
Linear bounded automata and rewrite systems :
Influence of initial configurations on decision properties 1

A-C Caron
Univel~it6 de Lille-Ftanch'es-Artois

LIFL (URA 369-CNRS) UFR IEEA, Batiment M3
59655 Villeneuve d'Ascq Cedex France

mail: caronc@lift.lift.fr

Abstract
We prove that termination is undecidable for non-length-increashlg string rewriting systems,

using linear-bounded automala. On the other hand, we prove the undecidability of confluence for terminating
rewriting systems when temas begin by a fixed symbol. These two results illustrate that sometimes restriction of
problem to recognizable donaains modify decidability properties, sometimes it does not. (We only consider finite
terms).

Introduction

With two problems, we prove the influence of initial configurations on rewliting
decision properties. The first problem concerns termination, and the second, confluence.

Tel~aination problems are fundamental in rewliting because they COl:espond to
program termination for all data [Dershowitz & Jouannaud]. Many te l~nat ion criteria have
been studied [Dershowitz] but, generally, termination is undecidable, even for one left-linear
rule [Dauchet] or for a semi-Thue system [Huet & Lankford]. Termination problems for one lin-
eal'-:aale or one 1"ale on words remain open. But in this last case, if the rule is non-length-increas-
ing, termination is clearly decidable.

Here, we prove undecidability of termination of non-length-increasing slaf~g re-
writing systems (i.e. non-length-increasing semi-Thue systems). This problem is similar to lin-
eea'-bounded automata termination [Book] and has been stated in the case of graphs by Litovsky
and Metivier [Litovsky & Metivier]. Therefore we revisit a paper of Hooper [Hooper], in which
he studied tel~nination of Tutng machines and proved that termination is undecidable for linear-
bounded automata, and mo:~ generally, for Tu:Sng machines. Using technics suggested by
Hooper, we prove dh'ectly undecidability of termination for non-length-increasing string rewrit-
ing systems.

In a first part, we consta'uct a class of linear bounded automata whose termination
is reduced to the Post con'espondance problem. This result is well-known but we use our
construction in the second pro% and obselwe that undecidability subsists if we suppress the
constraint of beginning from an initial configuration. In the thh'd pal% we want to bring a fact
out: the link between decidability and recognizable restaSctions on terms. Recognizable
resla-iction means that terms belong to a recognizable language. Therefore, in opposition to this

1. This work was supported by PRC "Mathtmatiques et informafique" and ESPRI'I2 Working Group AS-
MICS

75

lh'st result, we prove that confluence for terminating rewriting systems becomes undecidable if
we resta'ict terms configuration to some recognizable set. (It is well-known that confluence is
decidable for noetherian rewriting systems [Newman]). Confluence on recognizable ~ee
languages is interesting because these languages are sorts (the finite automaton being the
signature). Note that Otto proves that confluence on some congraence class is undecidable
[Otto] but congruence classes are generally not recognizable.

I - T e r m i n a t i o n o f l i n e a r - b o u n d e d a u t o m a t a

Linear-bounded automata have been created by Myhill [Myhill] and very studied since
[Kuroda]. In pm~icular, Hooper studied the undecidability of termination of Turing machine and
linear-bounded automata [Hooper]. He called this problem immortality problem. Moreovel;
Hopcroft and Ullman showed that to evely linear-bounded automaton, we can associate an
equivalent terminating line,'u'-bounded automaton [Hopcroft & Ullman].
In this part, we prove dft'ectly the undecidability of termination for a class of lineea'-bounded
automata which restore theft" initial configuration when they do not stop, using a suitable
construction for the more general result of the second part.

Defini t ion 1-1 : A machine terminates if and only if it stops for all data.

Defini t ion 1-2 : A linear-bounded automaton (LBA) can be seen as a particulm" Tul"ing

machine. Its tape is an input/output tape whose length is linemly dependent of data length. A

LBA is a sextuple (E,F,Q,Qo,Qf, A), where E is the data alphabet, F the work alphabet, Q is the

states set, Q0 the initial states set, Qfthe final states set, A is the next-move function. We suppose

that the tape has the form #<d>#, where #,<,> are never modified and d is the data.

Vocabulary : We use Turing machines notions : instantaneous description, initial
configuration, computation step, computation,. More precisely :

- an instantaneous desoSption (denoted ID) is a writing #<mlqam2>#. It means that the head is
reading the letter a, the word m 1 is on the left and m 2 is on the fight, and q is the machine state.
- an initial configuration is an instantaneous description #<qm># where q is an initial state.
- a step computation ID 1 ~ ID 2 means we can go from ID 1 to ID 2 with a transition of A.
- a computation is a succession of computation steps from an initial configuration ID 1 to a final
configuration IDf.

We ,'u'e not interested in the result but in the computation stop. Therefo~e, final configuration is
not important. But we need two notions : beginning of computation and sub-computation :
- a beginning of computation is a succession of computation steps, from an initial configuration
ID 1

- ID i --~ ... --9 ID n is a sub-computation if there exists ID 1 --~ ... --~ ID i ~ ... --~ ID n a beginning
of computation which contains it.

Proposit ion 1-1 : [t-looper] Termination of linear-bounded automata is undecidable.

76

Pos t co r re spondanee p r o b l e m : [Post]
The Post correspondance problem P(q),V) over an alphabet X is given by two morphisms qo and
V from I* to X*. P(qo,v) is solvable if and only if there exists m I in I + such that tP(mi) = v (mi) .
The Post corl"espondance problem is well-known undecidable.

We m-e working on a specific class of deterministic LBA, denoted Apost, associated to the Post
problem. A machine Aq0~ of this class is associated to two morphisms q0 and V . I f the tape of
A~pV contains two words m I and m x, such that m X = q0(mI) = xg(mi) then the machine loops
passing by its initial configuration again.

Definition 1-3 : Apost is a set of LBA associated to the Post problem.
Apost = (A~o~ = (2,F, Qg~, (qo },O,A) [qo and V two morphisms from I* to X* }, with
• E = I u X u {<,>}, I and X two disjoint finite alphabets.
. P = E u I u X, X and I constructed f rom X and I: for all x in X, x is in X and for all i in I, ~ is in i.
• Q~pv is the set of the states of the automaton A~p~.
Appendix I contains in details the hehaviour fonction A of Aq0~. The following little program
and the two examples explain the behaviour of a machine Aq0~

lh'ogram Atp~ ;
* The data is a word with letter of I and X, The head is on the first letter *
stop := false ;
while not stop do

* sem'ch for the letter of I the most on the fight *
* I(Head) means that the head reads a letter of I *
while I(Head) do move := fight ; od
* we velify that m = in...i2ilXlX2...x m with tP(ili2...in) = XlX2...Xm *
while not (alloverlined(tape) or stop) do

i := Head ; ovefline(Head) ;
* we seea'ch for the first non ovedined letter of X, on the right *
while Ioverlined(Head) do move := fight ; od
while Xoverlined(Head) do move := right ; od
* now the tape has the f o l ~ in...ij[j_l...ilXl...Xk_lXk...x m *
* we verify that Xk...Xk+ p = (p(ij) and if it is mae, we overline x k...Xk+ p *
l"eseea'chg(i) ;
* stop = True if 90) is not on the right hand-side *
* we now search for the first non overlined letter of I, on the left *
while Xoverlined(Head) do move := left ; od
while Ioveflined(Head) do move := left ; od

od
* we do exactly the same thing with ~ *
while not (alloverlined(tape) o1" stop) do

. . o

od
od

end

77

Example 1:
I = {a,b} ; X = {1,2,3} ;
cp(a) = 123 ; tp(b) = 32 ; v(a) = 23 ; gr(b) = 321.
- The tape contains the data ab32123. So the initial configuration is #<q0ab32123>#
- The machine searches for the last non overlined letter of I. It is b.
The configuration is now #<aq2b32123>#.
- The machine overlines b. The configuration is #<abqq~(b)132123>#
- The machine vel~fies that 3 is the first letter of q0(b). Since it is Wae, it overlines the letter 1.
The configuration is #<ab--Jqq~(b)22123>#.
- It verifies that 2 is the second letter of q0(b) and overlines it. Since cp(b) contains only two let-
ters, the machine searches for the non overlined letter of I the most on the right. It is a.
The configuration is now #<qretab32123>#.
- The machine overlines a. The configuration is #<~q~o(a)lb32123>#.
- It searches for the first non overlined letter of X. It is 1.
The configuration is #<ab32qq~(a) 1123>#.

- It verifies that 1 is the first letter of q0(a). Since it is ta'ue, it overlines it.
The configuration is #<ab321qq~(a)223>#.
- In the same way, the automaton overlines 2 and 3, the second and the third lettel~ of cp(a).
The configuration is #qret<ab32123>#
- There is no more non overlined letter of I. So the automaton replaces the overlined letters by
the same non overlined letters, verifying that all the data is overlined.
The configuration is #<ab32123qreset>#.
- The head goes to the letter of I the most on the fight. It is b.
The configuration is #<aqagainb32123>#
- As before, the machine overlines b and searches for the image of b by V. It is 321.
The configuration is #<aq~et b32123>#
- The machine overlines a and searches for the image of a by ~. It is 23.
The configu17ttion is now # q'ret <ab32123>#
- There is no more letter of I non overlined. So the automaton replaces the overlined letters by
the same non overlined letters, verifying that all the tape is overlined.
The configuration is #<ab32123t~set >#

- Now, the machine has verified that the data had the form #<~am'># with q0(m) = ag(m) = m'.
represents the milTor of the word m.

- The initial configuration is restored when the Post colTespondance problem P(q0,V) is satisfied.
The configuration is #<q0ab32123>#.

Example 2:
The tape contains the word a132. The initial configuration is #<q0a132>#
- The machine overlines a. The configuration is #<~q~o(a)1132>.#
- It vel~fies that 1 is the first letter of qo(a) and overlines it.
The configuration is now #<,a-]'q~o(a)232>#

- It vefifies that 3 is the second letter of qo(a). Since it is false, the machine stops.

Definition 1-4 : An initial configuration is proper if and only if it has the form #<q0~imx>#
(the mhTor image of m I is represented by ~I)- with m X word in X*, m I word in I +, q0 initial
state of the machine.

78

L e m m a 1-1 :
For all machines o f the class Apost, if the initial configuration is not proper then the machine
stops.

Proof: Using the definition of the machine.

L e m m a 1-2 :
For all machines in Aeost starting fi'om a proper initial configuration #<qornlmx>#,
machine loops passin.g by its initial configuration again if and only if m X = (P(ml) = ~(ml).

the

Proof: From the definition of the machine. []

We get as corollaE¢ of these lemmas the next proposition.
Propos i t ion 1-2:
(1) Termination in undecidable for the class Al, os t
(2) I f an automaton A q ~ loops for a data d then it passes by its initial configuration again.

Proof:
(1) According to lemmas t-1 and 1-2, Aq0~ loops if and only if m X = ~P(mI) = ~(mI). But it is
not decidable wether cP(mi) = ~(mi) (Post conespondance problem). Therefore, termination of
the class Apost is undecidable.
(2) From lemma 1-2, if the machine loops then it passes by its initial configuration again. Ll

L e m m a 1-3 :
I f there exists a computation which loops f i rm some configuration (not necessarily reachable)
then there exists a beginning of computation starting fi'om a proper initial configuration which
loops.

Proof: See appendix II.

I I - T e r m i n a t i o n o f n o n - l e n g t h - i n c r e a s i n g s t r i ng r e w r i t i n g s y s t e m s

We want to prove that termination of non-length-increasing stling rewriting systems is
undecidable.

Definition 2-1 : A non-length-increasing string rewriting system is a system where rules have
the form 1 --~ r with 111 >_ lrl. 1 ~md r air words.

A pal~icular class of non-length-increasing string rewriting systems is the class of length-
pl'eselwing s~ing rewriting systems.
Definition 2-2 : A length-preserw;ng string rewriting system is a system where rules have the
form 1 --9 r with Ill = 11"i . 1 and r are words.

79

We construct a class Rpost of rewriting systems associated to the class Apost of machines studied
before: I and X are the two alphabets considered in paragraph I. X = {#,<,>} u I u X. We
construct I ' and I " from I, X ' and X" fiom X, and Z' , I ;" fi'om Z : Va ~ Z,a' E Z ' et a" ~ Z".
Q is a finite alphabet, disjoint from Z.

From a machine A(pW of the class Apost, we construct the rewriting system R(p'.V.
For all transitions (ql,al) --)A (a2,q2,Ri), for all a,b in 1;, we construct the rule:

a 'q la I "b" --or(a 'a2'q2b"
and for all transitions (ql,ai) --~A (a2,q2,Le), for all a,b in Z, we construct the rule:

a ' b ' q l a l " --~R a'q2b"a2"-
(intuitively, x ' is a letter on the left side of the tape head, and x" a letter on the fight side.)

Rpost is a class of length-preselwing string rewriting systems.

Notation : to simplify, we write A for Aq)~ and R for the associated system Rq0",tr.

"*R is the lxansitive reflexive closure of -')R

L e m m a 2 - 1 :

for all m in (1;' u 1 ; " u Q)*,

- either m ~ (Z' u Q)*.(Z" u Q)*

- or m can be written in one way mlal"Ulbl'm2a2"u2b2'.. .mnan"unbn'mn+l with n>O,

ml ,m 2 ran+ 1 E (1;' t..) Q)*.(Z" u Q)*, ul ,u 2 u n E Q*, a l'',...,an'' E Z", b l ' , . . . ,b n' ~ Z'

Proof: By induction on the length of m. O

C o r o l l a r y 2-1 :

Every word m of(Y: ~) 1;" u Q)* - (1;' u Q)*.(1;" u Q)* can be written in one way wtw2...Wn+ 1
with w i ~ Z'.(Z' ~) Q)*(Z" w Q)*.1;" f o r 1 < i < n+ l ,

and Wl, Wn+ 1 ~ (1;' u Q)*.O 2'' u Q)*.

Proof :

In the decomposition given by lemma 2-1, we suppose w 1 = mla I "u l, w i = bi'mi+lai+ I "ui+ 1 for
1 < i < n+l and Wn+ 1 = bn'mn+ 1 []

Definition 2-3 : Let m be a word of (Z' u Z" u Q)*. We define the signature o f m by
- I f m E (Z' u Q)*.(Z" u Q)* then its signature is the empty set.

- Else, m can be mitten in one way mla l"Ulb l'...mnan''unbn'mn+ 1 and its signature is the set
of occurences of letters ai". An occurence is denoted by the length of the shorted prefix of m
containing this occurence.

We remark that the signature underlines the occurences of letters of Z", the successor of which
is in Z' , without consideration of the states of Q.

Examples :

Z = {a,b,c,d,e,f,g}. m = acfgc. The occurence of the first letter c in m is 2, the occurence of the

80

second letter c in m is 5.

Z = {0,1}, Q={q}
m = 0 ' l ' 0 ' q 0 ' q 0 " 1 " . sign(m) = O

m = 0 ' l ' 0 " q 0 " q 0 ' l ' q 0 ' 0 " 1 ' . sign(m) = {5,11 }.

L e m m a 2-2 :

The size and the signature o f a word m are unchanged when m is reduced with rules o f R.

Proof:

Let m be a word of (Z' u Z" u Q)*.
1st case: m ~ (Z' u Q)*.(Z" u Q)*.

then sign(m) = 0 . We apply on m a rule of R.

a) the role has the form a 'q la l ' ' b ' ' ~ R a ' a 2 ' q 2 b " , a and b some letters o f Z. This rule can be
applied only i f m is written m l a ' q l a l " b " m 2 with m 1 E (Z' u Q)* and m 2 ~ (Z" u Q)*. Then,
applying the rule, we get the word m ' = m l a ' a 2 ' q z b " m 2. Hence Iml = Im'l = [roll + Imzl + 4.
Moreover, m ' E (Z' u Q)*.(Z" u Q)* therefore sign(re') = O = sign(m).

b) the rule has the form a ' b ' q l a l " - ')R a 'q2b"a2" , a and b some letters of Z. This rule can be
applied only if m is written m l a ' b ' q l a l " m 2 with m I E (Z' w Q)* and m 2 E (Z" u Q)*.
Applying this rule, we get the word m ' = m l a ' q 2 b " a 2 " m 2. Hence [ml = Im'] = Im~l + Im2l + 4.
Moreover, m ' E (Z' t3 Q)*.(Z" u Q)* therefore sign(m') = ~ = sign(m).

2nd case: m = mla l ' ' u l b l ' . . .mnan' 'unbn'mn+ 1
We apply one role of R to m. A rule can be applied only on a subword of m in (Z' u Q)*.(Z" u
Q)*. But we have just shown that for m E (Z' u Q)*.(Z" u Q)*, rewriting preserves signature
and size. Hence this result is u'ue for each m in (Z' u Z" u Q)* O

L e m m a 2-3 :

For every word m in (Z' u Z" u Q)*-(Z' ~3 Q)*.(Z" u Q)* written WlW2...Wn+ 1

(m ~ R t) ¢~ (t = tlt2...tn+ 1 such that w i "->R ti , i=l n+l)

Pl'oof :
~) Let in = wlw2...Wn+ 1. We have shown with lemma 2-2 that rules of R can be applied only
on w i. Hence (m ->R t) ~ (t = tlt2...q~+l such that w i ~ R ti , i = 1 n+l)

~) if t = tlt2...tn+ 1 with w i ->R ti (i = 1 n+l) then wlw2...Wn+ t ~ R tlt2--.tn+l.
Therefore m ">R t. O

Definit ion 2-4 :
L e t m a word of form a ' v ' q w " b " with q E Q, v ' ~ Z'*, w" E Z"*, a ' ~ z ' and b" ~ Z" . We
associate to m the configuration of the machine A: C(m) = avqwb.

Remea'k: a and b ,'u'e never read by the machine and mark the end of the tape (instead of #).

L e m m a 2-4 :

m E (Z'+.Q.Z"+), ra ---~R m' ¢~ C(m) --+A C(m').

81

Proof:
~) To the word m, we associate the configuration C(m). The rules of R have the following two
forms:

(rl) a ' q l a l " b " --->R a'a2'q2b", for some a and b in Z.
(1"2) a 'b 'q la 1'' --*R a'q2b"a2", for some a and b in 2.
1st case : rule (1"1).
To apply (rl) on m, m should be of fol~a v ' a ' q l a l "b"w" , v' E 2 '* , w" ~ 2"*. Then C(m) =
vaqlalbW. We know that m -(1"1)--> R m' ¢:, m' = v 'a 'a2 'q2b"w". So C(m') = vaa2q2bw. But
(rl) has been constructed from transition (ql,a) ~ A (a2,q2,D). Hence C(m) ~ A C(m').
2nd case : rule (r2).
To apply (1"2) on m, m should be of form v ' a ' b ' q l a l "w" , v' e 2 '* and w" e 2"* . Then C(m)
= vabqlalW. Since m -(rl)---> R m' ¢:, m' = v 'a 'q2b"a2"w", C(m') = vaq2ba2w. But (1"2) has
been consU~cted from U'ansition (ql,a) ---~A (a2,q2,G)- Hence C(m) "--~A C(m').
~) Suppose that m and m' are such that C(m) --->A C(m'). Transitions of A ale of the following
two forms:

(tl) (ql,al) ~ A (a2,q2,D) -
(t2) (ql,al) ~ A (a2,q2,G).
C(m) = aoqlalt~[3 with 0c,13 c 2 and (r,o3 ~ 2*. On C(m), we can apply (tl) or (t2).
1st case: transition (tl).
To every transition (tl) and for all a,b in 2 we associate the rule (1"1) : a 'qla l ' 'b ' ' --->R a'a2'q2b"-
The word m associated to configuration C(m) is a ' o ' q l a1"o" [3" . The word m' such that C(m)
-(tl)---> A C(m') is cc'o'a2'q2o3"[~". Therefore m' = v 'a 'a2 'q2b"w" supposing v 'a ' = c~'o' and
b"w" = o3"13". Then m = v ' a ' q l a l " b " w " . Hence, m --->R m'.
2nd case : transition (t2).

To eveE¢ transition (t2) and for all a,b in 2 we associate the rule (r2) : a 'b 'qla 1'' --->R a'q2b"a2"-
The word m associated to C(m) is a 'o 'q la l"O"13" (as in first case), m is wlitten
v ' a ' q l a l " b " w " and the word m' such that C(m)-(t2)---> A C(m') is written v 'q2a"a2"b"w".
Since C(m) is a configuration, v' contains at least one letter Therefore we can apply a rule (r2)
and m ~ R m'. O

L e m m a 2-5 :

The machine A does not terminate ~ The rewriting system R does not terminate

Proof : Suppose that the machine A does not terminate, then starting from an initial
configuration C O there exists an infinite computation C O ---~A C1 -~A But for every
configuration C i, there exists a word m i in Z'+.Q.Z ''+ such that C i = C(mi). Hence there exists
m 0, m 1 in Z'+.Q.Z ''+ such that C(m0) -'~A C(ml) -~A According to lemma 2-4, C(m0)
--~A C(ml) "-~A ... ¢:* mo "-*R ml - ") R Therefore R does not terminate.

L e m m a 2-6 :

The rewriting system R does not terminate ~ there exists an infinite subcomputation C 1 "-->A C2

"~A...

Proof: We suppose that R does not terminate.
Hence there exists an infinite derivation m -~R From lemma 2-1, either m ~ (2' u Q)*.(2"

82

k3 Q)*, o1" m is written mla l"Ulb l ' . . .mn+ 1.
t) i f m e (t7 t3 Q)*.(Z" u Q)*
On m, we can apply a rule of R. Therefore m = VlOV 2 with v 1 ~ (I7 u Q)*.Q+ or v 1 ~ Q*, v 2

Q+.(Z" u Q)* o1" v 2 ~ Q*, and o c 2 '+ .Q.E ' '+. To c~ we associate the A configuration : C(o).
We cannot apply a rule on v I and v 2 , so we apply it on a . Hence o --~R According to t emma
2-4, C(o) "->A-.-

2) else m = m l a l ' ' u l b I 'm2a2"u2b 2'...mn+ 1 = WlW2...Wn+ t (lemma 2-2).
From lemma 2-3, m ->R t ¢=~ t = t 1 ...tn+ 1 with wi~l'R t i. Therefore, if the rewriting is infinite, there
exists a w i such that rewriting restricted to w i is infinite. But we know that w i c (E' u Q)* . (2"
~3 Q)*, so we can use the precedent case. O

Theorem 2-1 : Termination of length-preserving string rewriting systems is undecidable.

Proof: It suffices to verify that consmaction which associates a string rewriting system Rcpv to
the linem'-bounded automaton Aq0~r reduces termination problem in class Apost to termination
problem for length-preserving string rewriting systems. For that, we can remm'k that proposition
1-2, l emma 1-3 and t emma 2-6 involve that if Rq0~ does not te l~inate neither do AqW. Indeed,
i f RqW does not terminate, Aq0~ passes by a proper initial configuration again f rom which it
loops.
From L e m m a 2-5 we obtain the converse of the theorem. UI

Corollary 2-2 :
Termination of non-length- increasing string rewriting system is undecidable.

Remark :
Aq W could loop f rom a non-reachable configuration and stopped from every initial
configm'atious. Therefore it could terminate in the machine sense, without assure termination
for Rq0gt. Lemma 1-3 avoids this problem.

III - Undecidabil i ty o f confluence of terminating rewriting systems on qA*

In this section, we want to show that pl"opel~ies for linem'-bounded antomata cannot always be
Ixanslated for non-length-increasing sta'ing rewriting systems. Indeed, for a linem'-bounded
automaton we start f rom an initial configuration, where the tape head is on the left side of the
tape. That should mean, for a rewriting system, that we work on words stm'ting by a special letter
symbolizing initial state of line,'u'-bounded automaton.

Definition 3-1 : [Hueq
A rewriting system is confluent if for all u that reduces to two terms t and t ' there exists v such
that t and t ' reduce to v.

83

Theorem 3-1 : ~ewman]
Confluence is decidable for terminating rewriting systems.

It is well known that confluence and ground confluence (confluence restricted to terms without
vm'iables) are not equivalent. In particulm', ground confluence is undecidable for terminating
term rewriting systems. Confluence implies ground confluence but the converse is false.
Nevel~heless, the following identification lemma shows that we can identify confluence of any
semi-Thue system S with both confluence and ground confluence of the COlTesponding term
rewriting system S'.

Identif ication i e m m a :
Let S be a semi-Thue system over a (non ranked) alphabet Z. We associate to S the term rewrit-
ing system S" over the ranked alphabet Y,' = {a(x) / x c Z) u {$}. ($ is a constant).
S' = (l (x) ~ r(x) / l ~ r e S)

Then t "r S u ¢~ t(x) ~S' u(x) ¢~ t($) ~S" u($)

proof: obvious El

As a corollm~¢, confluence of S, confluence and ground confluence of S' coincide.
From now, we use this identification and work only in the word case. We describe in this para-
graph a terminating rewriting system. This system is not confluent on words of A* and its con-
fluence is undecidable on qA*, q a fixed symbol of A.

Let Aq0~ be a machine of class Apost studied in p m I. We associate to this machine an alphabet:
A = Qq0wu X w {q, qyes, Y, N}. We modify the machine Aqw. We remote the last transitions
which make the machine loop. Therefore, if the data has the form ~lm' with m' = q~(m) = N(m),
the machine goes to the configuration #qend<r~-a'># and stops.
To this new automaton, we associate a rewrite system R1. It contains all the roles simulating the
transitions of the machine: A n'ansition of form (q,a) ---~Aqog (b,q',Le) is associated to the role
hqa --~R1 q'hb, a, b, h in A and q, q' in Qqw; A transition of form (q,a) --~A(p~t (b,q',Ri) is asso-
ciated to the rule qa --~R1 bq', a, b, in A and q, q' in Qq0~.
Moreovel; RI contains the rules:

qend < --~R1 qyes
V a E A-{#} qyes a --~RI qyes
qyes # --')R1 Y

q --~R1 <q0

We consider now this rewriting system R2:
V f ~ A- {Y, N}, f---)R2 N
Va e A, Y a ~ R 2 N
V a E A, Na --)R2 N

R is the system constituted by the roles of R1 and R2. R is te17ninating.

L e m m a 3-1 :

m ~ I+,m" e X*, qmm'># -~R Y i fandon ly ifq)(m) = ~(m) = m'.

84

(we denote fh the mirror image of m)

eFoof :

~) if 9(m) = v (m) = m ' then according to peat I, the machine Aq0V, f rom an initial configuration
#<q0in...ilxl...Xp># goes to the instantaneous description #qend<in...ilXl...Xp># with m = il...i n
and m ' = Xl...x p . Hence with R we can go from the word qin...ilxi...Xp># to the word
<q0in...ilXl...Xp># and to qend<in.-.ilxt...Xp>#. Applying the rule qend< -'~RI qyes we get
qyesin...ilXl...Xp>#. Applying several times lalles of form qyes a "-->R1 qyes we get the word qyes #.
Finally with the rule qyes # "-'->R1 Y we get the word Y.
~) we suppose that qfftm'># -~R Y with m = il...i n and m ' = x 1...xp.
m and m ' do not contain Y neither qyes neither any state of Q(P~F. There is only one manner to
get Y: using the rule qyes # ---)R1 Y, Moreover, the only manner to get qyes is to apply the rule
qend < --~R1 qyes. To generate qend, we have applied rules simulating Aq0~. qin...ilXl...Xp># "->R
<q0in.-.ilx 1--.Xp ># "+R qend<in---ilXl--.Xp >#.
But, we have seen in paragraph I that # <q0in...ilXl...Xp># -->A #qend<in-.-il Xl--.Xp ># if and only
if cP(il...in) = ag(il...in) = Xl...x p. []

D e f i n i t i o n 3 - 2 :

A word w is a normal form if there exists no word v with w --->R ¥.
A word w has a normal form if w ~ R v for some nolTnal form v.
The set of normal forms of a word m (called in'educible forms) is denoted by IRR(m).

L e m m a 3 - 2 :

For all u in A + - (Y}, N is in IRR(u).

Proof:
- if u does not start by N neither by Y . Then applying the rule f --')R2 N and possibly the rules
of form Na "-)R2 N we obtain the reduction u "*R N. So N is in IRR(u).
- i f u stal~s by N : u = N.w
I f w = 8 then u = N and so u is in'educible. Hence N is in IRR(u). Else we apply several times
rules Na -')R2 N and we get N in IRR(u).
- if u stm'ts by Y : u = Y.w with w ~ ~. Hence we can apply a rule Ya --->R2 N and possibly rules
Na -'->R2 N. Therefore N is in IRR(u). El

L e m m a 3 - 3 :

V m ~ A*, IRR(m) c (Y,N,8). V m ~ A +, IRR(m) c {Y,N)

Proof"
Suppose that there exists u E IRR(m), u ~ {Y,N,8>. Then, from lemma 3-2, u can be reduced to
N. So u is not a no i~a l form. MoreoveI, it is obvious that a c IRR(m) if,and onIy if m = ~. []

L e m m a 3-4 :
Let qw be a word in qA*.
I f qw has the form qmm'># then
i) IRR(qw) = icY, N} iff (p(m) = ~(m) = m.'

85

ii) IRR(qw) = {N) iff (p(m) ¢ m" or ~(m) ~ m'
Else IRR(qw) = {N).

Proof:
1) qw has the form q~m'>#
i) According to lemma 3-1, q ~ ' > # "--~R Y if and only if qo(m) = ~(m) = m'.
Moreover qrYma'># ~ R N from lemma 3-2. Hence {Y,N} c IRR(qw) if and only if q~(m) =
xV(m) = m'. Lemma 3-3 shows that IRR(qw) = {Y,N } iff ~0(m) ='q(m) = m'.
ii) qo(m) ¢ m' Ol'Xp'(m) ¢m ' ¢:~ Y ~IRR(qw). But qfflm'># --9 R N. Hence IRR(qw) = {N}
2) qw has not the form qn~m'>#. Then qw does not COlrespond to a proper initial configm'ation
of Aq0~r. Hence we apply rules of R without obtain the word qeno<m. Therefore Y ~ IRR(qw).
But qw "--~R N. Hence IRR(qw) = {N}. (3

Theorem 3.2 : q is a fixed symbol o f a finite alphabet A. The following problem is undecidabte.
Instance : R semi-Thue, non-length-increasing, terminating, not confluent.
Question : is R confluent on qA* ?

Proof: According to lemma 3-4, R is divergent on qA* if and only if there exists m such that
q0(m) = v(m). Hence R convergence on qA* is equivalent to Post problem. Consequently it's
undecidable. El

Using the identification lemma, we get the comlleay:
Corollary 3-1 : The following problem is undecidable.
Instance: R a terminating, rewriting system. S a sort.
Question : is R confluent on S ?

Remark: S can be choosen very simple. For example, S is the set of terms of root q.

References

[Book] Personnal communication.

[Dauchet] Max Dauchet
"Simulation of Turing Machines by a left-line,'u" rewrite rule"
Rewriting Techniques and Applications. 3rd intenaational conference, RTA-89
Chapel Hill, North Carolina, USA, April 1989 Proceedings in LNCS 355
N. Dershowitz (Ed.) p 109-120 (1987)

[Dershowitz] Nachum Dershowitz
"Termination of Rewriting" J.Symbolic Computation (1987)3, 69-116

[Dershowitz & Jouannaud] N. Dershowitz and' J.E Jouannaud
"Rewrite systems" Rapport de recherche 478. Unit6 associde au CNRS 410. (1989)

86

[Hooper] Philip K. Hooper
"The undecidability of the Turing machine immortality problem"
J.Symbolic Logic 31 (2) June 1966. (1966)

[Hopcroft & Ullman] J.E. Hopcroft and J.D. Ullman
"Some results on tape-bounded Turing machines"
J.A.C.M. Vol 16 (1), January 1967, pp 168-177.

[Huet] Ggral'd Huet
"Confluent reductions: abstact ptoperties and applications to term rewriting systems"
J.A.C.M. Vo127, (4), October 1980 pp 797-821. (1980)

[Huet & Lankford] G. Huet and D.S. Lankford
"On the uniform halting problem for term rewriting systems", Rapport labofia 283, Instimt de
Recherche en Informatique et en automatique, Le Chesnay, France, Mars 1978. (1978)

[Km'oda] S.-Y. Kumda
"Classes of languages and lineal-bounded automata"
Information and Controle 7, 207-223 (1%4).

[Litovsky & Metivier] Igor Litovsky and Yves Metivier
"Computing with graph rewriting systems with priorities" Rapport interne LaBRI 90-87

[Myhill] J.MyhiU
"Lineal" bounded automata"
WADD Tech. Note No. 60-165, Wright-Patterson Air Force Base, Ohio. (1960)

[Newman] M.H.A. Newman
"On theories with a combinatorial definition of equivalence"

Annals of Mathematics 43 (2), p. 223-243. (1942)

[Otto] Friedfich Otto
"On deciding the confluence of a finite sU'ing-rewriting system on a given congruence class"
J. Comput. System Sciences 35, 285-310 (1987)

[Post] Emil L. Post
"A val'iant of a recursively unsolvable problem".
Bulletin of the American Mathematical Society 52 p 264-268. (1946)

Appendix I : Definition of a machine Aq~

In the ta'ansitions, for i in I, ¢p(i)j represents jrd letter of q~(i),
q~(i) = ¢p(i)l...q~(i)ki. We use the same notation for V: ag(i)j represents jrd letter of ~(i), ag(i) =

87

ag(i) l...~g(i)ri •
Qqo~g = {qo, ql, q2, Cket, qreset, qagain, q)et, C/reset, qend} u {qe(i)j / i e I and qo(i) = (p(i)l...qo(i)k i,
j e [1,ki] if q)(i) # a} u {qq)(i)0 if q0(i) = a} u {qxg(i)j / i e I and ~(i) = ~(i)l..3g(i)r i , j ~ [1,ri] if
v(i) # ~} u {q,q,(i)O if v(i) = ¢}-
• The tape is of form #<m>#, m is a word in (I u X)*. initially, tape head is on the first letter of
m, and machine state is q0-
. A is the next-move function:
A transition (q,a) -~ (b,q',Dir) means that the head reads the letter a, the state of the automaton
is q, and after applying the transition, the letter replacing a is b, the new state is q' and the head
goes to the direction Dir (Ri for figth, Le for left).
Vi,i ' ~ I andV x ~ X,
a) roles of equality velification: m x = q)(mi).
(qo, i) ~ (i, q l , Ri)
(qa, i) --> (i, q l , Ri)
(ql , x) ---> (x, q2, Le)
(q2, i) --~ (i, qjp(i)l, Ri)
(q~p(i)l, ~) -9 (i , q~p(i)l, Ri)
(q~p(i)l, x) --> (x, qcp(i)l, Ri)
(qq~(i)j, qo(i)j) ~ (¢p!!)j, %(i)j+l, Ri)
(qrp(i)ki, q~(i)k_i) ~ (q0(i)ki, qret ,Le)
(qret, x) ~ (x, th.et, Le)
(qret, ~) "-'> (1, qret, Le)
(qret, i) --->(~, qq)(i)t • Ri)
(qret, i) -->(~, q(p(i)0, Le)
(qret, <) --> (<, qreset, Ri)
(q2, i) --~ (l, q!p(i)0, Le)
(qqo(i)0, i') --~ (i ' , qqo(i')l, Ri)
(qqo(i)0, i') --> (l ' , qq)(i')0, Le)
(q(p(i)0, <) --> (<, qreset, Ri)

% research of i on the rigth side

% resea'ch of its image by q) if it is not a.

% we do it again for next i.

% if the image of i by ~p is not
% if the image of i by q~ is

% if the image of i by (p is
% if the image of i' by tp is not
% if the image of i' by q) is

b) rules of tape reset.

(qreset, D --9 (i, qreset, Ri)
(qreset, ~) --') (x, qreset, Ri)
(qreset, >) --~ (>, qrecom, Le)
(qagain, x) --) (x, qagain, Le)

c) rules of
(qagain, i) --~ ([, qgr(i)l, Ri)
(qv(i)l, i) ---) (~_, q~g(i)l, Ri)
(q~(i)l, x) ---> (x, ~) I , Ri)
(q~g(i)j, ~g(i)j) ---) (~r(i)j, q~g(i)j+l, Ri)
(q~g(i)rl-- alr(i)ri 2 ~ (al)'(i)ri, q~et, Le)
(qret , x) ----) (x, q'ret, Le)
(q~et, [) : ' (1, qret, Le)

equality verification : mx=~r(mi).
% if the image of i by gr is not

88

(qret, i) --~ (~, qv(i)l, Ri)
(O~e t , i) ~ 6 , q~lr(i)0, Le)
(6e t , <) --) (<, qreset, Ri)
(qagain, i) ~ (i , qv(i)O, Le)
(q~g(i)O, i') ---) ([' , q~g(i')l, Ri)
(qv(i)O, i') ---) ([' , q~tt(i')O, Le)
(q~l~(i)0, <) ~ (<, qreset, Ri)

% if the image of i by ~r is e

d) rules of restoration of initial configuration

(~eset , i) ---> (i , qreset , Ri)
(qreset, x) ~ (x, t-[reset, Ri)
(q'reset, >) ~ (>, qend, Le)
(qend, x) ~ (x, qend, Le)
(qend, i) --* (i , qend, Le)
(qend, <) ~ (<, qo, Ri)

A p p e n d i x I I : Proof of lemma 1-3

Let IDa configuration such that A~p~ loops from it.
Firs t case: ID is reachable
If ID is reachable, there exists- an initial configuration from which the machine has reached ID.
Therefore, there exists a beginning of computation which loops. The machine A(p~ loops if
andonly if P(q0,ag) is verified. Moreover, when Post property is verified, the machine loops
passing by a proper initial configuration again. Hence there exists a beginning of computation
starting from a proper initial configmation which loops.
Second case: ID is not reachable.
Let's see the dependence graph between states of Aq0gr.

We write Qcp the set of states q~(i)j and Q~r the set of states qv(i)j •
1) machine does not loop in one state, neither in a set Qq0 or Q~.
- For all states of AqW, when the machine applies a transition staying in one state, then the head

89

always goes in the same direction. But the tape is finite, on the fight and on the left. Hence the
machine cannot stay in the same state doing an infinite number of computation steps.
- We consider the set Qq~

We stay in a state q~p(i)j if and only if j=l.
* i f j > 1 then we go to state qcp(i)j+l- Since j has a finite number of possible values, the machine
does a finite number of computation steps staying in Qcp.
* i f j = 0 then we replace a letter of I by a letter of i, staying in a state of Qcp. But no ta'ansition
in a state of Qcp transforms a letter of i to a letter of I.Therefore the number of letter of I on the
tape decreases. Moreover, if there ,-u'e no letter of I on the tape, we cannot apply U'ansition being
in q~(i)0 and staying in a state of Qq~.
Hence, we do a finite number of computation steps, staying in Qq~.
- We can do the same proof for Qtl t.

• 2) The machine does not loop on Qcp and qret
When it passes from Q(p to qret, at least one letter of the tape has been overlined. Moreovel, it
passes from qret to Qcp overlining one letter of the tape. Since there's a finite number of letters
on the tape, there's a finite number of computation steps. We can have the same ,argument for
Q~ and qre t •
3) From 1) and 2) we deduce the machine loops passing by q0, ql, q2, qret, qreset, qagain, q~et,
t~reset, qencl and by the sets Qcp and Q~V. But there is only one way to pass by q0: using the la'an-
sition (qend, <) -'~ (<, q0, D). Therefore, the machine is in an instantaneous description of form
#<q0m># which is, by definition, an initial configm'ation. Finally, according to precedent lem-
mas, if the machine loops from an initial configuration, then it's a proper one. (S!

