Linear bounded automata and rewrite systems :
Influence of initial configurations on decision pmperties1

A-C Caron
Université de Lille-Flandres-Axtois
LIFL (URA 369-CNRS) UFR IEEA, Bitiment M3
59655 Villeneuve d’Ascq Cedex France
mail: caronc@lifl.1ifl.fr

Abstract

We prove that termination is undecidable for non-length-increasing string rewriting systems,
using linear-bounded automata. On the other hand, we prove the undecidability of confluence for terminating
rewriting systems when terms begin by a fixed symbol. These two results illustrate that sometimes restriction of
problem to recognizable domains modify decidability properties, sometimes it does not. (We only consider finite
{erms).

Introduction

With two problems, we prove the influence of initial configurations on rewriting
decision properties. The first problem concerns termination, and the second, confluence.

Termination problems are fundamental in rewriting because they correspond to
program termination for all data [Dershowitz & Jouannaud]. Many termination criteria have
been studied [Dershowitz] but, generally, termination is undecidable, even for one left-linear
rule [Dauchet] or for a semi-Thue system [Huet & Lankford]. Termination problems for one lin-
ear-rule or one rule on words remain open. But in this last case, if the rule is non-length-increas-
ing, termination is clearly decidable.

Here, we prove undecidability of termination of non-length-increasing string re-
writing systems (i.e. non-length-increasing semi-Thue systems). This problem is similar to lin-
ear-bounded automata texmination [Book] and has been stated in the case of graphs by Litovsky
and Metivier [Litovsky & Metivier]. Therefore we revisit a paper of Hooper [Hooper], in which
he studied termination of Turing machines and proved that termination is undecidable for linear-
bounded automata, and more generally, for Turing machines. Using technics suggested by
Hooper, we prove directly undecidability of termination for non-length-increasing string rewrit-
ing systems.

In a first part, we construct a class of linear bounded automata whose termination
is reduced to the Post correspondance problem. This result is well-known but we use our
construction in the second part, and observe that undecidability subsists if we suppress the
constraint of beginning from an initial configuration. In the third part, we want to bring a fact
out: the link between decidability and recognizable restrictions on terms. Recognizable
restriction means that terms belong to a recognizable language. Therefore, in opposition to this

1. This work was supported by PRC “Mathématiques et informatigue” and ESPRIT2 Working Group AS-
MICS

75

first result, we prove that confluence for terminating rewriting systems becomes undecidable if
we restrict terms configuration to some recognizable set. (It is well-known that confluence is
decidable for noetherian rewriting systems [Newman]). Confluence on recognizable tree
languages is interesting because these languages are sorts (the finite automaton being the
signature). Note that Otto proves that confluence on some congruence class is undecidable
[Otto] but congruence classes are generally not recognizable.

I - Termination of linear-bounded automata

Linear-bounded automata have been created by Myhill [Myhill] and very studied since
[Kuroda]. In particular, Hooper studied the undecidability of termination of Turing machine and
linear-bounded automata {Hooper]. He called this problem immortality problem, Moreover,
Hopcroft and Ullman showed that to every linear-bounded automaton, we can associate an
equivalent terminating linear-bounded automaton [Hopcroft & Ullman].

In this part, we prove directly the undecidability of termination for a class of linear-bounded
automata which restore their initial configuration when they do not stop, using a suitable
construction for the more general result of the second part.

Definition 1-1 : A machine rerminates if and only if it stops for all data.

Definition 1-2 : A linear-bounded automaton (LBA) can be seen as a particular Turing
machine. Its tape is an input/output tape whose length is linearly dependent of data length. A
LBA is a sextuple (Z,I,Q,Qq,QpA), where Z is the data alphabet, I the work alphabet, Q is the
states sét, Qg the initial states set, Qr the final states set, A is the next-move function. We suppose
that the tape has the form #<d>#, where #,<,> are never modified and d is the data,

Vocabulary : We use Turing machines notions : instantaneous description, initial
configuration, computation step, computation. More precisely :

- an instantaneous description (denoted ID) is a writing #<m;qam,>#. It means that the head is
reading the letter a, the word my is on the left and my is on the right, and q is the machine state.
- an initial configuration is an instantaneous description #<qm># where q is an initial state.

- a step computation ID; — ID, means we can go from ID; to ID, with a transition of A.

- a computation is a succession of computation steps from an initial configuration ID; to a final
configuration IDy.

We are not interested in the result but in the computation stop. Therefore, final configuration is
not important. But we need two notions : beginning of computation and sub-computation :

- a beginning of computation is a succession of computation steps, from an initial configuration
1Dy

-ID; — ... = IDy is a sub-computation if there exists ID; — ... = ID; — ... — ID, a beginning
of computation which contains it.

Proposition 1-1 : [Hooper] Termination of linear-bounded automata is undecidable.

76

Post correspondance problem : [Post]

The Post correspondance problem P(@,\) over an alphabet X is given by two morphisms ¢ and
Wy from I* to X*. P(,y) is solvable if and only if there exists my in I* such that @(my) = y(my).
The Post correspondance problem is well-known undecidable.

We are working on a specific class of deterministic LBA, denoted Apgg, associated to the Post
problem. A machine AQy of this class is associated to two morphisms ¢ and v . If the tape of
Aq@vy contains two words my and my, such that my = @(my) = Y(my) then the machine loops
passing by its initial configuration again.

Definition 1-3 : Apg, is a set of LBA associated to the Post problem.

Apost = { Aoy = (Z,1,Q0;,{q0 }.,A) | ¢ and y two morphisms from I* to X*}, with
Z=TuXu {>}, Tand X two disjoint finite alphabets.
.I'=xuTuX,X and 1 constructed from X and I: forall x in X, X isin X and foralliinI,iisin L.
. Qo is the set of the states of the automaton Agy.

Appendix I contains in details the behaviour fonction A of Agy. The following little program
and the two examples explain the behaviour of a machine Agy

Program Ay ;
* The data is a word with letter of I and X, The head is on the first letter *
stop := false ;
while not stop do
* search for the letter of I the most on the right *
* I(Head) means that the head reads a letter of I #
while I(Head) do move :=right ; od
* we verify that m = i;...yi1X1Xp.. Xy With @(iqig..45) = X{X.. Xy, *
while not (alloverlined(tape) or stop) do
i:=Head ; overline(Head) ;
* we search for the first non overlined letter of X, on the right *
while Ioverlined(Head) do move :=right ; od
while Xoverlined(Head) do move :=right ; od
* now the tape has the form ip...ij 111X Xpe. 1 XX *
* we verify that Xg...xyp = (i) and if it is true, we overline xy...xp *
research@(i) ;
* stop = True if @(i) is not on the right hand-side *
* we now search for the first non overlined letter of I, on the left *
while Xoverlined(Head) do move :=left ; od
while Ioverlined(Head) do move := left ; od
od
* we do exactly the same thing withy *
while not (alloverlined(tape) or stop) do

od
od
end

77

Example 1.

I={ab}; X={1,23};

o(a) =123 ; @(b) = 32 ; y(a) = 23 ; y(b) = 321.

- The tape contains the data ab32123. So the initial configuration is #<qyab32123>#

- The machine searches for the last non overlined letter of L It is b.

The configuration is now #<aq,b32123>#.

- The machine overlines b. The configuration is #<an(p(b)132123>#

- The machine verifies that 3 is the first letter of @(b). Since it is true, it overlines the letter 1.
The configuration is #<ab3q,y;2123>#.

- It verifies that 2 is the second letter of @(b) and overlines it. Since @(b) contains only two let-
ters, the machine searches for the non overlined letter of I the most on the right. It is a.

The configuration is now #<q,.;ab32123>#.

- The machine ovelines a. The configuration is #<aqgy)b32123>#.

~It searches for the first non overlined letter of X. It is 1.

The configuration is #<ab32q();123>#.

- It verifies that 1 is the first letter of ¢(a). Since it is true, it overlines it.

The configuration is #<ab321q ;)2 23>4.

- In the same way, the automaton overlines 2 and 3, the second and the third letters of ¢(a).
The configuration is #q,<ab32123>#

- There is no more non overlined letter of I. So the automaton replaces the overlined letters by
the same non overlined letters, verifying that all the data is overlined.

The configuration is #<ab32123qece>H.

- The head goes to the letter of I the most on the right. Itisb.

The configuration is #<aqyg,;,b32123>#

- As before, the machine overlines b and searches for the image of b by y. It is 321.

The configuration is #<aqje; b32123>#

- The machine overlines a and searches for the image of a by . It is 23.

The configuration is now # qj <ab32123>#

- There is no more letter of I non overlined. So the automaton replaces the overlined letters by
the same non overlined letters, verifying that all the tape is overlined.

The configuration is #<ab32123 g0 >#

- Now, the machine has verified that the data had the form #<mm’># with ¢(m) = y(m) = m’.
m represents the mirror of the word m.

- The initial configuration is restored when the Post correspondance problem P(,\) is satisfied.
The configuration is #<qgab32123>#.

Example 2:

The tape contains the word al32. The initial configuration is #<qpal132>#

- The machine overlines a. The configuration is #<Eq(p(a)1132:?#

- It verifies that 1 is the first letter of ¢(a) and overlines it.

The configuration is now #<alqg(s)32>#

- It verifies that 3 is the second letter of ¢(a). Since it is false, the machine stops.

Definition 1-4 : An initial configuration is proper if and only if it has the form #<qommy>#
(the mirror image of my is represented by fy). with my word in X*, my word in I*, qq initial
state of the machine.

78

Lemmal-1:
For all machines of the class Apgy,, if the initial configuration is not proper then the machine
stops.

Proof : Using the definition of the machine. O

Lemma 1-2 :
For all machines in Ap,g starting from a proper initial configuration #<qymmy>#, the
machine loops passing by its initial configuration again if and only if my = @(my) = y(mj).

Proof : From the definition of the machine. U

We get as corollary of these lemmas the next proposition.

Proposition 1-2:

(1)} Termination in undecidable for the class Ap g

(2) If an automaton AQY loops for a data d then it passes by its initial configuration again.

Proof :

(1) According to lemmas 1-1 and 1-2, Agy loops if and only if my = @(my) = Y(mp). But it is
not decidable wether ¢(my) = y(my) (Post correspondance problem). Therefore, termination of
the class Ap; is undecidable.

(2) From lemma 1-2, if the machine loops then it passes by its initial configuration again, (d

Lemma 1-3:

If there exists a computation which loops from some configuration (not necessarily reachable)
then there exists a beginning of computation starting from a proper initial configuration which
loops.

Proof : See appendix II.

II - Termination of non-length-increasing string rewriting systems

We want to prove that termination of non-length-increasing string rewriting systems is
undecidable.

Definition 2-1 : A non-length-increasing string rewriting system is a system where rules have
the form 1 — r with [I} 2 [t]. 1 and r are words.

A particular class of non-length-increasing string rewriting systems is the class of length-
preserving string rewriting systems.

Definition 2-2 : A length-preserving string rewriting system is a system where rules have the
form 1 — r with [] = |t|. 1 and r are words.

79

We construct a class Rpgg 0f rewriting systems associated to the class Ap,; of machines studied
before: I and X are the two alphabets considered in paragraph L £ = {#<>} uTu X. We
consttuct " and I from L X and X7 from X, and 27, X7 from Z:Vae ZLa’ € 2 eta” € Z7,
Q is a finite alphabet, disjoint from Z.
From a machine AQy of the class Apgg, We construct the rewriting system Roy.
For all transitions (q,a1) =>4 (a7,q7,Ri), for all a,b in X, we construct the rule:

a’qqa;’b” —g a’ay’qpb”
and for all transitions (qq,a1) =4 (a.q2,1.€), for all a,b in Z, we construct the rule:

a’b’qia;” —ra’qyb’ay”.
(intuitively, X” is a letter on the left side of the tape head, and x” a letter on the right side.)

Rpogt is a class of length-preserving string rewriting systems.
Notation : to simplify, we write A for Agy and R for the associated system Ry
~¥ is the transitive reflexive closure of —p

Lemma 2-1:

forallmin (X OZ” Q)%

-eitherme (U Q.27 v Q)*

- or m can be written in one way mpa;”u;b; myay” uyby’...mua,” uyby' my, ; with n>0,
MM,y 1 € (X7 U QP (Z7 U Q) upuy,...uy € QF, a;” 0, € 27, by b, € T

Proof : By induction on the length of m. [

Corollary 2-1:

Everywordmof (£ X" U Q) - (£ U Q)*.(Z” U Q)* can be written in one way w wy...wy,, 1
withw; € Z'.(Z W Q)¥E” U Q)2LE for 1 <i< n+l,

andwy, wy; € (LU Q) .(Z7 L Q)*.

Proof :
In the decomposition given by lemma 2-1, we suppose wy =mya; "uy, w;= b;’my, 12541 vy, for
I1<i<n+land wy.q =b,’m,, O

Definition 2-3 : Let m be a word of (" W Z” U Q)*. We define the signature of m by

-Ifm e (27U Q*.(2” L Q)* then its signature is the empty set.

- Else, m can be written in one way mya;”u;by’...mya,"u,b, my, 1 and its signature is the set
of occurences of letters a;”. An occurence is denoted by the length of the shorted prefix of m
containing this occurence.

We remark that the signature underlines the occurences of letters of £, the successor of which
is in Z’, without consideration of the states of Q.

Examples :
Z={ab,c.d,e.f,g} . m = acfgc. The occurence of the first letter ¢ in m is 2, the occurence of the

80

second letter ¢ in mis 5.

=401}, Q={q}

m=010q0’q0"”1” . sign(m) = &
m=0'1"0"g0”q0’1’q0’0”1’ . sign(m) = {5,11}.

Lemma 2-2 :
The size and the signature of a word m are unchanged when m is reduced with rules of R.

Proof :

Let m be a word of (" U 27 U Q)*.

Istcase: m € (X7 L QY .(Z” U Q)*.

then sign{m) = &. We apply on m a rule of R.

a) the rule has the form a’qa;”’b” —g a’ay’qeb” , a and b some letters of Z., This rule can be
applied only if m is written mja’qqa; b my with m; € (27U Q)* and my € (£’ U Q)*. Then,
applying the rule, we get the word m’ = mja’ay’qyb”’my. Hence |m| = |m’| = [my| + |my| + 4.
Moreover, m” € (X° v Q)*.(Z” W Q)* therefore sign(m’) = & = sign{m).

b) the rule has the form a’b’qqa;” —g a’qpb”ay”, a and b some letters of Z. This rule can be
applied only if m is written mja’b’qqa;”my with my € (T U Q)* and my € (7 U Q)*.
Applying this rule, we get the word m’ = mja’qob”ay”my. Hence |m| = |m’| = |my] + jmy| + 4.
Moreover, m’ € (Z* U Q)*.(Z” w Q)* therefore sign{m’) = & = sign(in).

2nd case: m = mlal”u1b1’...mnan”unbn’mml

We apply one rule of R to m. A rule can be applied only on a subword of min (Z” U Q)*.(Z” L
Q)*. But we have just shown that form € (27 U Q)*.(Z” U Q)*, rewriting preserves signature
and size. Hence this resultis true foreachmin @ U X" U Q)* U

Lemma 2-3 :
For everywordm in (X" O Z” U QP-(Z 0 Q)*.(Z” v Q)* written wiwy..w,, ;
(m SRt) & (t=titytpyg such that w;=p t;, i=1,..n+1)

Proof :

=) Let m = wywo...wy41. We have shown with lemma 2-2 that rules of R can be applied only
on w;. Hence (m =¥ t) = (t = tty...ty, 1 Such that wy =p t;,i=1,...,0+1)

&) if t=tyty..tyg With wi =og t; (i = 1,...,n+1) then wywo... Wy *PR titg. tye 1.

Therefore m = t. O

Definition 2-4 :
Let m a word of form a’v’qw”b” withq e Q, v’ e Z’*, w” € Z7*, 2’ Z’ and b” € L”. We
associate to m the configuration of the machine A: C(m) = avqwb.

Remark: a and b are never read by the machine and mark the end of the tape (instead of #).

Lemma 24 :
me (202", m—pm & Clm)—4 Clm’).

81

Proof :

=3} To the word m, we associate the configuration C(m). The rules of R have the following two
forms:

(rl) a’qja;’b” —p 2’ay’qrb”, for some a and b in Z.

(12) a’b’qqa;” —g @’qpb "2y, for some a and b in .

Ist case : rule (xr1).

To apply (r1) on m, m should be of form v’a’qqa;”b”w”, v’ € Z’%, w” € £”*. Then C(m) =
vaqiajbw . We know that m -(rl)—p m’ & m’ =v’a’ay'qb”"w”. So C(m’) = vaaygobw . But
(r1) has been constructed from transition {(qq,a) =5 (a,q7,D). Hence C(m) — 5 C(m’).

2nd case : rule (12).

To apply (r2) on m, m should be of form v’a’b’qya;”w”, v’ € Z’* and w” € Z7*, Then C(m)
= vabqqa;w . Since m -(rl)—=g m’ & m’ = v’a’qyb”ay”w”, C(m’) = vaqybayw. But (12) has
been constructed from transition (q;,8) = (32.92,G). Hence C(m) —4 C(m’).

&) Suppose that m and m” are such that C(m) — 5 C(m’). Transitions of A are of the following
two forms:

(t1) (q1,a1) =4 (a2,92.D)-

(12) (qq,al) =4 (29,02,0).

C(m) = aoqia;©f with o.p € Z and 0,0 € Z*. On C(m), we can apply (t1) or (t2).

1st case: transition (t1).

To every transition (t1) and for all a,b in T we associate the rule (r1) : a’qja;”"b” —yg a’ay’qb”.
The word m associated to configuration C(m) is ¢’0°qya;”@”B”. The word m’ such that C(m)
-(t1)—= C(m’) is &’6’ay’quw”PB” . Therefore m’ = v’a’ay’qyb”’w™ supposing v’a’ = &’ and
b”w” =w”B”. Then m = v’a’qya;”b”w”. Hence, m —p m’.

2nd case : transition (12).

To every transition (t2) and for all a,b in £ we associate the rule (12) : a’b’qqa;” —g a’qyb”ay”.
The word m associated to C(m) is @’0’qqa;”@”B” (as in first case). m is written
v’a’qqa;”b”w” and the word m’ such that C(m)-(t2)—,4 C(m’) is written v’qpa”ay”b”w”.
Since C(m) is a configuration, v’ contains at least one letter. Therefore we can apply a rule (12)
andm —pm’. U

Lemma 2-5:
The machine A does not terminate = The rewriting system R does not terminate

Proof : Suppose that the machine A does not terminate, then starting from an initial
configuration Cy there exists an infinite computation Cy —45 C; —4 But for every
configuration Cj, there exists a word m; in £'*.Q.2”* such that C; = C(m;). Hence there exists
mg, my, ... in 27.Q.Z7* such that C(mg) =, C(m;) —4 According to lemma 2-4, C(mg)
-4 C(my) =4 ... < my —g my —p Therefore R does not terminate. O

Lemma 2-6 :

The rewriting system R does not terminate = there exists an infinite subcomputation C; —4 C,
=24 -

Proof : We suppose that R does not terminate.
Hence there exists an infinite derivation m —p From lemma 2-1, either m € (&7 U Q)*.(Z”

82

U Q)*, or m is written mya; ugby’..my,q.

Difme & UQ*.E” wQ)*

On m, we can apply a rule of R. Therefore m = v{0v, with v; € (U Q*.Q" or v; € Q*, vy
e Q*.(Z" U Q)* orvy € Q% and o € £'*.Q.Z”". To ¢ we associate the A configuration : C(c).
‘We cannot apply a rule on v and v , 50 we apply it on ¢. Hence 0 —p According to lemma
2-4, C(0) =4 -

2) else m = mja; "uyby 'myay " uyby’ . my g = Wiwg...wpyp (lemma 2-2),

From lemma 2-3, m =¥ t & t =t;...t,,, 1 With w;>>g ;. Therefore, if the rewriting is infinite, there
exists a w; such that rewriting restricted to wy is infinite. But we know that w; € (7 U Q)*.(Z”
w Q)*, so we can use the precedent case. 4

Theorem 2-1 : Termination of length-preserving string rewriting systems is undecidable.

Proof : Tt suffices to verify that construction which associates a string rewriting system Ry to
the linear-bounded automaton A@y reduces termination problem in class Ap,g to termination
problem for length-preserving string rewriting systems. For that, we can remark that proposition
1-2, lemma 1-3 and lemma 2-6 involve that if Royr does not terminate neither do Agy. Indeed,
if Royr does not terminate, A@y passes by a proper initial configuration again from which it
loops.

From Lemma 2-5 we obtain the converse of the theorem. O

Corollary 2-2:
Termination of non-length- increasing string rewriting system is undecidable.

Remark :

Agy could loop from a non-reachable configuration and stopped from every initial
configurations. Therefore it could terminate in the machine sense, without assure termination
for Roy . Lemma 1-3 avoids this problem.

I1I - Undecidability of confluence of terminating rewriting systems on gA™*

In this section, we want to show that properties for linear-bounded automata cannot always be
translated for non-length-increasing string rewriting systems. Indeed, for a linear-bounded
automaton we start from an initial configuration, where the tape head is on the left side of the
tape. That should mean, for a rewriting system, that we work on words starting by a special letter
symbolizing initial state of linear-bounded automaton.

Definition 3-1 : [Huet]
A rewriting system is confluent if for all u that reduces to two terms t and t” there exists v such
that t and t” reduce to v.

83

Theorem 3-1 : [Newman]
Confluence is decidable for terminating rewriting systems.

It is well known that confluence and ground confluence (confluence restricted to terms without
variables) are not equivalent. In particular, ground confluence is undecidable for terminating
term rewriting systems. Confluence implies ground confluence but the converse is false.
Nevertheless, the following identification lemma shows that we can identify confluence of any
semi-Thue system S with both confluence and ground confluence of the corresponding term
rewriting system S’.

Identification lemma :

Let S be a semi-Thue system over a (non ranked) alphabet %. We associate to S the term rewrit-
ing system S’ over the ranked alphabet 2’ = {a(x) [x € Z} U {$}. (3 is a constant).

S ={x)>rx)/l—>res}

Thent=gu & t(x) =*g u(x) & H($) =>¢ u($)

proof : obvicus 1

As a corollary, confluence of S, confluence and ground confluence of S’ coincide.

From now, we use this identification and work only in the word case. We describe in this para-
graph a terminating rewriting system. This system is not confluent on words of A* and its con-
fluence is undecidable on qA*, q a fixed symbol of A.

Let Ay be amachine of class Apyg studied in part I. We associate to this machine an alphabet:
A=Qoy U Z U {q, dyes, ¥, N}. We modify the machine Agy. We remote the last transitions

which make the machine loop. Therefore, if the data has the form mm’ withm’ = ¢(m) =y(m),
the machine goes to the configuration #qe,q<mm’># and stops.

To this new automaton, we associate a rewrite system R1. It contains all the rules simulating the
transitions of the machine: A transition of form (q,a) — Ay (b,q’.Le) is associated to the rule
hqa —g; q’hb, a, b, hin A and g, " in Q@; A transition of form (q,a) — A qy (b,q,Ri) is asso-
ciated to the rule qa —py bq’, a, b, in A and q, q” in Qoy.

Moreover, R1 contains the rules:

Qend< —R1 Gyes

Yae A} dyesd —R1 Jyes

Qyest =r1 Y

4 —r1 <o

We consider now this rewriting system R2:
VieA- {Y,N},foxp; N

VaeA Ya—sgy N

Vae A, Na—p N

R is the system constituted by the rules of R1 and R2. R is terminating.

Lemma 3-1:
m eIt m’ € X*, gmm’># =g Y if and only if o(m) = y(m) = ni’.

84

(we denote i the mirror image of m)

Proof :

&=) if {m) =y{m) =m’ then according to part I, the machine Ay, from an initial configuration
#<qgip...i1X;..xp># goes to the instantaneous description #qeng<iy...igXy..xp># with m =i..iy
and m’ = xy..x, . Hence with R we can go from the word qiy...ijx;..xp># to the word
<Goip--1X1.Xp># and 0 Gepg<ip...iyXy..xp>#. Applying the rule epq< —R1 Qyes WE get
Qyesip-i1Xy.--Xp>#. Applying several times rules of form qyes@ —g1 dyes We get the word qye#.
Finally with the rule qyes# —r; Y we get the word Y.

=») we suppose that qfim’># —p Y withm = ij...i; and m’ = x..x),.

m and m’ do not contain Y neither gy neither any state of Q@y. There is only one manner to
get Y: using the rule Gyes# —Rg Y. Moreover, the only manner to get gye is to apply the rule
epd< —R1 yes T0 generate qe;q, we have applied rules simulating AQY. giy...ijX1..xp># =g
<qgin...i1X1...Xp># ~p qend<in"'ilxl"'xp>#‘

But, we have seen in paragraph I that # <qgiy...iy X...xp># — 4 #qeng<ip...ixy...xp># if and only
if @(iy...dp) = Yliy...ip) = x1..%p. U

Definition 3-2 :

A word w is a normal form if there exists no word v with w —g v.

A word w has a normal form if w =g v for some normal form v.

The set of normal forms of a word m (called irreducible forms) is denoted by IRR(m).

Lemma 3-2 :
Foralluin A* - {¥}, N is in IRR(u).

Proof :

- if u does not start by N neither by Y . Then applying the rule f =y, N and possibly the rules
of form Na —go N we obtain the reduction u =*g N. So N is in IRR(u).
-ifustarts by N:u=Nw

If w = ¢ then u = N and so u is irreducible. Hence N is in IRR(u). Else we apply several times
rules Na -y, N and we get N in IRR(u).

- if u starts by Y : u= Y.w with w # &. Hence we can apply a rule Ya —g, N and possibly rules
Na —g7 N. Therefore N is in IRR(u). O

Lemma 3-3:
YV m e A*, IRR(m) c {Y,N.g}. ¥ m € A*, IRR(m) < {Y,N}

Proof :
Suppose that there exists u € IRR(m), u € {Y,N,e}. Then, from lemma 3-2, u can be reduced to
N. So u is not a normal form. Moreover, it is obvious that € € IRR(m) if and only if m=¢e. 0

Lemma 3-4 :

Let gw be a word in gA¥.

If qw has the form qmm’ ># then

i) IRR(qw) = {¥,N} iff @(m) = p(m) = m’

85

ii) IRR(qw) = {N} iff @(m) #m’ or W(m) #m’
Else IRR(qw) = {N}.

Proof :

1) qw has the form qmm’>#

i) According to lemma 3-1, gmm’># —g Y if and only if ¢(m) = y(m) = m’.

Moreover giim’># —g N from lemma 3-2. Hence {Y,N} < IRR(qw) if and only if ¢(m) =
Y(m) = m’. Lemma 3-3 shows that IRR(qw) = {Y,N} iff ¢(m) =y(m) = m’.

i) ¢(m) # m’ or Y(m) # m’ & Y ¢IRR(qw). But qmm’># —sg N. Hence IRR(qw) = {N}

2) qw has not the form qmm’>#. Then qw does not correspond to a proper initial configuration
of Agy. Hence we apply rules of R without obtain the word qepg<m. Therefore Y & IRR(qw).
But gw —y N. Hence IRR(qw) = {N}. O

Theorem 3.2 : g is a fixed symbol of a finite alphabet A. The following problem is undecidable.
Instance : R semi-Thue, non-length-increasing, terminating, not confluent.
Question : is R confluent on gA* ?

Proof : According to lemma 3-4, R is divergent on qA* if and only if there exists m such that
©(m) = y(m). Hence R convergence on qA* is equivalent to Post problem. Consequently it’s
undecidable, 1

Using the identification lemma, we get the corollary:
Corollary 3-1 : The following problem is undecidable.
Instance: R a terminating, rewriting system. S a sort.
Question : is R confluent on § ?

Remark: S can be choosen very simple. For example, S is the set of terms of root q.

References

[Book] Personnal communication.

[Dauchet] Max Dauchet

“Simulation of Turing Machines by a left-linear rewrite rule”

Rewriting Techniques and Applications. 3rd intemational conference, RTA-89
Chapel Hill, North Carolina, USA, April 1989 Proceedings in LNCS 355

N. Dershowitz (Ed.) p 109-120 (1987)

[Dershowitz] Nachum Dershowitz
“Termination of Rewriting” J.Symbolic Computation (1987) 3, 69-116

[Dershowitz & Jouannaud] N. Dershowitz and J.P. Jonannaud
“Rewrite systems” Rapport de recherche 478. Unité associée au CNRS 410. (1989)

86

[Hooper] Philip K. Hooper
“The undecidability of the Turing machine immortality problem”
J.Symbolic Logic 31 (2) June 1966. (1966)

[Hopcroft & Ullman] J.E. Hopcroft and J.D. Ullman
“Some results on tape-bounded Turing machines”
J.A.CM. Vol 16 (1), January 1967, pp 168-177.

[Huet] Gérard Huet
“Confluent reductions: abstact ptoperties and applications to term rewriting systems”
J.A.CM. Vol 27, (4), October 1980 pp 797-821. (1980)

[Huet & Lankford] G. Huet and D.S. Lankford
“ On the uniform halting problem for term rewriting systems”, Rapport laboria 283, Institut de
Recherche en Informatique et en automatique, Le Chesnay, France, Mars 1978. (1978)

[Kuroda] S.-Y. Kuroda
“Classes of languages and linear-bounded automata”
Information and Controle 7, 207-223 (1964).

{Litovsky & Metivier] Igor Litovsky and Yves Metivier
“Computing with graph rewriting systems with priorities” Rapport interne LaBRI 90-87

[Myhill] I Myhill
“Linear bounded automata”
WADD Tech, Note No. 60-165, Wright-Patterson Air Force Base, Ohio. {1960)

[Newman] M.H.A. Newman
“On theories with a combinatorial definition of equivalence”
Annals of Mathematics 43 (2), p. 223-243. (1942)

[Otto] Friedrich Otto
“On deciding the confluence of a finite string-rewriting system on a given congruence class”
1. Comput. System Sciences 35, 285-310 (1987)

[Post] Emil L. Post

“A variant of a recursively unsolvable problem”.
Bulletin of the American Mathematical Society 52 p 264-268. (1946)

Appendix I : Definition of a machine AQy

In the transitions, foriin], cp(i)j represents j‘d letter of @),
9(i) = 9(i)1.-..¢(D)r; We use the same notation for y: y(i); represents jrd letter of W(i), w(i) =

87

Y1 Yy -

Qv = {90, 41> 92> Gret Greset> Yagain> Gret > Greset » Jend} \ {dop(iyj/ 1 € Tand ¢(i) = () 1...0[x;,
€ [T 90) # £3 U ago if 0) = 3 U {ayqy /1 € Tand Y = i)y i) »§ € (L] i
YD) # e} U {qyao fwd =€}

. The tape is of form #<m>#, m is a word in (I L X)*. initially, tape head is on the first letter of
m, and machine state is qg.

. A is the next-move function:

A transition (g,a) — (b,q’,Dir) means that the head reads the letter a, the state of the automaton
is q, and after applying the transition, the letter replacing a is b, the new state is " and the head
goes to the direction Dir (Ri for rigth, Le for left).

Vii’elandVxeX,

a) rules of equality verification: my = @{my).

(g ,1) — (i, qq, Ri) % research of i on the rigth side

(g1, ({,q1,Ri)

@1-% = (X, q2, Le)

(qp,1) - a, et » Ri) % research of its image by ¢ if it is not &.

(g1 - D) — (. @ » Ri)

(Qg(iy1 » ¥) = (X, dggpy1 - Ri)

(Gpep; » PP — @0);, dogyj+1 - RD)

(‘l(p(i)k_i_ , (p(i)lf_i) = (0Q)y; » ret L€) % we do it again for next i.

(Areg » X) = (X5 Gret» Le)

(Greg» 1) = @ s Qret » Le)

(Gret > 1) —(, o1 R) % if the image of iby ¢ isnot e
(Aret » 1) =0, qiyo- Le) % if the image of iby @ is e
(Gret » <) = (<, Greset » Ri)

(gp.)=+ (G, ()0 » Le) % if the image of i by @ is e
(Go@o-1) = (7, qery1 > RD % if the image of i” by ¢ isnot €
(99go0,1) = @, Qo0 » Le) % if the image of i’ by @ is £

G0 » < — (<, Greset» RI)

b) rules of tape reset.

(Qreset v;_) — (i, Qreset » RD)
(dreset » X) = (%, Qreget » Ri)
(Areset » >) = (>, Grecom » L€)
(Gagain > ¥) = (X, Gagain » L€)

¢) rules of equality verification : my=y(my).

(Qagain » D) = (0, Gygpy1 » RD) % if the image of i by ¥ is not &
(Qy(iy1 > D = (1, Qi1 - Ri)

(Qy(iy1 > X) = (X5 Qygipt » Ri)

(i » VO = WD) > Qycipjet » Ri)

(qw(i)rt W(i)x:;_) = (W(y; » Grer » Le)

(Gret » Z‘) - (_x » Gret - Le)

(Qret s D — (1, Qgey - Le)

88

(Aret » 1) = (1, Qyiy1 - RY)

(et » D) = (@, Gyiyo » Le)

(et » <) = (<, Greset » Ri)

(Qagain » 1) — (i_, Qy(i)0 > Le) % if the image of iby wis e
(Qyiy0 - 1) = (5 Gy - RD)

(Gyay0.10) = @, Qyaro. Le)

Qo> <) = (<, Greset - RI)

d) rules of restoration of initial configuration
(dreset » i_) ~> (1, Greset » RD

(dreset » X) = (X, Qreset » R)

(Qreset » >) = (> 5 Qepd » Le)

(Qepd » ¥) = (X, Geng » L&)

(Yena » D) — (1, Qeng » Le)

(Gend » <) = (<, qq » Ri)

Appendix II : Proof of lemma 1-3

Let ID a configuration such that AQy loops from it.

First case: ID is reachable

If ID is reachable, there exists an initial configuration from which the machine has reached ID.
Therefore, there exists a beginning of computation which loops. The machine A@y loops if
andonly if P(¢,y) is verified. Moreover, when Post property is verified, the machine loops
passing by a proper initial configuration again. Hence there exists a beginning of computation
starting from a proper initial configuration which loops.

Second case: ID is not reachable.

Let’s see the dependence graph between states of Apy.

We write Q@ the set of states qg,); and Quf the set of states qyyy; -
1) machine does not loop in one state, neither in a set Q¢ or Qy.
- For all states of Agy, when the machine applies a transition staying in one state, then the head

89

always goes in the same direction. But the tape is finite, on the right and on the left. Hence the
machine cannot stay in the same state doing an infinite number of computation steps.

- We consider the set Q¢

We stay in a state Qi) if and only if j=1.

*if j > 1 then we go to state Qo(ijj+1- Since j has a finite number of possible values, the machine
does a finite number of computation steps staying in Q.

*if j = 0 then we replace a letter of I by a letter of I, staying in a state of Q. But no transition
in a state of Q@ transforms a letter of I to a letter of 1. Therefore the number of letter of I on the
tape decreases. Moreover, if there are no letter of I on the tape, we cannot apply transition being
in gg(p)0 and staying in a state of Q.

Hence, we do a finite number of computation steps, staying in Qo.

- We can do the same proof for Q.

" 2) The machine does not loop on Q@ and gy

When it passes from Q@ to g , at least one letter of the tape has been overlined. Moreover, it
passes from e to Q@ overlining one letter of the tape. Since there’s a finite number of letters
on the tape, there’s a finite number of computation steps. We can have the same argument for
Qy and qrey -

3) From 1) and 2) we deduce the machine loops passing by qg, 41> 92, Qrets Greset> Qagain> Tret »
Greset » Gend and by the sets Q@ and Q. But there is only one way to pass by qq: using the tran-
$ition (Qeng » <) = (<, qg , D). Therefore, the machine is in an instantaneous description of form
#<qom># which is, by definition, an initial configuration. Finally, according to precedent lem-
mas, if the machine loops from an initial configuration, then it’s a proper one, O

