LINEAR AUTOMATON TRANSFORMATIONS
A. NERODE!

Let R be a nonempty set, let NV consist of all non-negative rational
integers, and denote by RY the set of all functions on N to R. If R
is a ring, a map M: R¥—RYN is linear if M(rifi+rofs) =ri(Mf1)
+ro(Mfy) for 71, 72 in R, fi, fo in RY. For a finite commutative ring
with unit we determine which linear transformations M: R¥—RV
can be realized by finite automata.

More precisely, let A, B be finite nonempty sets. A map M: A¥—B¥
is an automaton transformation if there exists a finite set Q, maps
Mq: AXQ—Q, Mp: A XQ—B, elements b in B, § in Q such that cor-
responding to each fin A% there exists an % in Q¥ satisfying

R0) =4, h(n+ 1) = Mo(f(n), h(n)), (Mf)(0) =35,
(Mf)(n + 1) = Mp(f(n), h(n)).

(In automaton language, 4 is the input alphabet, B is the output
alphabet, Q is the set of states, ¢ is the initial state, b is the initial
output, while M (e, ¢) and Mg(a, q) are respectively the output and
state resulting from input ¢ and state ¢q. For the case that 4 and B
coincide with the set consisting of 0 and 1, the concept of automaton
transformation is simply a variant of the concept of representable
event of Kleene [1].)

Call a matrix u;;: NXN—R eventually doubly-periodic if for some
positive integers Pi, P2, p1, pa:

(1)

(2) Uij = U(itp)i for all 7 > P, and all j,
(3) Uij = Ui(i+py) for all] > Py and all 4.

THEOREM 1. Let R be a finite commutative ring with unit. Then
M: R¥—RYN is a linear automaton transformation if and only if there
exists a matrix u;;: NX N—R such that:

(i) for all j, up;=0;

(ii) for f in RY and n=0, (Mf)(n)=tnof(0) +uu_syf(1)+ - - -
Fuonf(n);

(iii) us; is eventually doubly-periodic.

Define 7: R¥—R¥ by (rf)(0) =0, (7f)(n) =f(n—1), n=1. A map
M: R¥N—RN is translation invariant if for f in RN, Mrf=rMf. Call a
sequence uo, t, - - - eventually periodic if there exist positive integers
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P, p such that u,,,=u, for n= P, then p is a period.

COROLLARY. Let R be a finite commutative ring with unit. Then
M: RN—RN is a linear translation invariant automaton transformation
if and only if there exists an eventually periodic sequence uo=0, uy,
Us, - - - of elements of R such that for f in RY, (Mf)(n) =uef(n)+ - - -
+u,f(0).

Consider a linear difference equation
@ Sin —DFn—1)+ -+ Si(n — B)F(n — k)
=Gn) + T1(n — DHGn — 1)+ - - - +Ti(n — B)G(n — k),

where Sy, - -+, Sy, T, - - -, Tk, F, G are functions on the set of
rational integers (positive and negative) to R which vanish for nega-
tive arguments. For fixed Sy, - -+, Sy, T3, -+ -, Tk (4) induces a
linear map M: R¥—RY given by the requirement that whenever
F, G jointly satisfy (4), and f is a member of R¥ such that f(n) = F(n)
for n=0, then (Mf)(n)=G(n) for n=0.

THEOREM 2. Let R be a finite commutative ring with unit. Then
M : R¥—RY is a linear automaton transformation if and only if induced
by a linear difference equation (4) with Sy, - -+, Se, T4, -+, Tk
eventually periodic for n = 0.

COROLLARY. Let R be a finite commutative ring with unit. Then
M: RN—RN is a translation invariant linear automaton transformation
if and only if induced by a linear difference equation (4) with Sy, - - -,
Sk, Th, - + -, Tk constant for n=0.

We will need three lemmas to prove Theorems 1 and 2.

LEMMA 1. Let R be a finite commutative ring with unit. Endow R
with the discrete, RY with the product topology. Then L: RV—R is
linear and continuous if and only if there exists a finite sequence
W, -+ -, Wa of elements of R such that for f in R¥, Lf = Wof(0)+ - - -
+ Waf(m).

Proor. It is an easy consequence of the compactness of RY and the
continuity of L that there exists an m such that Lf;=Lf, whenever
fi, f2 are in RY and agree for n<m. If we put &(n)=1or 0 as n==%k
or not, then we may take Wy =L, for k<m.

Call M: A¥N—BV¥ causal if: for fi, fo in A¥, (Mf1)(0) = (Mf2)(0);
for fi, f» in A¥ and k>0, if fi(n) =fu(n) for n<k, then (Ifr)(k)
= (Mf.) (k). Denote by ¢(A4) the set of finite sequences (xo, * * -, %;)
consisting of elements from a finite set 4. Call two such sequences
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(%0, + + +» %), (Yo, * + -, V&) state-equivalent (relative to M) if for any
fin A¥, (Mf)(n+j+1)=(Mf)(n+k+1) for all #=0, where fi, fo
are chosen satisfying: fi(n) =x, for 0=n<j, fi(n) =f(n—j) for n=j,
fo(n) =y, for 0=n <k, fa(n) =f(n—Fk) for n=k. (Note that the state-
equivalence of two sequences does not depend on the last member of
either.) Define an intrinsic state for M to be an equivalence class
under state-equivalence.

LEMMA 2. Let A, B be finite nonempty sets. Then M: AN—BY is an
automaton transformation if and only if M is causal and M possesses
only a finite number of intrinsic states. Further, the least number of
states required in order to induce M as in (1) is the number of intrinsic
States.

Proor. Suppose that M is an automaton transformation. Then M
is certainly causal due to (1). We show that M possesses no more in-
trinsic states than the number of elements of Q. If X =(x,, -+ -, x;)
is in 0(4), define gx to be the A(j) determined from (1) by letting
f(n) =x, for all <j. Then X, Y in 6(4) are state-equivalent when-
ever gx =gqy.

Conversely, if M is causal and possesses only a finite set Q of in-
trinsic states, define b, §, Mz, Mg as follows.

(i) Let 5= (Mf)(0) for any fin A¥.

(ii) Let ¢ be the intrinsic state of any finite sequence of length 1.

(iii) Let Mgq(a, ¢1)=¢. if for some X in ¢, Y in ¢, we have

X=(xo, -+, %), Y=, - - =, ¥i41), Xn =2 for all n<j, y;=a. Let
Mg(a, ¢1) = (Mf)(F+1) if f is a member of A¥ such that f(n) =y, for
n=j.

LemMa 3. If Sy, - -+, Sk, Th, - - -, Ty are eventually periodic for

n=0, then (4) induces a linear automaton transformation.

Proor. We wish to apply Lemma 2; it suffices to show that M
has only a finite number of intrinsic states, since any M induced by
Equation (4) is causal. Let p;, p! be periods for S;, T, 1=1, - - - , k.
Then for n, sufficiently large, the intrinsic state of a finite sequence
(%0, + + +, %Xny1) is determined for n=n, by F(n—1), - - -, F(n—k),
Gn—1),---,G(n—k), nmod py, - - -, n mod pr, » mod p{, - - -,
n mod p{. Thus for n=n,, finite sequences fall into at most z%p,

<« - ppl - - - p! distinct intrinsic states, where z is the number of
elements of R. Thus M has altogether only a finite number of in-
trinsic states.

We now prove Theorems 1 and 2. If M is a linear automaton trans-
formation, then for each #=0, the map L,: RV—R given by
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L,f=(Mf)(n) is linear and continuous. Thus Lemma 1 applies and
there exists a matrix Wy: NXN—R such that for each =0 we
can find an m =0 satisfying (Mf)(n) = Waof(0)+ - - + 4 Wanf(m), for
all f in R¥. Causality implies W, =0 for k=n. Setting u:;;= Wypj
we need only verify (2) and (3) to satisfy Theorem 1.

(5) Suppose that M:A¥—B¥ is an automaton transformation,

and that f is a member of A¥ such that f(0), f(1), f(2), - - - is even-
tually periodic. Then (3f)(0), (Mf)(1), (Mf)(2), - - - is eventually
periodic. Moreover, if ¢ is the intrinsic state of (f(0), - - -, f(n)),
then qo, ¢1, ¢2, - - + is eventually periodic.

We employ (5) to prove (2) and (3). Since the kth column of u;;
consists of the entries 0, (Md;)(k+1), (Mdx)(E+2), (Mdx)(k+3), - - -
it follows that this column is completely determined by the intrinsic
state of a k-term sequence consisting of k—1 zero entries followed
by a one. Since this sequence has the same intrinsic state as a k-term
sequence consisting of zeros, (5) applies to show that this intrinsic
state is an eventually periodic function of %, and hence proves (3).

With this done, (2) is easy since it now suffices to show that the
kth column is itself eventually periodic. But (5) applied to Md:
yields this.

Conversely, suppose that M is defined by a matrix u;; satisfying
(i), (ii), (iii) of Theorem 1. Define functions U; by Ui(j) =ui; for
j=0, Ui(j) =0 for <0. Then the following linear difference equation
induces M when recast in form (4). (In the notation of (2), put

k=p+P1)

Uiln — )F(n = 1) + - - - + Un(n — k)F(n — k)
—Uiln—pr—DF(n—pr— 1) — - - - = Up(n— B)F(n — k)
= G(n) — G(n — p1).

By (3), Uy, - - -, Ui are eventually periodic for »20; hence by

Lemma 3, M is an automaton transformation. This proves both
Theorem 1 and Theorem 2.
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