
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1974

Linear Bounded Tree Automata Linear Bounded Tree Automata

Carol Chrisman

Report Number:
74-109

Chrisman, Carol, "Linear Bounded Tree Automata" (1974). Department of Computer Science Technical

Reports. Paper 61.

https://docs.lib.purdue.edu/cstech/61

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Linear Bounded Tree Automata

carol ChriSIlEl1

January 1974

CSD TR 109

'Ibis work was partially supported by NSF grant GJ 980.

[ntr'of!u(:Llon

Automata with finite trees as input rather tlKlJl f;;trings were f 1 l ' ~ ; t

used by l»ner (1966, 1970) and Thatcher and Wright (1968). They defined

a tree automaton which processed finite trees in a frontier to root

fashion:J ending in a final accepting or nonaccepting state. These tree

automata are a natural generalization of finite automata working on

strings and define a class of tree sets which are called the r e c o g n i z a b l ~ :

sets. l»ner (1966, 1970) used the fact that it is decidable if a partic

ular tree automaton accepts any tree at all to prove the decidability

(".... f the weak monadic second order theory of two successors.

Thatcher and Wright (1968) gave a characterization of the recog

nizable sets Which ~neralizes the U:J', * characterization of regular

sets of strings. A characterization of the recognizable sets as a class

of tree sets cont?ining some s1Inple sets of trees and closed under U, n J

cornp1en-ent and projection was given by l»ner (1970). A third character

ization was given by Brainerd (1969) in tenns of the sets of trees gen

erated by tree grammars, called regular systems, ~ d t h productions of

the form ¢J -+ 1jJ Where $ and $ are f1n1te trees. A production is applied

to a tree by replacing an oc·currence of a subtree 4' by the tree $.

More corrplicated tree gr'aJ11TE.I'S, called tree adjunct granmars or Tag's,

were studied by Joshi, Takahashi, and Levy (1973). Tag granmars allow

insertions of special adjunct trees at various places in a tree and can

produce tree sets that are not recognizable. These tag grarnnars are a

special case of the context-free dendrogrammars introduced by Rounds

(1970) which produce corrplicated tree languages by allm'ling the subtrees

of a node to be rearranged., repeated, or eliminated by the use of a tree

production.

'rhe question of whether other types of automata, besides finite

automata, have natural generalizations to trees has not been considered

in the literature. In this paper linear bOLmded automa.ta are generalize,:::

to machines which have finite trees as input, called linear bounded tr0e

automata or LBTA IS. II LBTA is visualized as a machine which when in ::t

particular state and reading the label on some node of the input tree

can change the label on that node, change the state of the machine, and

leave the reading head untouched or move it backwards to the previous

node or fOI"/ard to the left or right successor nodes. For s1rrq)lici ty w ~ ,

restrict our attention to binary trees (at m::JSt 2 branches from any node)

and say an input tree is accepted if the LBTA ever enters one of the

designated accepting states when started in an initial state at the lGp

node of the tree.

A LBI'A carmot alter the strncture of the tree but only change the

labels on the nodes and rn:::>ve back and forth in the tree. So determinis

tic linear bOLmded tree automata (DIETA's) roodel the processing done by

computers with trees when additions or deletions of nodes in the tree

are not pennitted -but the infol"l1E.tion stored at any node of the tree

can be altered.

llJost of the theorems proved about LBTA I S parallel theorems about

linear bounded autorrata (1ba's) proved by I<\YhiH (1960), Larrlweber (1963), and

Korado (1964). In particular, DLBTA's ere shown to be closed under

complerrent . 'Ihe question of equivalence between LETA I S and DLBTA I s i3

shown to be equivalent to the same question about lba' s, proViding a

"tree viewpoint" for this old unsolved lba problem.

This close relationship between LBTA's and Iba's is demonstrated

by showing that one type· of autorra.ta can s1nnJ.late the other. The actic.: I

of a IBTA M on a tree is simulated by alba N on the string which is

nodes Is processed by the LBTA M in "f(n) steps then t l J r ~ :.;lrmllatlon by

the lba will take at most f(n)on
2

steps. Also alba N which is such

that every string accepted by N is the Polish notation of a tree over

some alphabet, can be s1rmJlated by a LBTA on the trees themselves. If

on input of length n the lba N takes g(n) steps then the sirmJ.lation by

the LETA takes at UDst g(n)·n steps 0 These simulations are then reasor.-

ably efficient.

Section I: Definitions and Basic Facts

\'Je begin with SOIlE necessary definitions and explanations of

terminology to be used. The notation for languages and automata is that

of Hopcroft and Ullrran (1969) while that used for trees is from Doner

(1970).

An alphabet I: 1s a nonempty finite set of syrOOols. A word over

I: is a finite sequence of elements of t, E: denotes the enpty word.

'!he set of all words over E 1s denoted E* 0

A tree domain 0 is a finite subset of {l,2}* Which is closed

lU1der initial segment (i.eo, uveD implies uED). A tree. 15 a

napping "Ifr L where D is a tree dorrain and L is a finite alphabet.

For WED, .(w) or 'w denotes the label of the tree • at node w.

The domain D of • is denoted dam, 0 The enpty tree Which is a fUnc-

tion with empty domain 1s denoted A and the set of all trees over I:

by L# .

As an example, let t ={a,b,c} and ,= {(E:,a), (l,b), (2,c),

(ll,c), (12,b), (21,a), (22;b), (221,a)l. T is generally pictured as

~

The subtree of L beginning at w 1s denoted TrW and defined

a3thetree " with '(I(U)= T(WU) foreach uE{l,2}*. For u,

YEU,2}* wesa::J u<v if for some wE{l,2l*uw=v. For T, "

trees over E , [T wiT I] denotes the tree obta1ned by replacing the

subtree of T at w with the tree T'. SO t [wIT I J 1s the f'unctirJr,

T1 such that

IT (u) = .(u) if w I u

T' (v) if u = wv for uE {l,2l*,

and dam IT = dam TU{wvlvEdom T'L T[w/T I] 1s only a tree if

\-:E{ul, u2 \lEctorn dU{d. For crEE, -r, .'Et# O(T,T']:;

(0 [lit]) [2/T I] • Every tree except A can be expressed o[T. 'T I 1

for SOtTE 0, T, "('.

'Il1e depth of a tree • is denoted II. II and is l+n where n

is the length of the longest word in the domain of T A word w such

that neither wI nor w2 1s in dam T 1s called a tenninal node of T •

The set of all terminals 1s called the frontier of L. The set of all

nonterminals of T 1s called the interior of T. The yield of a tree

•) denoted yld (.), is defined as the concatenation of the syrrtJols

appearing at the ternd.na.ls of ., taking the term1.nals in lexicographi

cal order. io'or the tree • in the example above yld (.) = cbaa.

Sometimes we wish to process the tree in such a way that every node

of the tree is visited. '!his is called traversing the tree. There are

several standard ways to traverse a binary tree tsee Knuth (1968)). Each

method has the effect of ordering the nocles of the tree into a lineal'

sequence. There will be several occasions When we want to process a lJ

.the nodes in a tree in some organized fashion. The two ways of t r a v e r s i t ~

a tree which we will use are endorder and reverse preorder. These metb,I}:'

process the nodes of a tree in the following way.

1.

", .
3.

Endorder '['rav€rsal

r J \ I ' u V L ' I ' : - ; (~ t.llL')(.'(1. :lulJtl'(:C

'I'ravcr:,c Lhe right subtree
Visit the root

l..,..
3.

5

PrCOI'der 'I'raversal

V.1:; 11. tlll' r·out.
'I'1'avl~I':;C t11l~ let't :;111,1."'°"

'!'rLlv(.'] ': ;I~ till.' I'le-ht. ~;11l; LI 'r 'r .

Each subtree of the tree 1s traversed in the sarre way. Reverse Pre-

order just reverses the order of Preorder traversal. Traversing the t ~ e e

of the first example is illustrated below where the numbers on the nodes

indicate that node's place in the ordering.

/8""
1 8

/"- /""/\ /"'-.. /\ 5"
7 ~

/\ / "'21 2 ~ /6 3 ~ (/7

/5 8
Endorder Preorder Reverse Pr-earner

We now are ready to define a linear bOlUlded tree autOITEton.

DeL 1: A Linear Bounded Tree Automaton (IBTA) is a six-tuple

M = < K, I: , r , d, Q, F > where I: C r J Q, F ~ K and

d: K Xr ~ P(K x r.x l-l,O,1,2}). ! is called the input alphabet, r

the working or tape alphabet, Q the set of initial states and F

the set of final states. A lETA M is called deterministic if d(q,o)

conta.:l.ns at most one element for each q E K, a E r and JQ I = 1. We

use the abbreviation DLBTA for a deterministic linear bounded tree

autorraton. A triple (q, n, w) with qEK, nEr#, \'IE {l,2)* 1s called

a configuration of the LETA M and is interpreted a.."3 meaning that M is in

state q with its reading head at the w
th

node in the tree n • '!he

relation ~ M which relates two configurations if the second can be

derived from the first by an application of a transition of Mis defined

as follows:

Der.2: (q,., w) rM (ql, .', w') iff (q', ,I(W), m)Ed(q, .(w»

and for m =
m=
m =

and T '(ul =

-1 win = w n = 1, ,
0, w· = w
1 or 2, w' = wm

.(u) for u yL w.

or 2

L

When the 1 J ~ r A M Is understood, the relation h'l wi] 1 1.,(~ 'J~note(l ~

rn will denote a der!vatlon of n steps. Let r* denote the trans! ti·"L'

closure of r.
One way in which LBrA's differ trom linear bounded automata (lba's)

1s in the use of endrrarkers. For Iba's endmarkers are just a conven1.encr::

and can be el1In1nated while for LBTA' s endmarkers on the leaves of the tr,::·L.

are very useful and cannot be el1m1nated by the same technique used foI'

I b a ' ~ (see Iandweber (1963)). The technique for Iba 1 s involves c o n s t ~ J C 1

ing a new Iba (without endmarkers) which assumes as each symbol 1s read

that it 1s the right end of the input and so has the Iba process the s trj r.f.!:

received so far as though it were the whole 1nput. 'l'ht:!n when the 1bi'l

has detennined if the original Iba would accept this string the new Iba

tries to read the next character on the tape. If a character is present

the lba now assumes this slightly longer string is the whole input and

starts over to determine if the original lba would accept this string, CO!l-

tinuing in this 1I18y until the lba actually ITDves past the right end of

the input. The same construction will not work for trees because tllere

are many places (not just one) where the LBTA could move out of the input

tree. For example, the set of trees over {a,b) with each node labeled

"all cannot be accepted by a LETA without endmarkers. Since all branches

in a tree need not be the same length, no matter how such a LBI'A M would

try to traverse a tree T befbre accepting it, there i3 a n o t h ~ r tree IIJhich 1~

like T except that a ubI! labels a node not checked by M on 1: and this

tree would also be accepted by M.

A special symbol is then needed as an endmarker so throughout this

paper the symbol $ will be so used. We consider $ an elerrent of r _ f.

but restrict the use of this symbol by asswning that if (q I, OJ m) E c1(q~ .:"

for a E r then a = $ and if (q I, $, m) E d(q, a) for a E r then

cr = $. Given a tree 1: E EN- we need to add e n d m a r ~ : e r s

7

tJcf'ore the LBTA processes the tree so we define a tree T which 1s j u ~ : t

like T but has an extra node labeled by a $ at the end of every path

in the tree. "(is defined by 'T(w)" T(W) for wEdom., wle dam T

implies T(wl) = $ and w2l!! dom T 1lrq:>l1es T(w2) = $. We will use the

convention that when a 1s placed over a tree name, the corresponding

tree with endmarkers is meant. The tree given in the first example looks

as f o l l O \ . , r ~ wi th endrrarkers:

A special symbol to designate the top of the tree is not needed

because the LETA always starts on the top node of. the tree and so if

desired can mark it specially so that it can be identified as the root

of the tree in later processing.

The set of trees accepted or the tree language recognized by a

lETA Mwill consist of all trees "[E t # such that when M 1s started in

an initial state on the top node of 'T, M eventually goes into a final

state. We denote the set T(M). Fornall,y, we define T(M).

ref. 3: T ET(M) iff (q, T, o) ~ . (q', IT, w) for some qE Q,

q'EF, JIEr#, WE{1,2}* (1)

Note that a LBTA carmot alter the structure of the tree but only change

the labels on the nodes and rrove back and forth in the tree.

There are other possible acceptance conditions to be considered.

Two such possibilities for a LETA Mare

8

TE'I'" (M) iff M moves pa.c;t an endrnarkpr' in !l l'illa] :-5tate,

when inputed ,. (c)

Le., (q, 1", £) ~ * (ql, TI, v) for some qEQ

and IT (v) = $ and (q", $, i) d(q', $)

with qllE F and 1; 1 or 2.

1', (M) iff M backs up off the top of the tree T in a

final 3tate

i.e., (q, I, E) r* (q', TI, E) for some qE~

and (qll, 0, -l)ed(q', nee))

and aEro

Statement (?) corresponds to the acceptance condition for an Iba that ~ _ f ! ~ -

Iba moves past the right end of the input string. ,statement (3) is \\'hat

we mean when we sp.y that an autorraton :nms off the top of the tree in a

final state and corresponds to the idea of alba rroving to the Ie f't pas t

the beginning of the input.

In the next lemma we will demonstrate that these three a c c e p t a n c ~

conditions are equivalent. That Is, we will show that if a set of tre8S

is aqcepted by a LBTA using one condition there 1s another ImA using

one of the other conditions which accepts the same set of trees.

Lemna 1: Acceptance conditions 1, 2, and 3 for LBTA are equivalent.

Proof: Let M = <K, I:, r, d, Q, F> be any lETA. An LETA N such that

T
2

(N) = T(M) is obtained by letting N = <K - FU{p}, L, r, d', Q,

{p}> with d' defined by

d' (q, 0) = dig, 0) if (q', 0', n) e d(q, 0) for q'E F

{(p, 0, 2)} if (ql, crt, n)Ed(q, 0) for some q'EF

for each qEK - F and d'(p, 0) = (p, 0, 2). Then T
2

(N) = T (r~)

since if M enters a final state on a tree 1" then N v[ould enter stat n

p and move past an endmarker and the only w ~ to get into state p h;

9

if M1'louJ<! enter a final state on that tree. An IJ-Jl'A NI :mch that

T
3

(N') = T
2

(M) is N' = <KU{p}, E, r, d', Q, {p}>, with d'(q, 0) =

d(q, 0) for 0 t $ and d'(q, $) = (p, $, -1) 1f d(q, $) OJ (q', $,1
,

or 2) with q'EF and d' (q, $) = d(q, $) otherwise. Also d' (p, 0) =

(p, 0, -1) for all oEr. Then T
3

(N') = T
2

(M).

A LBTA Nil such that T(NIl
) = T

3
(M) 1s Nil = <KU{p,s}, E, r", ct l

,

{p} , {5» \'/here r' = {or : aE r} 1s a marked copy of the alphabet r

and r" = rur' and

d' (q, 0) = d(q, 0) for any qE K and oE r

d'(p, a) = {eq, ai, 0): qEQ}for (fEr

ct'Cq, a l) = {(s, a', 0) if (ql, (, -l)ed(q,o) with q'EF}

U {(q', (', n) if (q', E;, n) Ed(q, 0) for n = 0, lor 2l

Then T(N") = T
3

(M) since WI accepts a tree only if M would go off the top

in a final state and the only time Nfl can accept a tree 1s if it 1s at

the marked top node and M would then back up.

If M is a DLBTA then tJ:1e corresponding LBTA N, NI, W' are also

deterministic.

Since these acceptance conditions are equivalent we will use whlch-

ever one 1s most convenient at a given time. If the condition 1s not

specified assume that acceptance by entering a final state is meant.

Since recognizable sets of trees correspond to regular sets of

strings, if' LBTA I S are to properly generalize lba I s the tree languages

defined by LBTA I s should contain the recognizable sets. We will nO\'J

show that in fact the sets of trees accepted by mBTA I 5 properly con-

tain the recognizable sets. We do this by showing that a DLBTA can

simulate a frontier to root deterministic tree automaton. Recall the

definition of a deter.m1n1stic frontier to root tree automaton given by

Doner (1970):

10

DeL !I: A tree automaton is a five tuple It. = <S, L, t, G, 1» where

S is a finite set. of states, t: S x S x 1: 40 S, sE::; <ind DC:s. Th{,,!

fwlction t is extended to 'in through the definition

t(A) = 5, t{a(L,.I]) = t(t'(r), t(tl), a) for all aEl: and t, lIEi.!'.

tn accepts a tree TE E# if th)EIJ. Let T(tJil denote the set of

l:-trees accepted by Pl. A set A C E# is reco¢zable 1f A = T(oz)

for some tree automa.ton fl7-.

That IB'fA are m::n"e powerful than tree automata 1.5 dem::mstrated by

the following exarrple of a set of trees that 1s not recognizable but 1s

accepted by a DLBTA.

Let n = {T : T =
n n

b

n+1

)
a

l

n

forn>O}

Theorem 1: n is not recognizable but is accepted by DLBTA.

Proof: 3upposedl = <S, 1:, t, 5, D> is a tree automaton such that

T(dV = IT and S has m states. Let J > m and consider the tree T .•
.J

Since the number of bls on the lowest branch of 't
j

is greater than m

when IJ7.. 1s run. on "[j two states must be repeated on this branch, say

at the k th and p th blS, with k < p.

But then t h ~ tI'ee

, =

a
\
a

l
j+l

a

(
bit

. b

. .
j-l(. j-p

b

b

b,,

11

would also be accepted by fJL but this tree "[" is not in n since the

number of bls on the lowest branch is less than j.

nizable.

So rt 1s not recog-

The idea of DLBrA to accept 11 is that it should work down the rlBht

hand branch of a tree and at each node check to see that the correct number

of b I 5 1s to the left of that node. In doing this checking the DIETA r.:L'Ot

rrove back and forth on the portion of the right branch up to that CillTe:",'-.

node and the branch to the left of this node matching the a' 5 and b IS. ~ : I j (: : .

a DLBTA is given by

M = <{qo' ql' PI' .. OJ PIP P, h}, {a,b}, {a,b,$,A,B,X,S},

d, {qo J, pI>

where d 1s defined by the following table

1:..'

d(qO' 0) = (q] , S, 1) change top synt)ol to ~

d(qI' $) = (qo' s, -1)

d(qO' ,) = (p] , " 2)" "',

d(Pl' a) = (PI' X, -1) mark next lcvc,l on d[")Jl orand]

d(P1 ' X) = (PI' a -1) } fix a's for counting,

d(P
1

, A) = (PI' a, -1) at this level - remove old marV...3

d(P1, S) = (p2' " 2)~,

d(P2, a) = (p2' a, 2)

d(P2, X) = (P
3

, X, 1) IOOve into left branch

d(P
3
, b) = (P

3
, b, 1)

}
find next b

d(P
3

, $) = (P4' $, -1)

d(P
3

, [,) = (P4' S, -1)

d(P4' b) = (P
5

, s, 2) mark next b off

d(P4' X) = (h, X, 0) not enough b I S on branch - halt

d(P
5

, $) = (P6' $, -1)

d(P6' U) = (P
6

, S,
-1))

d(P6' b) = (P6) b, -1) start back for next a

d(P6' X) = (p7' X, -1)

d(P
7

, a) = (Ps' a, -1)

d(PS' A) = (P
9

, A, 2)
there is another a to mark off

d(PS' ") = (p9' s, 2)"

d(p
9

, a) = (P
2

, A, 2)

d(P
7

, A) = (PIa' A, 2)

}d(P
7

, S) = (PIa' S, 2) no ITDre a's

d(P
10

, X) = (PIa' A, 1)

d(P
10

, b) = (h, b, 0) too many b's on branch

d(P10 , 8) = (Pll , S, -1) right number of blS on branch

d(P
ll

, X} = (PI' X, 2) go to next level

d(P1, $) = (p, $, 0) accepts tree

Next W2 I-Jll1 show that tree automata call be simulated by DlBTA.

: ~ i n r . r ~ nonrletenninj stic and detenninistic tree alltomata arc equivalent

(see Doner 1970) we know that every recognizable set is accepted by a

deterministic tree autorraton. The idea then is to make the DLBTA proces~

the tree in endorder fashion detennin1ng at each node what state the tree

automaton \·/Ould be in after processing the subtree at that node. The

DLBTA will then accept a tree if it goes off the top of the tree in one of

the accepting states of the tree autanaton (acceptance condition ~) . The

following 1enrna is needed for the proof of this result.

Ll]mrra 2: If (q, TI, E) ~ : (ql, fl', E) and ,f'w = TI, t'~ W = fI'

then 1

M
'(q, t, w) r (q', ,', w).

Conversely, if (q", w) ~: (q', ,', w) and in this derivation

no transition is applied at u < w then for n = ,~w and n I = t I'" 1-1

(q, n, E) ~~ (ql, nl , d.

Proof: The same steps in the same order of the first derivation can be

used to obtain the second der.:1.vation.

Theorem 2: Every recorgUzable set is accepted. by a DLBTA.

Proof; Suppose tTl. = <S, 1:, t, So 0> is a detenn1nistic frontier to root

tree autonaton. The following DIBTA will accept t (ull by going off the

top of the tree in an accepting state.

= ~(o)
1

a
Let M = <sues}, 1:, r, d,s, D> where r = 1:U{$}U{q ; aE1:, qES}

and d is defined by des, a) = (5, a, 1) aE L des, $) = (sO' $, -1),

d(q, a) = (5, ~ , 2) for qE S rand aE 1:, and d(q, ~ I) = (t(ql, q, a) J

a, -1) for q, q'E S and aE1:. Now by induction on the depth of a tree

t rl Il, we will show t (,) = q iff (5, -r, E) ~ : (Q2' t I, E) where

for some ql and ,'(w) = ~(w) for w t c

and d(q2' ,'(e)) = (q, ,(e), -1).

First assl..lJre th) = q for some qES.

If II, II = 1 then , = aE L and since t(,) = t(t(h), t(h), a) = q,

t (sO' Go' a) = q. Then in M(5, 't, c) ~ : (so' ,I J e) ~ M (5, ,', 2)

~ M
a

(sO"" e) and d(oO' ,'(e)) = (q, a, -1) where ,'(c} = sO'

If II, II ' 1 then ,= a [ITl' IT
2

] and by definition of t, t<,) =

t(t(IT1), f(IT 2), a) = q so if t(IT
1

) = ql and t(IT
2

) = q2 then

t(ql' q2' a) = q.

Since Ilnlll < 11,11 and t(TI
1

) = ql

(5, ill' e:) ~~ (qljJ ITi' c) where TIi (e;)

(ql' TIl(e), -1).

we have by the induction hypothesis

= TIl(e) and d(q4' TIi(e)) =
q3

a
,lee;) = ql ' ,I(W) = :;:-(1,01)

and d(q6' IT2(e)) = (q2' IT
2

(e), -1).

Since , ~ l = IT l and , ~ 2 = IT
2

Lerrma 2 can be applied. Together with

the above statements this gives

(5, :;, e) ~ M (5, :;, 1) ~ : (q4' a[ITi' IT
2
], 1)

~ M (ql' T, e;) ~~ (5, ,I, 2) where

for w .,. e;

a
= q

1

t(ql' q2' a) = q.

~ : (Q6' ,'(E) [IT
1

, TI;\], 2)

h1 (q2' ,', E)

So (5, ,,'e;) ~ ~ (q2 J t', e) with ,I(e)

a
and d(q2' ql) = (q, a, -1) since

This completes half the induction part of the proof. The other half is

similar but uses the second part of Iam1a 2. Since rJZ and M have the

same acceptjng states this is sufficient to prove the theorem.

So we know that every recognizable set is accepted by a DIETA. IJext

we will look more closely at the number of steps in the derivations of LETA's.

15

It is possible to find a bound for the number of steps needed in an

accepting derivation of a IBTA M on a tree t in tenns of the number oC

st.ates and tape symbols in M and the size of the tree 1". This telL I . l ~ ;

that given a tree T and a IBTA M it is decidable whether T 1s accepted

by M. This fact then enables us to show that there is a recurs!ve set

of trees which 1s not accepted by any LETA. So we have the next two

theorems.

Theorem 3: Given a LBTA M = <K, 1:, r, d, Q, F> and a tree -rE f.#, it

is decidable whether , E T(M).

Proof: Let n = number of nodes in T

rn = mmJber of nodes added to T as endmarkers in T

g = number of symbols in r minus 1

k = number of states in K

We 1,odll show that if T E T(M) there 1s an accept1ng der!vation in M

with less than or equal to k(n+rn) (ff) steps.

Since the endmarkers stay the same in any derivation there are gn

possible trees that ..can appear in M derivations starting with T

The number of different possible configurations (q, n, w) of M when

- n
inputed ,. will then be the number of states in M times g times the

- n n
number of nodes in , or k(g) (ntm) . Let P = k(g) (n+m) . Suppose

,. has an M derivation of rrore than p steps, 1. e. , (qo' 't, Eo) rr

be the(q, ll, w) with qEF, qOEQ and r > p. Let Ql' ... , (Ir

sequence of configurations in this derivation. Since r > p two a 's
i

the same, say (Ij

as+
l
~. (q, n, w)

= as with j < s. But then 0.
1

= (qo, 1, £)

1s a shorter derivation for ,.. ;;lnee the

der!vation gets shorter each t1me, this process can be repeated until a

derivation of length < p is obtained.

16

For any tree T and LBTA M each of the numbers n, m, g, and k

1s easily obtained so p can be calculated. Also all der!vatlons for

T in M can be checked since there are only a.finite number with less

or aqual p :~tCP:l. flne of t h e ~ i e /Jcrivatlons 1-caches a rlnal state If' :1/11J

only 11' T E 'J'(M).

In Hopcroft and Ullman (1969) the existence of recurs! ve sets that

are not context-sensitive is proved by a standard d1agpnallzatlon argu-

ment . The corresponding theorem about tree sets is the following theorem.

Theorem 4: There 1s a recurs!ve set of trees over any finite alphabet

E which 1s not accepted by any LBTA.

Proof: Since E is finite, E# can be enumerated '1' "2' . . .

Since each of the- components of a LBTA 15 finite (the names of states

and names of symbols in r - r are irrelevant) and in particular the

nurrber of transitions are finite, all LBTA with input alphabet 1: can be

enumerated M
1

, M2J ...

IJefinethe set of trees A=lT
1

: T
1

I!T(M
1
)}. Foreach 1, T

1

and M
1

can be obtained and by Lermia 4 1t can be dec1ded if T
1

ET(M
1

)

so A is a recursive set of trees.

Suppose A 1s accepted by some LIll'A, say A = T(M
j

). If TjE A.

then since A = T(Mj) TjET(M
j

) but then by definition of A, T
j

I!A.

If Tj I! A since A = T(Mj) then Tj Ii!T(M
j

) but then by definit10n of A

'tjEA. So we have a contradiction and A -1s not accepted by any IBTA.

Let Rec. denote the recognizable sets over • and ~ (D L B .)

denote the sets of trees over 1: accepted by IBTA (DLBTA). Then Theor~rrr:

1, 2 and lj can be sUJTlTlaT'1zed

for any alphabet E .

17

Section II: Closure Properties

!lext .../e consider closure properties of the sets of trees defined by

LETA I 5 and DIBTA I s. Let ill (DIE) denote the class of all sets of trees

accepted by some LBI'A (DLETA). In this section we will demonstrate that

18 and Dill are 1n fact closed under the operations of union, intersection,

projection and inverse projection. Also we show that Dill is closed LUlder

complement but can say nothing about the class IE and cOJTJPlementatlon.

So the situation with closure properties is exactly the same as with linear

bounded automata or context-sensitive languages.

That ill is closed under union 1s eaBy to see. The construction goes

as follows:

Theorem 5: LB is closed under U.

Proof: Suppose A, BE IB. Then A = T(M), B = T(N) where M =

<K, [, f, d, Q, F>, N =<L, EI, f', d l , R" G>. Assume K()L = ¢I

and M and N have the SaJre marmer of acceptance. Then M' = KU LJ

'UE', rur', dUd', QUR, FUG> 1s a LBrA such that T(M') = T(M)UT(N).

Often it will be convenient to have extra storage space or ITD..J.ltiple

tracks at each node of the tree. The same technique that Myhill (1960)

used for linear bounded autonaton can be used for these tree autorr:a.ton to

show that ITnllti-track LBTA are essentially the same as LBTA. This tech

nique is to make the alphabet consist of new symbols which are columns of

the old symbols. The transitions of a LBTA can then depend only on the

symbol present on one track or on any combination of the symbols on the

tracks at that node. Since rmllti-track LBl'A are equivalent to LETA we

Vlill use multiple tracks when convenient. Note that in the proof of

Theorem I we could have used a 2 track DLBTA but instead modified the

alphabet.

",
'"

sectton. 'ro do this, we create a U3TA which first tl'UVCJ':3es the tr'ee in

enrlorder fa"hlon makIng a copy of the input tree on a second track. 'lh.m

it simulates a WTA M on the first track and if M would accept the tree

returns to the top of the tree and starts over on the second track with

a LETA N. If 1'1 also accepts the tree then the new LETA does. This LB'ff\

will accept T(M) nT(N).

Theorem 6: LB (DIS) 1s closed under intersection.

Proof: Suppose A = T(M), B = T(N) with M = <K, [1) rl' d
l

J (~J I,'> and

14 = <L, [2' r;.;, d2, R, G>". Assume KnL = l1J and both M and N

accept trees by moving past an endmarker in a final state.

Let ri = {a' : a f l }, f 2= {a' : aer21, fl = riUf2urluf2" The

new symbols will be used to nark the top node of the tree. Let p, qo'

Let M' = <KULU{p, qo' q1,
(qOJ, G> with d

q2 J, E
1
UE

2
,

defined as follows:

d{qo' a) = (q1' ai, 0) aEr
1u r

2
a

d(q1' a) = (q1' 1, 1) aef'

d(ql' $) = (q2' $, -1) These states do the

a a
endorder traversal tod(q2' 1) = (q1' 2, 2) aEr'

~)
a copy the input onto

d(q2' = (q2' a, -1) aer
1u r

2
a' a' track 2

d(Q2' 2)3(q, aI, 0) each QEQ

for qEK,
a " $ on track 1

d(q, a) = d
1

(q, a) leaving track 2 untouched

d(q,a') = ({q' , b' n) : (q', b, n) E d
1

(q, a) J track 2 untOllC] ;(:,:,

19

for qEK

d(q, $) 3 (p, $, -1) if d
1

(q, $)3(q', $, lor2)q'EF

3(ql, $, n) if d
1

(q, $)3(q', $, n) n = 0, -1

·d(p, a) = (p, a, -1) aE r lU r2

d(p,a') 3(q', ai, 0) each q'E R

for qEL, a on track 2

looking at track 1

d(q, a) = d2 (q, a) leave track 1 untouched

d(q,a') = {(ql, b l , n) : (q', b, n)Ed
2

(q, a})

Then T(M') = T(M)nT(N) since the accepting states of M' are those of

N and the only time M' simulates N is if the tree would be accepted

by Me

In the above: proof if both M and N are DLBTA then M' Is also

deterministic so D ~ is closed under intersection.

Corollary 1: IE (DIE) is closed under intersection with a recol?7l1zable

set.

Given two alphabets [1 and 1:
2

we call a mapping g:rf -+ I:~

a projection if' g(A) = A and (g(T))(W) = g(T(W)) for all W. In

other words a projection is just an extension of a mapping from L
1

into

L
2

to trees over these alphabets. So every proj ection can be defined

in terms of this rrap from L
1

into 1:
2

"

Theorem 7: LB (DLB) Is closed under inverse projection.

Proof: Suppose U <;;; E~ is in IE and g: E
1
~ E

2
is a projection then

g-l(U) is in LB. Let U = T(M), M= <K, [2' r
2

, d, QJ F>. Assume

L1nr2 = 4> Let N = <K, ~l' r2UI:1, d', Q, F>

where d l (q, a) = d(q, b) if aEE
1

and g(a) = bEr
2

= d(q, a) if aEr
2

Then TE T(N) iff g(T)ET(M) -1so g(T(N)) = T(M) = U or T(N) = g (0).

20

Once :-tf",a1n II' M ,1~; determ1nistic
J

N wtn he l ' t d . (" l m 1 1 1 1 ~ t j c .

'l'heorem 11: 1.11 1~; cJosed under project10n.

Proof'; : ; u p p o ~ ; e g: >:1 ..- >:2 and 1I C; l:f la 111 l.B. Let IJ = 'j'(M) wlLlI

M a LB'l'A. Define a LBTA N which first traverses an input tree "(E }:~

replacing the label at each node by a possible preimage (nondetenninisti

cally chosen) Imder the projection g. N finishes this changing of

labels at the top of the tree and then runs the automaton M. Any tree

nE Ef such that g(n) = T can be obtained by N by a suitable choice or

pre1mages anrl if M would accept this tree IT then N accepts "(so

Ton =g(1'(I'I)) = g(U).

Before 'tie can prove that DLBTA I S are closed under U and proj ectior,

we need to ~ I O W that we can eliminate looping in DIBTA' s and so force

each DLBI'A to halt on every input tree. This will also' enable us to prove

that DIBTA' 5 are closed under complement. To do this we first show that

every LETA has an equivalent ImA which halts on every input tree by moving

past an endrnarker. In Theorem 3 we established a bound on the number of

possible steps that could be needed in a derivation to determine if an

input tree 1s to be accepted by a particular LBTA. For DIBTA '5 this means

that if a derivation has exceeded this bound then it is- in a loop and

so will neV8r halt. Our current objective 15 to show that a Lffi'A can be

IDJdified to keep count of the n1.1Iti:ler of steps or configurations it goes

through so that when it reaches the bound it can stop and so halt on

every input tree. The following theorem will give us simpler LBI'A's '.'lith

which to work.

Theorem 9: If M is an IBrA (DLBTA) there is an equivalent LBTA (lJIBr!I)

N such that ['or all derivations of N on an input tree T, :1 either

doesn't halt or leaves the tree by moving past an endmarj{er.

Proof: Let M = <K, I, f, d, Q, F>.

21

Assume that - M accepts by moving

·,-_past an endmarker. When inputed 1" there are two ",ays that M could
"

fail to satisfy the condition stated above in a derivation :for T.

Either M might halt in the middle of the tree because d(q,a) is lUlde-

fined for some q and a or .M could back up off the top of the tree.

These possibilities can be eliminated if transitions are defined for all

states and symbols of r and it the top node 1s specially marked and the

automaton not permitted to back up when at that node. '!his can be done

as follows:

Let N = <KU(p,r}, 1:, r', ct ' , {r), F> with r l = rU{a l aEr} and

d I defined by

d l (r,a) 3 (q,a' ,0) each qEQ, aEI

d'(q,a) ={d(q,a) if d(q,a) t ~

(p,a,2) if d(q,a) = ~
qEK, aEf

d l (p,a) = (p,a,2) a E r'

d ' (q,a')3 (q',b',n) if (q',b,n)Ed(q,a)

l(p,a,,2) if (q',b'-1)Ed(q,a)

and n t -1

an;y b, q'

T(M) = T(N) since the accepting states are the same and all changes result

1n the state p which is not accepted but causes N to move past an

endmarker. So N and M are equivalent and N has the desired condition.

In the next theorem Ne will show how given a LETA M, to construct

an equivalent LBI'A M' which \,1111 simulate M aYJd keep COtmt of the number

of configurations M goes through and if the COtmt gets too big for an

input tree, W will halt in a nonaccepting state by moving past an endrrarker.

M' \1111 then be a LETA \1hich halts on every input by moving past an end-

marker. M' will have basic routines \'Jhlch will be executed as follows:

1) M' \'11.11 make a move of M

2) W will store the cUTTent state and trace a path back

to the top of the tree

3) M' will add I to the count and check to s e ~ l r ~ L the

count is smaller than the bound

4) W will f'ollow the path back to its place in the tree and

continue with step 1

Each 0(' t h e s l ~ routines except possibly step 1 will be u f ~ t c r m i n i s t i c .

'This construction is essentially the same as the Cone used by KurcrJa

(1964) to prove the same result about lbals. It is possible to do the
I,

same sort of thing f'or LETA I S because the nodes of the input tree can be

ordered in such a -way that they can be used for counting the number of

configurations of the original LETA.

'The nwnber of possible configurations for M is k(gn)(n+m) where

k = number of states in M, g = number of symbols in r minus 1, n =

number of nodes in the input tree, and m = number of nodes added as end-

markers. Since we haven't allowed LETA I s to change the endma.rkers we only

have n nodes available to use for the cotultlng and so we need the hOLmd

in terms of n -and not involving m. Since m ~ n+l, kgn(n+m) ~ kgn

n
(2n+1)< 3kng. This number is easier to use as a bound than the more

exact (2n+l)'kgn. If TET(M) it has a derivation of less than 3kngn

steps so we will have M1 stop all derivations which use 3kngn steps

of M. Because the nodes of the input tree can be linearly ordered they

can he used to COlU1t to (g)n in base g. An extra track at each node

will be used for this counting. Also an extra track at each node will

be used to count the number of tiJJes (g)n is reached. When this COLU1t

reaches 3kn, M' will halt in a non-accept1ng state. The nodes of the

input tree will be used in reverse preorder f'ashion for this counting

procedure.

Theorem 10: Por every IBTA (DIBTA) M there is an equivalent IBTA (DLBTA) ;.:'

23

which halts on every input tree by moving past an endrrerker.

Proof: Assume M= <K, E, r, d, Q, F> and that M satisfies the

conditions of the previous lernrra. Let K = ql'

use 5 tracks for the following purposes

track 1: symbols of input tree

, qn' M' will

track 2: used by counting routine to order nodes of' tree

track 3: first counting track for gn

track 4: used to COilllt number of times gn reached on track 3

count up to 31m times

track 5: store state when go to counting routine

Let r= {a' : aEr}, r" = a": aEr}. Symbols in r are used to mark

the top node and those in r lT are used to mark paths in the tree as needed

by M' to find the place of M in the tree after attending to the COlU1t-

ing procedure.

Let r l = rurUf"UKU{Q, 1, "'J g-llU{l, "OJ 3k}, and

K' = KU{p, PI' ... , Pn , r, s, sO' 51' ••• , 5a}'

Now let M' = <K I
, E, f', d', {sOl, Ii'> where d' defines the basic

routines of W; These transitions are listed below. Since 5 tracks

are involved assume that d' (q,x) means that x is on track 1 unless

otherwise stated.

for each qEQ, and aEI: d'(sO' a)3(q, ai, 0)

MI makes a move like M by

for each qE K d' (q,x) 3 (Pi' y, n) if d(q,x) 3 (q1,y,n)

d'(q,x')3(Pi' y', n) if d(q,x) 3 (qi'y,n)

MI stores the state

x
for PI' ... , Pn d' (Pi'X) = (s1' qi' -1) with qi on track 5 and

leaves a path back to the top of the tree by

dl(Sl' x) = (51'

el' (Sl' x') = (52'

Xli, -1)

X I, 2)

2
with 2 on track 2

The counting routine for M' is

= (52' x, 2)
2

x " $
2 on track 2

d' (s2' $) = (s3' $, -1)

d' (53' x) = (52' x, 1)
2 1

tracks 1 and 2

x) = (s~, x, 0)
1)6

node found to add to COlUlt
16 means blank 01) track 2

add 1 on track 3

= (r, 1+1, -1)d'(Slp i)

dl(sl!' x') =
g-1

Xl, 0)

o

if i on track 3 is less than g-l

numbers on track 3, overflow of (g)t1

d'(S4' x) = (53' x, -1)
g-1 0

normal carry in count

overflow of track 3, add 1 to track 4

(r,)6 ,0)
1+1

d'(sS'

d I (55 J

d' (58'

d I (58'

x) = (55'

$) = (s8'

2) = (s5'

1) =
i

x, 2)
2
$, -1)

1, 1)

x 1 $, 2 on track 2

2, 1 on track 2

not at top ncxie and 1 < 3 k ~ track 2 and 11

count ok

1) = (s8')6 , -1)
3k 3k

not at top ncxie tracks 2 and 4

X') =
1

3k-l

(p,x'J 2)
)6
3k

count too high tracks 1, 2 and 4

x')
1
i

= (r, x' , 0)
)6
1+1

i<3k-l count okay

d' (p, x) = (p, x, 2) move past endmarker

\.oShen count is okay M' traces the path back to place in tree

d l (r, x) = (r, x, -1)

25

d l (r, x') = (56' Xl, 1)

d ' (s6' Xli) = (56' x, 1)

d 1(5
6

, x) = (57' x, -1) track 5 blank

d 1(5
6

, x) = (qj' x, 0) qj on track 5
qj

dl(S?, x) = (56' x, 2)

Since no new final states are added to M' T(M') <;;. T(M).

Also if a tree 1" E T(M) then M accepts T by a. der!vation of less

than 3lrngn steps so T(M) c; T(M') and M and M' are equivalent.

Furthermore M' halts on every input tree by moving past as endmarker.

If M 1s detennin1stic so is M'.

This theorem enables us to prove the following:

Corollary 2: DLB 15 closed under canplement.

Proof: By Theorem 10 we nay asS\.lJ'Ie that M = <K, 1:, r, d, {q} , F> is a

DLBI'A which halts on every input tree by moving past an- endmarker in some

state. Since M has only one possible derivation for any tree inputed,

any tree TE E# 1s either accepted by M or rejected by M because M

leaves the tree in a non-accepting state. So M' = <K, 1:, r, d, q, K-F>

will accept E# - T(M).

Corollary 3: Dl.B is closed under union.

Proof: Assume M and N are DLBTA which halt on every input tree by

moving past an endmarker in an accepting or rej ecting state. Let P be

a DLBTA which copies the input tree onto a second track (as in Theorem 6)

and then starts M on track 1. If M accepts the tree than have P

accept the tree'. If M would reject the tree have P retlllTl to the top

node and start N on track 2 accept:\nj!; the tree if N would. Then

T(P) = T(M)UT(N) end P is a DIETA.

,
i

26

We will next show that DLB is closed under projection. Suppose

. #
A = T(M) ~ El with M a DLBTA and g. E

l
~ E

2
a projection. The

intuitive idea of an automaton N to accept g(A) 1s to have N list

at each node" of an input tree the possible elements of L
1

which 3.1'('

projected onto the label of that node, and then in an orderly fashion try

each possible pre1mage tree to see if M would accept it.

If M would accept any preimage tree of the input tree then have

N accept the tree. All possible pre1mage trees can be tried before II

rejects a tree since DLBTA's always either accept or reject an input

tree.

Theorem 11: Suppose A = T(M) ~ rf, M= <K, r, f, d, {qol, F> a DLBTA

and g: E ~ ~ E ~ a proj ection. Then g(A) £:: E~ is accepted by a DLBTA.

Proof: Assume M halts on every input by moving past an endmarker in

an accepting or rejecting state. Let rn equal the largest ntunber of

elements of 1:1 napped onto a single element in I:
2

.

Construct a DLBTA N = <K'UK, 1:
2

, 1:2Ufl, d', {sOl, F> using

m+2 tracks Which works as follows:

1) N traverses the input tree in endorder using tracks 2 to

-l(
mH to list g a) at each node labeled by aE E

2
• Use a

marker like ' above a symbol in the list to ind+cate the

cUITent pre:!lnage for that node. Initially mark the symbol

on track 2 and place this symbol on track 1 so that when

the top of the tree is reached a first possible preimage tree

is on track 1.

2) N runs M on track 1

3) if M would accept this tree then N does so

4) if M would reject this tree then N adjusts the markers

at each node to the next possible pre1mage tree. If all

27

possibilities have been tried then N rejects the tree. if

not then- N finishes traversing the tree in endorder

placing the marked symbol at each node on track 1. When

H reaches the top node it continues with step 2.

Track m+2 is needed to store temporary information when N traverses

the tree. The way in which all possible pre1mage trees are tried before

a tree is rej ected by N can use sarre explanation. The fact that the

nodes of the tree can be ordered t.y N (here in endorder) permits us

to think of the tree as just n places with up to m choices for each

place. If we number the places 1 to n we can systematically try all C ~ -

bintaions of the symbols listed. When the symbol in the i th place is

changed then all possible choices for each place before i must be tried

again.

Step Ii is formalized below where p, pi J r, r' J and sliK for

qEK d'(q,$) = (p,$,-l) if d(q,$) = (q',$,l or 2) with q'EK-F

d' (p, x) = (p, x, -1)

tracks 1 and m+2, x " $

tracks 1 and m+2

x '! top, tracks 1 and m+2

d' (p, top) = (pi, top, 1)
1

d' (pi, x) = (pi, x, 1)
1

ctl (pi, $) = (r, $, -1)

d' (r, x) = (pi, X, 2)
1 2

d' (r, top) = reject tree

d' (r, x) = Cr l
J "1+1' -1)

."J. "J.
move marker down one
rest of markers on tree

fixed so continue
putting symbol on track 1
for each ncx:le

d'(r, x) = (r,"1.' -1)

a a!1 -1

d' Cr' , top) = (qo' top, 0)

d I Crt, x) = (5, x, 2)
1 2

d' (r' J x) • Cr' J "1' -1)

d'(s, $) = (r', $, -1)

.. '."

rrarker was on la.:,t. sYJI~;1)1 :tl.

that node so start over

start M on this prei.rrage tree

tracks 1 and m+2

2 on track m+2

d'(S, x) = (s, x, 1) tracks 1, m+2
1

If T E T(M) then g(T) E T(N) since T is one of the possible preimage

trees for g(T) and the final states for M and N are the same. So

g(A) ~ T(N) . If T' E T(N) then there is T E T(M) such that geT) = T'

so T' E g(A) and T(N) C g(A) and so the proof is complete.
. -

We could now give an alternate proof for Theorem 1. J»ner (1970)

gave a characterization of the recognizable sets as the least class of

a,ets containing sorre special sets E
t

(0', aI, a II) and closed under the

Boolean operations U, n, canplement and arbitrary projection. Since

we have just shown that OrB is closed under U, n, cOJll'lement and pro

Jection we just have to show that Et(a, a', an) is in OlE. For any

oJ a' J aile 1: EE(a~ a', all) is the set of all trees T over I:

such that for some wedom T 'f(w). 0', 'f(wl) = cr', and T(w2) == all .

It is easy to construct a DIBI'A which traverses the tree looking for a

node labeled by a and When it finds one checks to see if the successor

29

nodes are labeled 0" and 0'''.

We can 5urmat'ize the closure properties of the classes of tree

languages LB and OLB in the following table.

eration LB DLB

union yes yes

intersection yes yes

n with
reco!!11izable yes yes

set

complement ? yes

projection yes yes

inverse
projection yes yes

Section III: Relation to Iba's

So far we have not discussed the question of whether or not non-

detenn1n1stlc and detenninistic linear botmded tree automata are

equivalent. Since this same question for l1near bounded automata is

an open problem and other results about LBTA's follow so closely the results

about Iba' 5 we do not expect an easy answer. It Is not surprising then

to find that this question reduces to the same question about Iba's. We

will show that nondetennin1stic and detenn1n1stic LBTA' s are equivalent

iff nondetenn1n1stic and detenn1n1stic 100's are equivalent. In order to

prove this we will first show that given an LBTA Mwe can construct an

Iba N which processes trees written in Polish notation· and simulates the

action of M on the trees so that N only accepts strings which are the

Polish notation of trees T where T is accepted by M. Also we will

show that if L is a lilnguage over Z accepted by an Iba and $It Z

then there is an LBl'A N which accepts the set of trees whose ·Polish nota

tion is (a $...$: aEL, tal m n) •
l'ii,r

30

That is if
"

-a a then the " c ~ " " tren, - l' .. n UllI.J '-

is accepted by N.

The Polish notation referred to here is Polish prefix notation which

really just amOlmts to writing the nodes of a tree in preorder. Finally

we show that if M 1s a dlba such that every a in T(M) 1s the Polish

prefix notation of a tree over L with endmarker $ then there 1s a

DL8TA N which simulates M an:i accepts just the trees whose Polish

notation M accepts.

Theorem 12: Let L C l:' be accepted by an 1ba M and $ll! l: then

IT : Polish notation of T is • $•••$ where oEL and 1.1 = n}
n+1

is accepted by a IBI'A N.

Proof: Assume M=- <K, r, r, d, Q, F> and d:K x r -+ P(R x r x {L,R,C}).

Let l:' = lx' : xEl:} be a·marked copy of l:.

Let N = <KU{p, r, 5, t, Z} J 1::, rUl' J d' J {p}, F> where ct' 1s

defined by

d' (p, ·x) ::II (r. x', 2) for XEl:

d' (r, $) = (s. $, -1)

d' (s, x) ~ (t" x, 1) for xEl:

d' (t, $) ~ (z. $, -1)
tree in correct fOrnJ

d' (z, x) ~ (z. x, -1) for xEl:

d'(Z.X')3(Q. 0) for each QEQ
go back to top

x,
of tree and start j·1

d' Ct, x) = (s, x, 2) for each x E l:

this takes care of case

where M would rrove past

31

am for each q E K

d l (q, x) = {(q', Y. n) (q', y, m) Ed(q, x) and for m = L n = -1,

m = en'" 0, and m = R n = 1}

N first checks to see that the input tree 1s a comb tree of the

proper fann and then s:1rmllates M on the leftrIDst branch of the tree. So

N accepts the set of trees described above. If M is a deterministic

lba (dlba) then N is a DLBrA.

Theorem 13: Given a LBI'A (DLBrA) M = <K, E, r
J

d, Q, Jo'> there 1s a

lba (dlba) N such that T(N) = (a : a is Polish notation for a tree T

with TET(M)}.

Proof: 'The idea 1s to equip N with routines to process the Polish nota-

tion strings in order to deternrl..ne where the right subtree of a node begins

and which symbol is the proper antecedent of a node. This will ensure

that the proper nOde is found when the lba 1rn1tates a rove of the LBrA

that was a back-up or rove into r1ght subtree.

Assume K = {ql' " ' J ~ } . Let K' = KU{pl' "OJ P
n

, tl' .. OJ tn'

p, f, r, r1' "'J r6' s, 5', 51' '.'J 56}' and N = <K', 1:, ru{-, 1, 2}

UK, d', Q, B'U{p». N will be a 2 track lba with d' defined as follows:

for each (q', cr', l)ed(q, cr) cr;l $ let (q', cr', R)Ed'(q, cr) in N

for (q', cr', O)ed(q, cr) crer let (q', cr', C)ed'(q, 0) in N

for (q', $, n) ed(q, $) n a 1 or 2 in the LBrA M

let d' (q,$)3 (p, $, R) if q'e F

(f, $, R) if q'/- F

and d'(p, x) = (p, x, R) all x
an endJmrker

d' (f, x). = (f, x, R) all x

for (qi' a', 2)ed(q, a) with a" $ in M

let (r, a', R)ed'(q, a) tracks 1,2

%

32

d'(r, x} = (rlJ x, R) x # $ tracks I and 2
1

d'(r, $) = (r
3

, ~,L) tracks 1 and 2

d' (rl , x) = (rl , ~,R) x" $ on track 1

d'(rl , $) = (r
2
, $, R)

x
d'(r2, x) = (rl , 2, R) tracks 1 and 2 x" $

d'(r2, $) = (r
3
, ~, L)

d' (r
3

, 2) = (rq, 16, L) track 2 16 stands for blank

d'(r
3
, 1) = (r

5
, 16, L) track 2

d'(r
3
, 16) = (r

3
, 16, L) track 2

d'(r
3
, qi) = (Pi' 16, R) track 2

d'(r4' 1) = (r
5
, 16, L) track 2

d'(r4' x) = (r4, 16, L) x = 2 or 16 track 2

d'(r
5
, n) = (r6, n, R) n = 1 or 2 track 2

d'(r5, qi) = (Pi' 16, R) track 2

d'(r6' 16) = (r6, 16, R) track 2

d'(r6, 0) = (r2, 16, R) track 2

d'(r
5

, 16) = (r
5

, 16, L) track 2

and d' (Pi' 16) = (Pi' 16, R) 16 on track 2

d'(Pi' 0) = (qi' 16, R) 16 on track 2

As can be seen a rove into the right, subtree by the LBrA is rathe!" com

plicated for the 1ba.

For (qi' d', -1) d(q, 0) a routine similar to that given above

is needed. It woiJld also use 2 tracks, the states 5, 5', 51' 000' 56 to

locate the proper antecedent node in the tree and the states t
l

, 0_00, t
n

to carry the next state fran the node a left to the node located by the

33

So for (qi' a', -l)Ed(q, a) in M

let (5, a' L)€d'(q, aj in N u5ing tracks 1 and 2•
qi

and d I (s, $) = (5' , $, L)

d' (5') $) = (51' $, L)

d ' (5', a) = (5~, a, R)
1

d ' (5, aJ = (5~, a, R)

1

d' (51' $) = (51' $, L)

d'(Sl' a) = (52' a, L)
a " $

d ' (52' $) = (51' $, L)

d 1(5
2

, aj = (53' a, R) a " $
1

d' (53' $) = (5~, $, R)
•

.">::';:·:·~:·:I? d' (53' a) = (53' a, R)
"" .. 1I •

d' (53' a) = (5~, a, R)

1 •
d t (s.qJ $) = (55' $, R)

1I •
d'(5~, a) = (53' a, R)

a " $1I •
d' (54' a) =(55' a, R)

1 •
d' (5 ~ , a) = (54' a, R)

• •
d'(5

5
, a) = (54' a, R)

a " $1I •
d' ("5' $) a (56' $, L)

1I i

d' ("5' ~) • (55' a, R)
•

d' (55' a) = (55' a, R)
1 •

34

d' (3
5

, o) = (t
1

, 0, L)

qi)j

d I (s6' 0) = (s6' 0, L)

• •
d 1(56' 0) = (52' 0, L)

I I

and finally

d I (t
i

, 0) = (t
1

, 0) L)

•)j

d'(t
F

0) = (qi' 0, L)
I)j

TIle ~ the Iba N locates the proper antecedent of a node in a tree

1s to start at -the node and move left until two consecutive symbols (;is)

are encountered, say x
1

x
2

0 '!he lba stops at Xl and rJ)Jves right until

the end of the subtree begun by Xl is encountered, then gs:>es left again

until the next two synDols ("'$) are reached. It continues in this WOi/ until

when IIDVing to the right to c"""lete a subtree begun by x the ~ . on

track 2 15 fOLU1d. Then the Iba uses the states t
i

to go back to x

which 1s the proper antecedent node and so go on to the next rove of the

IllTA.

With d l so defined N is forced to process each string a just

as M would process the tree :r which ha.s Polish notation a. The

state p is the only new final state and 1t is only used when M would

. have IIDved past an err::lnBrker in an accept:lng state so that the lba N

does not continue process:lng the str:lng but instead roves off the right

end of the str:lng in the state p. So the lba N properlY s1mulates the

LBl'A M.

Corollary 4: If an LBl'A Mprocesses a tree :r with n nodes in f(n)

roves then the lba N described in the theorem will process the string a

which is the Polish: notation of :r within f(n) ·n2 moves.

Proof: A move into. the right subtree by the IllTA M causes the lba N to

, ..

35

reverse direction:; at m o ~ 1 t n times. For' it starts mavinv: 1.0 thr: 1"1V)Jt

anti !'CVer3CG eactl t1mc it hIt::; the I'lgilt end of a subtT'{~e (? CCJn:;(:cIJL i'J',"

$'8), then goes to the left until it reaches the top node of this subtJ'/:,',

goes one more square to the left to see if this node is the one started

from, if not then goes right to the next right end of a subtree, continu-

1ng until the whole left subtree of a node is found. Each time the direc

tion 1s reversed the Iba switches at a different square than previousl:;

so there are at most n changes in direction. Going in either direction

the Iba can take at mst n steps since the length of the input is n so

it takes at most n
2

Troves of" the Iba to simulate a rrove of the LBI'A 1r..t'J

the right subtree of a node.

S1m11arlYJ on a back-up lOOVe the Iba N

1) goes left until two ("'$) symbols together, say "'J,

ignoring symbols with • on track 2

2) goes right until the end of the subtree begun by x,

if don I t enc01.m.ter q1 on track 2 go to step 1

3) if encounter qi on track 2 then return to symbol marked

by 1 on track 2 - this is antecedent node

Again, each square where N will reverse direction is different, so at .

roost n
2

rooves of N are needed for this one move of M.

All other rroves of Mare s1Jnulated by N in one m::>ve.

This corollary shows that the sllrulation of LBTA' s by Iba' s is

reasonably efficient, although the details of the s:!mulation look messy

when written down.

Since Polish prefix notation just alroWlts to preordering the nodes

of a tree it is possible to s1Inulate a dlba by a DLBTA.

Theoran 14: If M = <K, EU{$J, r, d, (qlJ, F> is alba (dlba) such

that a in T(M) is the Polish notation of a tree over r with endnarker

I 36

$ then there i5 a UJI'A (DUJI'A) N such that T(N) = h Polish notation

of T is in T(M) 1.

Proof: Suppose K= {ql' ... , ~l.

Let N = <KU{P1 , "0' Pn, r1 , ... , rn, 81' "0' Sn' 1:, rUU,2}, d', {ql}' F>

where N uses 2 tracks and d I is defined in the following manner.

For each qEK,

let d'(q,

xE r such that

x) 3 (Pi' $, -1)

(qp x', 1)
1

(qi' x', R) E d(q, x)

if x = $

ifx"'$
1 on track 2

find next node

For-each Pl' "". Pn

let d' (Pi' x) = (qi' x, 2)
1 2

d' (Pi' x) = (Pi' x, -1)
2 II!

tracks 1 and 2

tracks 1 and 2

in. preorder or Polish

arrangement of

nodes of tree

For each qEK, xEr such that (Ql' x' ~

let (r
i

, x', -l)Ed'(q, x), n == 1,
II! n

For each r
l

, ... , rn, 51' • • OJ sn

let ct' (rp x) = (qi' x, 0)
II!

ct' (r
1

, x) = (si' x, 1)
2 1

L) Ed(q, x)

2 or blank
find previous

node in Polish

arrangement of

nooes of tree

d'(si' $) = (qi'

d'(si' x) = (si'
n

$, 0)

x, 2)
2

x ,. $ n • 1, 2 or blank

For each qEK, XEr suchthat (qi' x', C)Ed(q, x)

let (qi' x', O)Ed'(q, x)
II!

d' forces N to .copy faithfully the action of M and the extra states

PI' "'J Pn, r1, . 'OJ rn, 81, "'J Sn arxi the second track are used only

to locate the correct previous and .naxt node in a preorder or Polish

arrangement of the nodes of the tree. Since the final states for M and

N are the same N. ·will accept a tree T iff M Would accept the Polish

notation of the tree t

was.

37

Note that N will be determlnistic if M

COJ'ol1ar'Y ~j: In theoran III if the Ibu (cDba) M on input Cl wlt..h Ittl '" II

takes fIn) steps then the s1nn.lJ.ation by the l.BTA (OlETA) N takes at lTDst

f(n)'n steps.

Proof: One move of the Iba requires at most the depth of the tree number

of steps to locate the proper previous or next node and the depth of the

tree 1s < n.

The previous theorems now enable us to prove the following theorem.

'Theorem 15: LBl'A I S and DIBI'A IS are equivalent iff Iba I s and dlba' s are

equivalent.

Proof: Assume that for every l.BTA M there is an equivalent Dl.BTA M' •

Suppose N

lal=nl.

is an Iba. By '!beorem 12 there is a l.BTA N1 such that

Polish notation of T is a $00.$ where aET(N) and
n+l

By assumption l.BTA and Dl.BTA are equivalent so there is a

Dl.BTA N
2

such that T(N
2

) = T(N
1

). By theorem 13 there is a dlba N3

which accepts the set (6: 6 = a $ •••$ is the Polish notation of ,

with ,E T(N
2
»). A dlba N

4
to accept T(N) is obtained by having N4 add

a $ to the end of the input string for each syntJol in the input, add

one extra $ and then start N
3

on the beginning of the resulting string.

'!ben T(N
4

) = '(a: a $00.$ET(N
3

) with lal D n) = T(N). Since every
n+l

dlba is also a Iba this proves one half of the theorem.

Conversely,. assume that Iba and dlba are equivalent and let N be a

l.BTA. By theorem 13 there 16 a Ibs N
l

such that T(N
l

) = (a : a is Polish

notation for a tree T w1th , T(N»). By assumption Iba' s and dlba' s

are equivalent so there is a dlba N
2

such that T(N
l

) = T(N2). '!ben by

theorem 14 there 1s a Dl.BTA N
3

such that T(N
3

) = h : Polish notation of

38

• is in T(N
2

») = T(N).

Since also every DIBrA is a LBTA the theorem 1s proved.

Since the languages defined by Iba I 5 are just. the context-sensitlve

languages and dlba lOS are closed under canplement, this theorem provides

a new viewpoint for the complementation problem for context-sensU!ve

languages. r'erhaps thinking in terms of trees will simplif'y the probler.:.

Before we can hope to make any progress more examples of interesting sets

of trees are needed since all the tree sets studied so far can be accepted

by nIETA's.

So far we have not considered what types of languages can be obtained

as the yields of.sets of trees accepted by LETA. l))ner (1970) showed that

the yield of a recognizable set 1s a context-free language. A sjmple

example will show that even sets accepted by DLBTA do not necessarily

yield context-free languages. Conaider the set A = {alIT, IT] : IT E{a, b}#,

IT ;I- A}, Let L = (yld(.) : TEAl. Then L = {ww: w 1s nonenpty worn

over {a, blJ is not context-free (see Chansky (1959». It is tedious

but routine to construct a DLBTA to accept A. '!he idea 1s to have the

DIBTA traverse the two subtrees in endorder fashion comparing one "node

at a time. A second track will be needed by the automaton to leave paths

to the current node in each subtree as it lIXlves back and forth each time.

Is every context-senaitive ~ the yield of a set accepted

by a lBTA? We Imow every context-sensitive language is defined by a

linear bounded automaton. We can construct an lBTA which When inputed

the tree

. I

Figure 1

,.. 39

m1m1cs the actlon of the linear bounded autanaton (lba) on the strlng

a
l
~ ... an" A tree of this form is called a corrb tree.

For a l;lr1ng. ae1:* and a nUJ1'tley' n" 1 we can r1ruJ a treC! wl1,11

at lca:.;t n nodes that has yield a. For exanple) for 0. = :dJii anu II = 10

one such tree is

This ability to get as TInlch space as wanted in the interior of the tree

will enable us to s1nullate 'lUring Mach1nes acting on strings. So we can

shoW

Theorem 16: Every phrase structure language ls the yleld of some tree

set accepted by a DUlTA.

Proof: Every phrase structure language C E* ls the set accepted by a

determin1stic Turing Machine. Glven such a Turing Machine M we will

construct a DlBTA N which uses the nodes of the tree to s1mulate the

actlon of M on the string that ls the yleld of the tree. N will be

c o r ~ t r u c t e d to work on trees that have elE!l1ents of 1:: only on the

frontier of the input tree, a spec1al symbol S ;. E on the root of the

tree and the symbol * ~ E on all other nodes. For a partlcular Turlng

Machine M and a string • E E* there ls such a tree that has as many

nodes as the number of tape squares used by M with1nput ••

The DUlTA N will linearize the nodes of an input tree by using

endorder and will start processing each tree by moving the symbols making

up the yield onto the begl.nn1ng nodes of the tree (In endorder). Once

the yleld ls placed on the begl.nn1ng nodes N will move to the first node

and begin to 1m1tate M. Each transltlon of M will require several trar:-

40

sitions in N to locate the proper previous or next node before changing

into the new state of M.

The fact that trees can have long paths without contributing a

corresponding number of characters to the yield of a tree resulted in our

being able to simulate turing machines. If we restrict the trees in such

a way that the number of nodes in a tree Is related to the size of the

yield then only context-sensitive languages are obtained as yields. One

such restriction is to require that all nodes I1Dlst have either 0 or 2

successors. A set of trees will be called 0-2 branching if every tree

in the set is such that each node has either 0 or 2 branches. l,'Jith these

restricted sets of trees we prove:

Theorem 17: L Is a context-sensitive language iff L is the set of

yields of a set of 0-2 brahcning trees accepted by some LBTA.

Proof: If L 1s a context-sensitive language then L =T(M) Where

M is an lba. Let S, T, and * be symbols not in alphabet of L. It

1s now easy to construct a LBTA N Which When inputed a comb tree with

yield a1a2 "· .an_Ian mimics the Iba's moves on this string. The LBTA N

When inputed a tree would first check to see that it has the form of a

ccmb tree pictured in Figure I (Which is a 0-2 branching tree). N will

accept a tree only if the Iba would accept the yield of the tree. So

(yield (t) : tET(N)} = L since L = T(M).

To prove the converse, first note that if a tree T 1s 0-2 branch

ing and Iyield(t) I = n then the number of nodes in t (no endmarkers)

1s = 2n-1. Must add 2n endrrarkers to get T, so the max.1mum number of

nodes in t is 4n-1.

Now g1Yen an LBTA Mwhich accepts a set of 0-2 branching trees

an Iba N which will accept just those strings Which are yields of trees

accepted by M can be constructed. The lba N on input a, lal = n,

'II

will nondeterministically generate a sequence of lenp:tll = lln-l of tjYJ'llt)ul::

in ru{$) where r is the alphabet of M. Then N will check that

the sequence so generated 1s Polish notation for a tree l where T

1s a 0-2 branching tree with yield a (note lJ is not destroyed when

this sequence was generated). N will then s1mulate M on this generated

sequence and accept a if M would accept the tree generated. Theorem 13

described this simulation of a LBTA by a Iba on the Polish notation of a

tree.

Section IV: Tag's and DLBI'A IS

Joshi, Takahashi, and Levy (1973) studied an interesting type of

tree gramnar called tree adjtU1ct grammars. In these granmars trees are

formed by inserting special adjlmct trees into the middle of another

tree. We will next show that given one of these gremnars a DLBTA which

accepts just the trees produced by this gramnar can be constructed.

These Tag sets are of interest because they are the I1Dst complicated form

of tree set that can be shown to be accepted by DLBTA's (or by LBI'A's).

More complicated tree granrrBrS are the context-free dendrogranmars of

Rounds (1970) which include Tag's as a special case but there does not

seem to be any way to show that LBrA's could accept these tree sets.

We need to -def1ne these tree adjunct granmars. Let V be a finite

alphabet and WCV. We call W the terminal alphabet and V - W the

nontenn1l1al alphabet.

De.!'. 5: A tree adjlmct gramnar (Tag) is a pair G = (C,A) where C

and A are finite sets of trees over V satisfying

1) if yEC then yld(y)EW" and y(.) = S where S is

a distinguished symbol in V - W

2) if YEA then y(.). X then XEV - W and yld (y)EW1XW".

42

C 1s called the set of center trees and A the set of adjW1ct trees.

Suppose yEA and <EV# with «w) = y(El = y(v), v on the

frontier of y. Then y 1s adJoinable at w in 1" and 't(w, y)

is the tree obtained from < by adjo:ln1ng y at w. <(w, y) is

defined as <[w/y] [wv/<fw].

For a given Tag a = (C, A) we write < II-a <' iff for some y

and some w, y is adjoinable at w to "[and .' = .(w, y).

II-a" is the reDexive, trans1tlve closure of

The tree set of a Tag a, t(a) is defined as

"t(a) = !t'EV# : for some <EC, <II-
a

<'} .

We still assume that all trees are binary although Tag's are

usually not so restricted. An example of a Tag is G' = (G I
, A') where

S D B

1/" } /\ /\
c' = D B A' ={d B , b D }/\ /\

,
/\ /\

d d b b b D d B

An eX8Jlllle of a tree in t (a') is

S

D/""B
/\ /"-

d B b b

/\
b jD

d \

For more examples and a further discussion of Tag's see Joshi, Takahashi,

and Levy (1973).

We now want to show that every set of trees generated by a Tag is

accepted by a DrBTA. The idea is that at each node of the input tree

an adjunct tree for that label or a special symbol ** will be selected.

Then the machine will traverse the tree in a bottom to top fashion, try-

43

ing at each node to remove a copy of the adjunct tree indicated the!'e.

The symbol ** ..will be used to mean either that there are no adjunct

trees for this symbol or that this tjjne no attempt to rerrovc an adJuIIct

tree at this ncxie will be made. After as IIUlch shrinking as possible or

the tree by rerroving adjunct trees, the DIETA will check to see if a

center tree rerna..ins. If so, it will accept the tree. By systematically

trying all combinations or the choices of adjunct trees or do nothing

symbol at each node of the tree, a correct derivation (if there is one)

of this input tree by the given Tag will be fOlU1d. The provisions of

shrinking the tree at a lower node before trying at a higher node and

of allowing the do nothing symbol as one of the choices when picking

adjunct trees to try to rerrove take care of any. problems that would be

caused by any overlapping of parts of trees or copies of adjunct trees

appearing in other adj unct trees or the center trees.

Theorem 18: Every tree set of a Tag G = (C, A) is accepted by some

DlBl'A.

Proof: The DLBI'A which will be constructed will use four tracks for the

following purposes.

track 1: labels and *, s when rerrove an adjunct tree

track 2: used for ordering nodes When traversing the tree

track 3: to put selection of adjunct tree to try to rem:::>ve

track 4: to store the original labels of the tree

The general routine of the DIBrA will be

1. Traverse the tree copying the input labels onto track 4 and puting

the first choice of adjunct tree on traok 3 at each node.

2. Traverse the .tree in reverse preorder (ristlt subtree, left subtree,

node) trying to rem:lve the adjunct tree listed at each node.

When the rraclrlne reaches the root of the tree it will have shrunk

44

the tree as much as possible for this choice of adjLU1ct trees so

it will try to recognize one of the center trees. If successful J

the process ends.

3. Otherwise, travers1ng the tree in reverse preorder agpin, the

machine will restore the original labels to track 1 and fix the

next set of' choices for adjunct trees. Go to step 2.

If the most adjunct trees for any symbol 1s k and the input tree

has n nodes (not counting endm3rkers) then the above procedure will be

repeated at lTOSt (k+1)n times before the tree is finally rejected.

Suppose G is such that C = {T
I

, .,', Tn} and A = {ITI , .. " TIm}'

and the trees are over the alphabet I: Let I: I be the set of symbols

in r whlchhaveadjuncttrees. r'={ol' .•. ,ok}' k<m. Let

11' ... , lend enumerate the adjunct trees for the symbol 0
1

,

Let M' = <K, !:, r', d ' , {r}, F> be a DIETA which. runs through

the center trees in some order and accepts the input tree if 1t 1s one

of the center trees. When M' reads a label not right for the center

tree it is currently checking, it backtracks to the top of the tree

and starts to check for the next tree. If' all the center trees have

been tried, M' goes into the s.tate u.

For each adjunct tree let N
j

= <L
j

, E, f
j

, f
j

, r
j

> be a DLBTA

which tries to recognize the adjlUlct tree II
j

but does not check for

endmarkers on the branches fran the one OCcurTence of Xj = IT / £)

on the frontier of IT j . If the tree IT
J

is recognized each label on

track 1 of this adjunct tree is replaced by a it, *1' or *2 so that

these nodes will be ignored in the future. '!he "I and "2 are used

to indicate a path from the root of this a.dj lUlct tree to the OccurTence

of X
J

on its frontier (this X
j

is not replaced). '!his procedure

ends with Nj at the root of the adjunct tree in the state sJ' If

(q' ,x,n) 1f d ' (qi ,x) =

(q' ,x,n) n = 0,1,2

(pi ,x,-l) if d'(ql'x) =

(q' ,x,-l)

(q' ,x,n) 1f f/q1'x) =

(q' ,x,n) n = 0,1,2

(p' ,x,-l) 1f f
j
(ql'x) =

(q I ,x,-l)

=

=

the adjunct tree is not present, . N returns to the node it started
j

at and goes into the state s j .

Assume M' and each Nj doesn I t change the labels on track 1

except to rennve an adjunct tree. Let L =UL
j

and

P = {Pi: qiE KUL - {u, sl' o. 0' sm)) Let M = <KULUPU{q,s,t,v,\d

L, f, d, {q), F> be a DLBTA comb1ning M' and N
l

, ... , N
m

• r contains

r I and each f j and d is defined as follows:

for qiEK - {u) and x t *1' *2' *, d(qi' x) =

.j,,

for x = *,

for qi E KUL - {u, 51' '0" sm}

d(q1'*1) = (q1'"1,1)

d(Q1'"2) = (Q1'"2,2)

the transitions for step 1 iIi the general routine are

d(Q, x) = (q, x, 2) . d(Q, $) = (Q, $, -1),
)6 2

d(Q, x) = (Q, x, 1) d(q, x) = (q, x, -1) 0i ELI, x t- top,
2 1 1)6

)6
~

tracks 1,2-,3, lJ

°1 1

d(q, x) = (q, x , -IL crEE - E', X 'I top
1 l!i
l!i ""
.0 0

d(q, top) = (5, top, 0) with a=**1faEI:-['
1 l!i

a=1
1
,1fl!i C1 = aa 1

0 0

~6

the transitions f'or step 2 are

d(s, x) = (5, x, 2) d(s, $) = (s, $, -1)
)6 2

d(s, x) = (5, x, 1) d(s, x) = (t, x, 0)
2 1 1 l!i

d(t, x) = (5, X , -1) tracks 1,3; d(t, top) = (r, top, 0) tracks

"" "" x ,.. top "" ". 1,3

d(t, x) = (rj' x, 0) tracks 1,3; d(Sj' top) = Cr, top, 0)
j j 1sJ3"

d(sj' x) = (5, x, -1) x,.. top

the transitions for step 3 are

d(u, x) = (u, x, -1) x ,.. top

d(u, top) = (v, top, 2)
l!i 2

d(v, x) = (v, x, 2) d(v, x) = (v, x, 1)
l!i 2 , 2 1

dey, $) = (v, $, -1)

dey, x) = (v, 0, -1) a=**lfaEI:- E' tree will be
1 l!i a = 1

1
if 0 = 0

1 rejected if x = top
"" a because roves out
0 0 of tree

d(v, x) = (w, a -1) x ,.. top = (5,
top

0) x = top, , o ,
1 l!i l!i

~ 1j +1 1
j

< 1
end 1j +1

0 0

d(v, x) = (w, o , -1) x ,.. top = (5, top
0) x:::r top, o ,

1 l!i l!i
1 . "" ••
oend 0 0

d(w, x) = (w, x, 2)
)6 2

47

dew, $) = (w, $, -1)

dew, x) = (w, x, 1)

2 1

dew, x) = (w, a~ -1) tracks 1,2,4 x ;" top
1 II
a a

d(\oJ J top) = (5, a top, 0) tracks 1,2,4
1 II
a a

This completely defines M.

If the or1g1na1 Tag is a nice one and. 50 the adjtU1ct trees are

not intercormected a more efficient machine can be constructed.

48

Bibliogt'aphy

Brainerd, Walter S. (1969) j "Tree Generating Regular Systems ll)

Information and Control 14, 217-231.

Chomsky, N. (1959), liOn Certain Formal Properties of Gramnars ll ,

Information and Control 2, 137-167.

Doner, John E. (1966), "Decidability of the \;eak Second Order Theory
of Two Successors", Notices of Amer. Math Soc. 13, 6 3 ~ - 6 3 5 .

Doner, John E. (1970), IITree Acceptors and Sorre of their Applications" J

Journal of Computer and System Sciences 4, 406-451.

Hopcroft, John and Ullman, Jeffrey (1969), Formal Languages and
Their Re1st1on to Automata, Addison-Wesley Publishing Corrpany.

Joshi, I\ravind; Levy, Leon, and Takashashi, Masako (1973), lIA Tree
Generating Systeml

!, Automata, Languages and Progranm1ng, f'l. Nivat
ed., North Holland Publish1ng Company, 453-466.

Knuth, Donald (1968), The Art of 9arFuter Progrnmning, vol. 1 _
Fundamental Algorithms, Addison-Wesley Publ1sh1ng Company.

Kuroda, S. Y. (1964), "Classes of languages and Linear-Bounded
Autcmata", Information and Control 7, 207-223.

Landweber, P. S. (1963), "Three Theorems on Phrase Structure Granrnars
of 'JYpe 1", Information and Control 6, 131-136.

f.\yh111, John (1960), "Linear Bounded Autorrata", Wadd Technical Note
60-165, !;r1ght Patterson A1r Force Base, Ohio.

Rounds, William (1970), "Mapp:lngs and Gramnars on Trees", l'iath.
Systems Theory 4, 257-287. --

Thatcher, J. ,I. and Wright, J. B. (1968), "Generalized Finite Automata
with an Application to a Decision Problem of Second-Order Logic'!,
~ . §Ystems Theory 2, 57-81.

	Linear Bounded Tree Automata
	Report Number:
	

	tmp.1307986960.pdf.yOId8

