm [10]
was used to provide the calibration. This was intended to
show the conditions under which the use of a planar algo-
rithm produces better results than assuming the camera is
rotating. The results of the simulations are shown in Fig-
ure 4. Only focal length error is shown, since the other pa-
rameters tell a similar story.

The simulations show that in a typical, properly con-
trolled scenario, we should expect errors of around 5% in
the focal length. It makes little difference whether or not
the homographies are optimised, but application of the zero
skew constraint provides great improvement.

The standard offset of the rotation axis from the camera
was set to just 20cm, a typical value for the pan axis of a
stereo pan-tilt unit. Since the scene itself was at a distance
of 3m, the rotating camera method usually outperformed the
planar calibration. There are, however, notable exceptions.
For a start, the planar method reaches zero error when im-
age noise is eliminated (Figure 4(a)), whereas the rotating
camera method cannot due to the presence of translation in
the motion.

Figure 4(b) shows that if the axis offset is increased,
the planar method quickly becomes more accurate (in fact
the transition occurs at around 40cm). This implies this
method is best suited when the camera is translating along
the ground plane and the position of the axis can be set at
any distance from the camera (real tests will show that the
calibration is in fact accurate in either case).

Figure 4(b) also shows that while the algorithm is insen-
sitive to fairly large offsets, as the motion approaches pure
translation (when the offset goes beyond about 3m, in this
case), the errors increase dramatically. This effect disap-
pears when there is zero noise, so clearly the calculated
orientation of the axis becomes unstable in these circum-
stances. Such a situation would need to be avoided; how-
ever in a typical motion for which the scene is fixated, the
rotation axis will lie within the scene, and will therefore not
be distant from the camera.

Figure 4(c) tells us that additional motions can improve
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Figure 4. Results of the tests of the ground plane calibration algorithm on synthetic data. Nominal values for the parameters
were 1 pixel noise σ, and 0.2m axis offset. The rotation angle was 15◦, except where a large number of motions or a large offset
required it to be reduced to ensure the scene stayed in view. 200 matches were used for the calculation of each homography.

results, as would be expected, and Figure 4(d) indicates
that larger rotations are preferable. Perhaps crucially, Fig-
ure 4(e) demonstrates that the algorithm can tolerate several
degrees of error in the true orientation of the rotation axis:
the pan axis of the camera platform, for instance, need not
be precisely vertical for the results to be of use.

3.2. Real scene tests

There are a number of situations in which use might be
made of this algorithm, and we address three of them here.
In each case, the user has control over the motion itself,
either physically or remotely, but not over the position or
content of the scene plane. For these tests, the ground truth
for the camera parameters was obtained to high accuracy
using the method of Tsai [22].

First, the camera is on a passive tripod, and is calibrated
from the ground plane by moving the tripod to different po-
sitions on the plane, altering the camera’s orientation for
each new motion (tripod calibration). In the second sce-
nario, the camera is on an active head with a vertical pan
axis (non-mobile head calibration). Finally, the camera is
both active, and mounted on a mobile robot which moves
along the ground plane (mobile head calibration). In each
case the radial distortion was corrected prior to linear cali-
bration. However tests showed that a single additional pa-

rameter in a minimisation for each plane-induced homog-
raphy was sufficient to calculate and correct the distortion;
alternatively it can be corrected with reasonable accuracy in
closed-form by solving a quadratic eigenvalue problem, as
demonstrated by Fitzgibbon [9].

3.2.1. Tripod calibration. Calibration from a tripod in
any scene can be carried out using a rotating camera al-
gorithm, but this does rely on the motions being a reason-
able approximation to a pure rotation. Using the planar mo-
tion algorithm on the ground plane eliminates that concern,
while still allowing for a fast result.

In our tests the ground plane was populated with some
target objects, a camera orientation chosen, and then im-
ages captured before and after a motion of the tripod. Cam-
era attitude was varied considerably, including cyclorota-
tion, and some attempt was made to ‘place’ the rotation axis
in a range of positions.

A total of 14 image pairs were taken, and the results are
given in Figure 5(a). As can be seen, the results were ex-
tremely accurate, with only the principal point, which is
anyway poorly constrained, not well estimated. In fact, a
significant proportion of the ‘minimal’1 sets of images gave

1‘minimal’ is a misnomer, since the true minimal set for the least well-
constrained method used (zero skew) is two image pairs.



Constraints Percentage error
Focal length Aspect ratio P’pal pt

Focal length only 0.08 – –
Fixed p’pal point 0.6 0.03 –

Square pixels 0.97 – 24.3
Zero skew 0.69 1.8 24.0

(a) Results from different constraints

(b) The scene (c) Example image pair

Figure 5. (a) Tripod results when using all 14 circular point
pairs. Principal point error is expressed as a percent-
age of focal length. (b) The scene and (c) one of the
sets of point tracks, shown as combined images in sepa-
rate colour channels (only about a third of the tracks are
shown).

high accuracy results: the best set gives a focal length error
of 0.1%. It appears that as long as a little effort is made to
obtain pairs of images with a wide range of camera orien-
tations and motions, accuracy can be reliably expected to
be high even for small numbers of motions. The presence
of objects not part of the dominant plane (such as in Fig-
ure 5(b)) were not a problem since they were ignored by the
robust matching procedure.

3.2.2. Non-mobile head calibration. The next test
shows the viability of the use of this method for a straight-
forward pan-tilt unit with a vertical pan axis, such as a
surveillance camera, or active head. In this case we made
use of our stereo head, in which the pan axis is offset from
the cameras by about 20cm. The calibration procedure was
carried out entirely remotely.

In this case the elevation alone was varied to provide a
new orientation for each pan motion. The vergence axis was
fixed in the aligned position to simulate a standard monocu-
lar head. 13 motions about the vertical pan axis were made
while viewing the same scene as for the tripod calibration,
and the results are shown in Figure 6(a). In this case no
combination of calculated circular points gave a focal length
error much less than 10%, which is nevertheless good for a
linear calibration. Possibly this is due to an orientation error
in the pan axis, or the lack of variation in the cyclotorsional
orientation of the camera.

For comparison, the image set was also tested using a ro-
tating camera algorithm [10]. This method was expected
to perform well because the offset of the pan axis from the
camera is small, but it failed to get a focal length error under

Constraints Percentage error
Focal length Aspect ratio P’pal pt

Focal length only 10.7 – –
Fixed p’pal point 10.5 0.4 –

Square pixels 10.8 – 3.0
Zero skew 9.6 8.9 9.6

(a) Results from different constraints

(b) Two of the best 3 image pairs

Figure 6. Non-mobile camera results, and two images from
the best ‘minimal’ set in that sequence of 13 (the third was
intermediate to the two shown).

62%. de Agapito et al. [3] make it clear why: this kind of
pan-tilt motion is degenerate for the rotating camera model,
with αy and v0 undetermined unless the square pixel con-
straint, at least, is applied. In this case we see that knowl-
edge of the planarity of the scene has provided us with con-
straints that the rotating camera model cannot.

3.2.3. Mobile head calibration. Our stereo head is
used as part of a visual navigation system, and is mounted
on a mobile robot for that purpose. In the final test, the
algorithm is used in a way that might be used in practice
during navigation, to measure or correct the calibration of
the cameras, which is essential for the stereo measurement
process. As part of the experiment, the robustness of the al-
gorithm was ascertained by making the minimal set of mo-
tions over a small range of orientations, and providing only
sparse scene texture.

The situation is illustrated by the images of Figure 7.
The robot paused in the process of normal navigation, and
turned its head to obtain three images of the ground plane
at different head orientations. It then moved forward a short
distance and obtained three more images of the plane at the
same vergence and elevation angles, but with increased pan
to maintain overlap between images to be matched. The for-
ward translation and the panning motion results in a rotation
centre somewhere inside the scene.

Naturally this algorithm, like much of vision, requires
some texture variation in the scene. However, plane-
induced homographies can often be calculated to high ac-
curacy even in texture-sparse scenes. This is illustrated by
this test, with Figure 7(c) showing that considerably fewer
matches were obtained in each image than for the previous
experiments (between just 60 and 80 matches). However, as



(a) Robot positions (b) Image pairs (c) Point matches

Figure 7. Mobile active camera calibration: The robot (a) obtaining the images (b), which provided the correspondences (c).

Table 1. Calibrations from a mobile active camera platform.

Constraints Percentage error
Focal length Aspect ratio P’pal pt

Focal length only 8.2 – –
Fixed p’pal point 7.9 0.6 –

Square pixels 14.5 – 7.3
Zero skew 23.9 30.5 49.1

Table 1 shows, the resulting calibration was still quite accu-
rate, with errors under 10% when the calibration is fully
constrained, or the principal point is fixed. The results for
zero skew were poorer, but it would always be advisable
to apply constraints to standard values in such a restricted
case.

As a final demonstration, the algorithm was applied to
a suitable clip from a commercial film (Figure 8). In this
crane shot, the camera pans, and translates both horizontally
and vertically. From a single pair of images, solving for
focal length only, we obtained a value of 2100 pixels. Using
all the 3D structure (not just the ground plane) from the
whole sequence of 340 images, some commercial software
[1] gave a focal length of 2200 pixels, a difference of just
4.5%.

Using the plane-based linear calibration and the calcu-
lated homography, a rectified view of the ground plane was
generated (see right-hand image of Figure 8), essentially a
scene reconstruction. The annotations marking the paths
show that their edges are now parallel, and something of
the shape that the paths appear to form (a rectangle with
a semicircular arch at the top). Considering the extreme
perspective, this is a good achievement from just two input

Figure 8. (Left) A pair of images from the film “Road Trip”
for which a plane-normal motion, including vertical trans-
lation, was carried out. (Right) The rectified plane follow-
ing calibration. The edges of the pathways are marked to
emphasise the shape recovery. Full size colour images
can be found at www.robots.ox.ac.uk/∼joss/cvpr2003.

images.

3.2.4. Conditioning issues. It might be expected that in
order for the calculation of the IAC to be well-conditioned,
there should be an even spread of circular points around
the centre of the image, which is the approximate centre
of the IAC. This means a good variation in position and
orientation of the scene horizon in the image, ie. a highly
varied camera attitude, particularly cyclorotation.

Cyclorotation of the camera could only be achieved in the
tripod tests, which did produce better results. However the
other experiments show us that this conditioning issue can



be remedied by obtaining a sufficient quantity of high ac-
curacy point matches. In the non-mobile head calibrations,
for instance, the variation in elevation for the best minimal
set was small, as illustrated by Figure 6(b).

4. Summary and Conclusions

In this paper we have described a linear algorithm for cal-
ibration from the ground plane, which can be used whenever
motion along the ground plane, or rotation about a vertical
axis, is possible. It is intended for use wherever camera mo-
tion can be controlled, but the scene itself cannot be easily
manipulated or measured.

Tests have shown the algorithm to be fast, robust, and as
long as the motions are chosen sensibly, accurate even in
the minimal case. It has also been shown that a rotating
camera algorithm, which would normally be the calibration
method of choice for an active camera, is not always suit-
able. Our method can often fill in where the other fails. If it
transpires that the camera is indeed rotating about its centre,
this algorithm still works.

The ground plane, where it contains some texture vari-
ation, is an excellent source of accurate image transfor-
mations. Previous monocular planar calibration algorithms
[16, 20] may well use the ground plane for this reason, but
have no way of determining the necessary information to
initialise their non-linear minimisations. Our algorithm pro-
vides a fast, linear result both usable by itself, and as a
means of initialising a more computationally expensive op-
timisation. It also applies to a variety of other common real
world situations, such as a fixed camera on a moving ve-
hicle (a road car, for instance) when further constraints are
used.
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