
LINEAR AUTOMATON TRANSFORMATIONS

A. NERODE1

Let R be a nonempty set, let N consist of all non-negative rational

integers, and denote by RN the set of all functions on N to R. If R

is a ring, a map M: R"—>P^ is linear if M(rxfx+r2f2)=rx(Mfx)

+r2(Mf2) for rx, r2 in R, fx, f2 in RN. For a finite commutative ring

with unit we determine which linear transformations M: RN—+RN

can be realized by finite automata.

More precisely, let A, B he finite nonempty sets. A map M: AN—>BN

is an automaton transformation if there exists a finite set Q, maps

Mq: A X£>—><2, Mb: A XQ-*B, elements h in B, q in Q such that cor-
responding to each/ in AN there exists an h in QN satisfying

A(0) = q,    h(n + 1) = MQ(f(n), h(n)),    (Mf)(0) = I,

(Mf)(n + 1) = Jf*(f(n), AW).

(In automaton language, .4 is the input alphabet, B is the output

alphabet, Q is the set of states, q is the initial state, I is the initial

output, while Ms(a, q) and MQ(a, q) are respectively the output and

state resulting from input a and state q. For the case that A and B

coincide with the set consisting of 0 and 1, the concept of automaton

transformation is simply a variant of the concept of representable

event of Kleene [l].)

Call a matrix m,,-: NXN—+R eventually doubly-periodic if for some

positive integers Px, P2, pi, p2:

(2) Uij = U(i+Pl)j   for all i > Pi and ally,

(3) u^ = unj+Pi)    for allj > P2 and all i.

Theorem 1. Let R be a finite commutative ring with unit. Then

M: RN—yRN is a linear automaton transformation if and only if there

exists a matrix w,y: NXN-+R such that:

(i) for all j, w0j = 0;

(ii) for f in R» and «^0, (Mf)(n)=un0f(O)+u(n-infW+ ■ ■ ■
+u0nf(n);

(iii) u^ is eventually doubly-periodic.

Define r: R»->RN by (t/)(0)=0, (rf)(n)=f(n-l), w^l. A map

M: RN—>RN is translation invariant if for/ in RN, Mrf = rMf. Call a

sequence u0, ux, ■ ■ ■ eventually periodic if there exist positive integers
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P, p such that un+p = u„ lor n^P, then p is a period.

Corollary. Let R be a finite commutative ring with unit. Then

At: RN-^RN is a linear translation invariant automaton transformation

if and only if there exists an eventually periodic sequence w0 = 0, uu

Ut, ■ • ■ of elements of R such that for f in RN, (Mf)(n)=u0f(n)-\- ■ ■ •

+unf(0).

Consider a linear difference equation

, x Si(n - l)F(n - 1) + ■ • ■ + Sk(n - k)F(n - k)
(4)

= G(n) + Ti(n - \)G(n - 1) + • • • +Tk(n - k)G(n - k),

where Si, ■ ■ • , Sk, T\, • • • , Tk, F, G are functions on the set of

rational integers (positive and negative) to R which vanish for nega-

tive arguments. For fixed Si, ■ ■ ■ , Sk, 7\, • • • , Tk, (4) induces a

linear map M: RN—*RN given by the requirement that whenever

F, G jointly satisfy (4), and / is a member of RN such that f(n) = F(n)

for n^O, then (Mf)(n)=G(n) for «^0.

Theorem 2. Let R be a finite commutative ring with unit. Then

Ai: RN-^RN is a linear automaton transformation if and only if induced

by a linear difference equation (4) with Si, ■ ■ ■ , Sk, 7\, • • • , Tk

eventually periodic for «3:0.

Corollary. Let R be a finite commutative ring with unit. Then

M: RN—*RN is a translation invariant linear automaton transformation

if and only if induced by a linear difference equation (4) with Si, • • • ,

Sk, Tu • ■ ■ , Tk constant for w^O.

We will need three lemmas to prove Theorems 1 and 2.

Lemma 1. Let R be a finite commutative ring with unit. Endow R

with the discrete, RN with the product topology. Then L: RN—>R is

linear and continuous if and only if there exists a finite sequence

W0, ■ ■ ■ , Wmof elements of R such that for fin RN,Lf=W0f(0) + ■ ■ ■

+ Wmf(m).

Proof. It is an easy consequence of the compactness of RN and the

continuity of L that there exists an m such that Lfi = Lf2 whenever

fi, ft are in RN and agree for n^m. If we put dk(n) = l or 0 as n = k

or not, then we may take Wk=L5k lor k^m.

Call M: A»->BN causal if: for/i, ft in AN, (Mfi)(0) = (AIf2)(0);
lor fu ft in AN and k>0, if fi(n)=f2(n) for n<k, then (Mfi)(k)

= (Mf2)(k). Denote by a(A) the set of finite sequences (x0, ■ • • , *y)

consisting of elements from a finite set A. Call two such sequences
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(x0, • • • , xf), (y0, • • • , yk) state-equivalent (relative to M) if for any

/ in AN, (Mfi)(n+j+l) = (Mf2)(n+k + l) for all «^0, where/i, f2
are chosen satisfying: fx(n) =xn for 0^n<j, fx(n) =f(n—j) for n^j,

f2(n) =yn for 0^n<k, f2(n) =f(n — k) for n^k. (Note that the state-

equivalence of two sequences does not depend on the last member of

either.) Define an intrinsic state for M to be an equivalence class

under state-equivalence.

Lemma 2. Let A, B be finite nonempty sets. Then M: AN^>BN is an

automaton transformation if and only if M is causal and M possesses

only a finite number of intrinsic states. Further, the least number of

states required in order to induce M as in (1) is the number of intrinsic

states.

Proof. Suppose that M is an automaton transformation. Then M

is certainly causal due to (1). We show that M possesses no more in-

trinsic states than the number of elements of Q. If X = (x0> • • • , xf)

is in a(A), define qx to be the h(j) determined from (1) by letting

f(n) =x„ for all n<j. Then X, Y in <r(A) are state-equivalent when-

ever qx = qr-

Conversely, if M is causal and possesses only a finite set Q of in-

trinsic states, define 5, q, MB, Mq as follows.

(i) Let I = (Mf)(0) for any/ in AN.
(ii) Let q be the intrinsic state of any finite sequence of length 1.

(iii) Let Mg(a, qi)=q2 if for some X in qu Y in q2, we have

X = (x0, • • • , xf), Y=(y0, ■ ■ ■ , yj+i), xn=yn for all n<j, y, = a. Let

MB(a, qi) = (Mf)(j+1) if / is a member of AN such that/(w) =yn for

n^j.

Lemma 3. If Sx, ■ ■ ■ , Sk, Tx, ■ • • , Tk are eventually periodic for

«^0, then (4) induces a linear automaton transformation.

Proof. We wish to apply Lemma 2; it suffices to show that M

has only a finite number of intrinsic states, since any M induced by

Equation (4) is causal. Let pi, pi be periods for Si, P;, i= 1, • • • , k.

Then for nx sufficiently large, the intrinsic state of a finite sequence

(x0, ■ ■ ■ , xn+x) is determined for «^«i by F(n — 1), • • • , F(n—k),

G(n — V), ■ • • , G(n — k), n mod pu • • ■ , n mod pk, n mod pi , • • • ,

n mod pi. Thus for n^ni, finite sequences fall into at most z2kpi

• • ■ ptpi • • • pi distinct intrinsic states, where s is the number of

elements of R. Thus M has altogether only a finite number of in-

trinsic states.

We now prove Theorems 1 and 2. If iW is a linear automaton trans-

formation,   then  for  each   m^O,   the  map  Ln:  RN—>R  given  by
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L„f=(Mf)(n) is linear and continuous. Thus Lemma 1 applies and

there exists a matrix Wnk: NXN—+R such that for each »§0 we

can find an w^O satisfying (Mf)(n) = WnBf(0)+ ■ ■ ■ +Wnmf(m), for

all / in R^. Causality implies Wnk = 0 for k ^ n. Setting My = W^m

we need only verify (2) and (3) to satisfy Theorem 1.

(5) Suppose that M: AN—*BN is an automaton transformation,

and that/is a member of AN such that/(0),/(l),/(2), • • • is even-

tually periodic. Then (Mf)(0), (Mf)(l), (Mf)(2), ■ • • is eventually
periodic. Moreover, if qn is the intrinsic state of (/(0), • • • , /(«)),

then q0, qi, q2, ■ ■ •   is eventually periodic.

We employ (5) to prove (2) and (3). Since the &th column of My

consists of the entries 0, (M8k)(k + l), (M8k)(k+2), (M8k)(k+3), ■ ■ ■

it follows that this column is completely determined by the intrinsic

state of a fe-term sequence consisting of k — l zero entries followed

by a one. Since this sequence has the same intrinsic state as a &-term

sequence consisting of zeros, (5) applies to show that this intrinsic

state is an eventually periodic function of k, and hence proves (3).

With this done, (2) is easy since it now suffices to show that the

jfeth column is itself eventually periodic. But (5) applied to M8k

yields this.

Conversely, suppose that M is defined by a matrix My satisfying

(i), (ii), (iii) of Theorem 1. Define functions £7,- by Ui(j)=ua lor

/^O, U,(j) =0 for j<0. Then the following linear difference equation

induces M when recast in form (4). (In the notation of (2), put

k=Pi+Pi.)

Ui(n - l)F(n - 1) + • • • + Uk(n - k)F(n - k)

- Ui(n -pi- l)F(n - pi - 1) - • ■ • - UPi(n - k)F(n - k)

= G(n) - G(n - pi).

By (3), Ui, • ■ ■ , Uk are eventually periodic for w^O; hence by

Lemma 3, M is an automaton transformation. This proves both

Theorem 1 and Theorem 2.
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