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Linear CE and 1-bit quantized precoding with optimized dithering
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High power amplifiers (HPA), used at transmission, add nonlinear impairments to the output signals. Through Constant envelope

(CE) transmission, distortion in the signal can be avoided without wasting power on PA linearization. A more restricted form
of CE transmission, 1-bit quantized transmission, further simplifies the RF chain and reduces the DAC power consumption. In
this paper, for CE transmission and 1-bit quantized transmission at the BS antennas, we analyze downlink transmission for low
complexity linear precoding. We observe that for small numbers of users in the downlink, correlation among the quantization error
components across BS antennas is high, deteriorating the performance rapidly as number of users become smaller. To improve
performance for smaller numbers of downlink users, we propose the addition of correlated Gaussian dither to the precoded signal
before quantization and subsequent transmission. We observe that the receive SQINR peaks for finite non-trivial dither power. For
given value of transmit power, number of BS antennas and number of users, SQINR is maximized analytically by the transmitter, to
find the optimum dither power, using the Bussgang decomposition. We observe that with the implementation of optimized dithering,
the error floor in the coded BER at high transmit power, for CE and 1-bit quantized transmissions, is pushed down significantly.
We also observe that optimum dither power increases monotonically with transmit power, with rate of increase decreasing with
increasing transmit power. Further, the optimum dither power strictly increases with number of BS antennas.

Index Terms—1-bit quantized transmission, massive MIMO, downlink precoding, constant envelope transmission, 1-bit DACs,
Bussgang decomposition.

I. INTRODUCTION

Massive MIMO is a technology for increasing receive
SNR, supporting multiple users on the spatial channel, and
improving rates in cellular networks [3]–[5]. Achieving the
best performance, however, requires implementation of higher
order modulations [6], which results in a signal with high peak
to average power ratio. This introduces in-band distortion, out-
of-band distortion and hardware impairments in the transmit-
ted signal due to usage of high power amplifier with nonlinear
characteristics [7]. Power back-off can be used to linearize the
behavior of the HPA, but it reduces energy efficiency. Digital
predistortion (DPD) of the input signal can help linearize the
behavior of PA in the saturation region [8], [9]. DPD systems,
however, cannot be directly applied to the 5G systems, as
using dedicated DPD circuitry at each element of a massive
MIMO transmitter would result in an infeasible amount of
power consumption as number of antennas becomes large.
For 5G communication systems operating at bandwidths of
100s of MHz, the DPD system would also need ADCs with
huge sampling rate and power consumption, at each antenna of
the massive MIMO antenna array [10], increasing total power
consumption significantly.

CE signals have low PAPR and thus are not affected by
signal distortion when operating in the saturation region of the
HPA, removing the need for power back-off and predistortion.
In this paper, therefore, we focus on eliminating the need for
linearization by using CE transmission at the BS antennas,
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and developing a downlink precoding algorithm assuming BS
antennas with CE constraint. We also focus on a more re-
stricted form of transmission, a 1-bit DAC implementation, at
the BS, which further simplifies the RF frontend architecture,
and reduces power consumption at the DAC for mmWave
frequencies [11].

A. Prior Work

Downlink transmission with CE precoding has been in-
vestigated extensively in prior work. In [12], a precoding
algorithm based on gradient descent was proposed to minimize
error norm of the received signal. A nonlinear least square
(NLS) based algorithm has been proposed to precode the
CE signal for transmission in [13], which has further been
improved upon by researchers in [14], implementing cross-
entropy optimization (CEO) instead of gradient descent for
the NLS algorithm. Cross-entropy optimization is used to
maximize the minimum value of Contructive interference
metric to perform CE precoding in [15]. Minimization of
symbol error rate at receiver, using projected gradient descent
algorithm has been proposed for CE precoding in [16] and
[17]. Precoding algorithms for CE transmitted signals with
quantized phases have been discussed in [18]–[22]. A special
case of 1-bit quantized precoding has also been investigated
extensively. In [29], a precoder to maximize the distance
of the constructive region from the decision boundary was
designed using relaxed non-convex optimization. In [30], the
work of [29] was improved upon through a partial-branch and
bound algorithm. Many other algorithms using relaxed non-
convex optimizations have also been proposed, [17], [23]–[28],
[31], [32]. These precoding algorithms, however, are nonlinear
iterative algorithms, with polynomial complexity with respect
to number of BS antennas, making them infeasible for massive
MIMO scenarios which may have an order of magnitude more
BS antennas relative to number of users. Linear precoding has
a complexity which is linear with respect to the number of
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BS antennas making it highly suitable for downlink massive
MIMO transmission. In this paper, therefore, we focus on
linear precoding solutions for the downlink massive MIMO
transmission.

While papers like [11], [24], [33], [34] have investigated
CE and 1-bit quantized downlink linear precoding using the
Bussgang decomposition, they have used it only up to the first-
order approximation, which implicitly assumes quantization
error elements to be uncorrelated across the BS antennas.
Correlation among quantization error elements is negligible
for large number of users. For small number of users and
high number of BS antennas, however, it has substantial effects
on performance [1]. According to [1], which used Bussgang
decomposition up to the third-order of approximation for ana-
lyzing 1-bit quantized transmission at the BS, downlink receive
performance deteriorates rapidly with reduction in number of
users, in those scenarios. There is a need, therefore, to address
this shortcoming arising in downlink linear transmission for
CE and 1-bit quantized transmission system due to small
number of users.

B. Contribution

In this paper, we use the Bussgang decomposition up
to the third-order approximation to investigate the downlink
performance of CE and 1-bit quantized linear transmission for
MU-massive MIMO. We use a Taylor series expansion of the
input-output correlation’s relationship provided by the Price’s
theorem [35], up to third-order harmonics, thereby taking into
account the correlation between quantization noise elements
across the BS antennas. Our contributions can be summarized
as follows.
• Through the use of the Bussgang decomposition, we aim

to develop a closed form expression for the signal-to-
quantization, interference and noise ratio (SQINR) as a
function of number of users, BS antennas, and transmit
power for sufficiently large number of users and BS
antennas.

• We aim to examine the deterioration experienced by
SQINR for small number of users for CE as well as
1-bit quantized transmission at the BS antennas. Dete-
rioration experienced for small number of users in the
downlink has been investigated in [1] for 1-bit quantized
transmission at the BS.

• We improve receive per-user SQINR for small number of
users by reducing cross-correlation among quantization
error vector elements across the BS antennas, through
the introduction of dither. Addition of dither to a signal
before quantization, or dithering, can be used to modify
characteristics of the quantization error [36]–[38]. Cor-
related Gaussian dither is added to the precoded signal,
before quantization and subsequent transmission, by the
transmitter, for both CE and 1-bit quantized transmission
scenarios. We use Bussgang decomposition up to the
third-order approximation to develop an analytical ex-
pression for the downlink system’s SQINR as a function
of dither power, transmit power, number of BS antennas,
and number of users. We observe that with other system

parameters being fixed, the SQINR peaks for finite non-
trivial dither power.

• We maximize the SQINR with respect to dither power
to get the optimal dither power as a function of system
parameters such as number of BS antennas, number of
users, and the total transmit power. Using the closed form
expression of optimum dither as a function of number
of users, BS antennas, and transmit power, we analyze
the received per-user SQINR and BER at the users, and
measure its improvement as a function of transmit power,
number of users and number of BS antennas. In [2], we
have presented a part of our algorithm, analyzing the
improvement in received per-user SQINR with addition
of correlated Gaussian dither and estimating the optimal
dither power, for 1-bit quantized downlink transmission.

We observe that for systems incorporating the addition of
optimal dither power, or optimized dithering, deterioration in
the SQINR for small number of users is prevented, and the
SQINR monotonically increases with decrease in number of
users. We also observe that, while the increase in SQINR
is sub-linear with respect to number of BS antennas for the
original scenario, with optimized dithering SQINR increases
linearly with number of BS antennas. Optimized dithering also
improves BER performance of the CE and 1-bit quantized
transmission systems, reducing the error floor experienced by
quantized linear transmission systems significantly. We also
examine the variation of optimum dither power with system
parameters. We observe that optimum dither power increases
monotonically with BS transmit power, approaching saturation
at high transmit power. We also observe that with transmit
power and number of users kept fixed, optimum dither power
strictly decreases with number of BS antennas.

The remainder of this paper is structured as follows. In
Section II, we introduce the downlink CE and 1-bit quantized
MU massive MIMO systems with linear precoding at the BS.
In Section III, we use the Bussgang decomposition to derive
linear models for CE and 1-bit quantized transmission which
are valid up to third-order harmonics of the output signal.
Using the models introduced in Section III, we analyze the
received signal at the users deriving closed-form expression
of the received SQINR for asymptotic scenarios with ZF
precoding at the BS in Section IV. In Section V, we measure
the improvement in per-user SQINR with the addition of
correlated Gaussian dither at the transmitter and derive optimal
dither power, or optimized dithering, to achieve maximum
improvement in SQINR as a function of the number of
BS antennas, number of users and BS transmit power. We
numerically analyze impact of dither on BER performance
of the received signal and receive per-user SQINR, along
with properties of optimal dither power, in Section VI. In
Section VII, we present conclusions derived from our work,
and directions for future work.

Notation: Throughout the paper, matrix diag(A), for a
square matrix A, equals a purely diagonal matrix with same
diagonal entries as A. As a counterpart, matrix nondiag(B) =
B − diag(B). Matrix operations R(·), I(·) and (·)∗ result
in real part, imaginary part, and conjugate transpose. The
matrix operation C ◦ D is an element-wise operation, such
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that [C ◦ D]i,k = R[C]i,kR[D]i,k + j I[C]i,kI[D]i,k, while
C◦n results in entry-wise nth power of matrix, such that
[C◦n]i,k = R[C]ni,k+j I[C]ni,k. Some other important notations
used in the paper are provided in TABLE I.

TABLE I: Table of Notations

s Symbol vector
H Channel matrix
x Transmitted vector
P Linear precoder
Pd diag(PP∗)
Pnd nondiag(PP∗)
qCE Quantization error vector for CE transmission at BS
qb Quantization error vector for 1-bit transmission at BS

Cq,CE Covariance matrix for qCE
Cq,b Covariance matrix for qb

SQINRCE Per-user receive SQINR for CE scenario at user 1
SQINRb Per-user receive SQINR for 1-bit scenario at user 1

RH I−H∗(HH∗)−1H
σ2 Dither power

σ2
opt(Nt, U, ρ) Optimum dither power as a function of Nt, U and ρ

II. DOWNLINK SYSTEM MODEL

We assume a narrowband, downlink communication model.
A BS with Nt antennas communicates with U single-
antenna users in the downlink. Complex symbol vector s =
[s1, . . . , sU ]

T is sent to the U users, such that E[ss∗] = I.
An Nt × 1 vector x is transmitted from the BS through the
narrowband channel H. The system model is given in Fig. 1.
We assume that the BS has access to complete channel state
information (CSI), and x is a precoded signal estimated using
the values of H and s. Assuming a total transmit power of ρ,
and n ∼ CN (0, IU ) as additive white Gaussian noise at the
receivers, the U × 1 received symbol vector is

r =

√
ρ

Nt
Hx + n. (1)

Transmitted signal undergoes CE quantization before trans-
mission and thus follows constant amplitude constraint at
transmission. For CE signals, therefore, x` ∈ {ejφ : φ ∈
[0, 2π)} ∀` = 1, . . . , Nt. For a vector a, with φk being phase
of the kth entry, the CE quantization operation on a gives the
output

[Q(a)]k = ejφk ,∀k = 1, . . . , Nt. (2)

We assume quantized linear transmission at the BS. With an
Nt × U linear precoder P at the BS with transmitted symbol
vector x = Q(Ps), the received signal is

r =

√
ρ

Nt
HQ(Ps) + n. (3)

Without loss of generality, the signal at the first user, with hT
1

being the Nt × 1 channel observed at this user, is

r1 =

√
ρ

Nt
hT
1Q(Ps) + n1. (4)

We also consider the scenario of 1-bit quantized transmis-
sion, which assigns 1-bit to both the inphase and quadra-
ture branches of the signal before transmission. With 1-bit

quantized transmission at the BS antennas, x` ∈ {± 1√
2
±

j√
2
} ∀` = 1, . . . , Nt. For a linear precoder P, assuming 1-bit

quantization, expression for the received signal (3) holds with
the quantization operation given by

Q(Ps) =
1√
2
(sign(R(Ps)) + j · sign(I(Ps))) . (5)

For CE transmission (2), as well as 1-bit quantized transmis-
sion (5), the factor of

√
1
Nt

in (1) ensures that the transmitted
symbol vector has a total transmit power of ρ. We characterize
the receive performance of the downlink transmission model
given in (3) with per-user receive SQINR. We introduce
the Bussgang decomposition to develop linear model of the
nonlinear quantization operations of (2) and (5) in Section III.
We use the linear model to develop a closed form expression
of the per-user receive SQINR.

III. MODELING DOWNLINK TRANSMISSION USING
BUSSGANG DECOMPOSITION

In this section, we obtain a linear model of the nonlinear
quantization operation using the Bussgang decomposition. The
Bussgang decomposition is used for stochastic analysis of
nonlinear operations with Gaussian inputs. For a nonlinear
operation, it states that, with C depending on the nonlinear
operation considered, the cross-correlation of a Gaussian input
signal X and the output signal Y is related to the auto-
correlation of the input signal as [39]

RXY(τ) = C RX(τ). (6)

A phase-only nonlinear operation z = f(y) for a Gaussian
vector y, denoting F and q as the coefficient matrix and the
quantization error, can be written according to the Bussgang
decomposition in a linear form as [39]

z = Fy + q. (7)

By means of the Bussgang decomposition, with an appropri-
ately chosen F, one can enforce that,

E[qy∗] = 0. (8)

The derivation of F is based on (6), and is discussed in the
following. For some value of ξ which depend upon nonlinear
phase-only operation f(·) considered, the covariance of the
input and output of the operation are related through Price’s
theorem (a generalization of the Bussgang property (6)) [35],

E[zky∗l ] = ξ
E[yky∗l ]√
E[yky∗k]

. (9)

In matrix form

E[zy∗] = ξ diag(E[yy∗])−
1
2E[yy∗]. (10)

Using (8) and (10)

F E[yy∗] = ξ diag(E[yy∗])−
1
2E[yy∗]. (11)

If E[yy∗] is invertible, we get,

F = ξ diag(E[yy∗])−
1
2 . (12)
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Fig. 1: System model for linear CE and 1-bit quantized transmission in the downlink.

Equation (10) and (11) give the intuition that the cross-
correlation of elements of input Gaussian signal and elements
of output signal is directly proportional to normalized cross-
correlation of the corresponding elements of the Gaussian
input signal vector, in accordance to the Bussgang property
(6). Through the Central limit theorem [35], for an IID channel
H and P = H∗(HH∗)−1, vector Ps has entries which have
a distribution sufficiently close to the Gaussian distribution. In
Section III-A and Section III-B, we use the equation derived
in this section to develop a linear model for the CE operation,
and 1-bit quantization operation.

A. Downlink communication model for CE transmission

For xP = Ps, and CE operation, the Bussgang decomposi-
tion yields

x = FxP + qCE, (13)

with

E[qCEx∗P] = 0. (14)

For the CE operation, according to Price’s theorem, ξ =
√

π
4

[35]. Since,

E[xPx
∗
P] = PP∗, (15)

equation (11) for the coefficient matrix F, can be modified for
CE as

FPP∗ =

√
π

4
diag(PP∗)−

1
2 PP∗. (16)

Since P has full column rank, using (16), we have,

FP =

√
π

4
diag(PP∗)−

1
2 P. (17)

The cross-covariance of the elements of x = Q(xP) as a
function of the elements of xP for the CE operation, using the
arcsin law is [35] is

E[xk, x∗` ]

=
1

4

∫ 2π

0

e−jφ arcsin
(
R
(
ejφE[xk,P , x∗`,P ]

))
dφ,

∀` 6= k. (18)

Using the Taylor series expansion of the arcsin function and
expanding for ` 6= k,

E[xk, x∗` ]

=
1

4

∫ 2π

0

e−jφ (R (ejφE[xk,P , x∗`,P ]
)

+
R
(
exp(jφ)E[xk,P , x∗`,P ]

)3
6

+O(E[xk,P , x∗`,P ]5)

 dφ

(19)

=
π

4
[PP∗]k,` +

π

32
([PP∗]◦3k,` + I([PP∗]k,`)

2R([PP∗]k,`)

+ j I([PP∗]k,`)R([PP∗]k,`)
2) +O([PP∗]◦5k,`). (20)

Assuming Pd = diag(PP∗) and Pnd = nondiag(PP∗), the
covariance matrix for x, using (20), is

E[xx∗]

= I +
π

4
P
− 1

2

d PndP
− 1

2

d +
π

32
((P
− 1

2

d PndP
− 1

2

d )◦3 + (P
− 1

2

d

I(PP∗)P
− 1

2

d )◦2 ◦ (P−
1
2

d R(PP∗)P
− 1

2

d ) + j(P−
1
2

d R(PP∗)

P
− 1

2

d )◦2 ◦ (P−
1
2

d I(PP∗)P
− 1

2

d )) +O((P−
1
2

d PndP
− 1

2

d )◦5).
(21)

Using the linear expansion of x in terms of F, xP and qCE
(13), and the expression of the covariance matrix of x (21),
the covariance matrix of the quantization error qCE is

Cq,CE

= E[qCEq∗CE]

= E[xx∗]− FPP∗F∗ (22)

= (1− π

4
)I +

π

32
((P
− 1

2

d PndP
− 1

2

d )◦3 + (P
− 1

2

d I(PP∗)

P
− 1

2

d )◦2 ◦ (P−
1
2

d R(PP∗)P
− 1

2

d ) + j(P−
1
2

d R(PP∗)P
− 1

2

d )◦2

(P
− 1

2

d I(PP∗)P
− 1

2

d )) +O((P−
1
2

d PndP
− 1

2

d )◦5). (23)

Using the value of F from (17) and the linear model given
in (13), the downlink communication system as given in (1)
can be expanded as

r =

√
πρ

4Nt
HP

− 1
2

d Ps +

√
ρ

Nt
HqCE + n. (24)
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The SQINR at the first user, using (24), with CE quantization
at the BS antennas is

SQINRCE

=

ρ
Nt

π
4

∣∣∣[HP
− 1

2

d P]1,1

∣∣∣2
ρ
Nt

π
4

∑u=U
u=2

∣∣∣[HP
− 1

2

d P]1,u

∣∣∣2 + ρ
Nt
[HCq,CEH∗]1,1 + 1

.

(25)

Through equation (25), we can see that CE operation leads
to the normalization of rows of P with its corresponding
diagonal entries increasing the MUI, along with the addition
of quantization noise power in the denominator with the
AWGN. In Section IV, we perform asymptotic analysis for
the downlink system with quantized ZF precoding at the BS,
and estimate a closed-form expression for the SQINRCE for
sufficiently large numbers of BS antennas, and users.

B. Downlink communication model for 1-bit quantized
transmission

For the 1-bit quantization operation, the matrix form of the
Price’s theorem (10) holds for ξ =

√
2
π [35]. Following a

similar analysis as in (13)-(17) for 1-bit quantization, denoting
F as the coefficient matrix and qb as the quantization error
uncorrelated with the input signal, the quantized vector x can
be decomposed as

x = FxP + qb, (26)

with matrix F related to precoding matrix P as

FP =

√
2

π
diag(PP∗)−

1
2 P. (27)

Similar to how covariance matrix for x was estimated in
(21), we use the arcsin law to obtain second-order statistics of
the 1-bit quantization [35] as

E[xx∗]

=
2

π

(
arcsin(P

− 1
2

d R(PP∗)P
− 1

2

d )

+ j · arcsin(P−
1
2

d I(PP∗)P
− 1

2

d )
)

(28)

=
2

π

(
π

2
I + P

− 1
2

d PndP
− 1

2

d +
1

6
P
− 3

2

d P◦3nd P
− 3

2

d

)
+O((P−

1
2

d PndP
− 1

2

d )◦5). (29)

We use the arcsin law to get (28) and Taylor series expansion
of the arcsin(·) up to the third order to get (29). Using
the linear model in (26), expression for F from (27), and
covariance matrix for x from (29), covariance matrix of the
quantization error vector is

Cq,b

= E[qbq
∗
b ]

= E[xbx
∗
b ]− FbPP∗F∗b (30)

=

(
1− 2

π

)
I +

1

3π
P
− 3

2

d nondiag(PP∗)◦3P
− 3

2

d

+O((P−
1
2

d PndP
− 1

2

d )◦5). (31)

Using downlink transmission model (1), the linear 1-bit
quantization model from (26), and expression for F (27), the
received signal is

rb =

√
2

π

ρ

Nt
HP

− 1
2

d Ps +

√
ρ

Nt
Hqb + n. (32)

The SQINR at the first user, with 1-bit quantization at the BS
antennas, is

SQINRb

=

ρ
Nt

2
π

∣∣∣[HP
− 1

2

d P]1,1

∣∣∣2
ρ
Nt

2
π

∑u=U
u=2

∣∣∣[HP
− 1

2

d P]1,u

∣∣∣2 + ρ
Nt
[HCq,bH∗]1,1 + 1

.

(33)

Through equation (33), we can see that, similar to SQINR
expression for CE transmission scenario (25), 1-bit quanti-
zation operation leads to normalization of rows of P with
its corresponding diagonal entries, increasing the MUI, along
with the addition of quantization noise power in the denomina-
tor. The signal power component and the MUI component are
multiplied by factors of π/4 ≈ 0.785 and 2/π ≈ 0.637 in the
SQINR expression for CE and 1-bit transmissions, as shown
in (25) and (33). Factors of π/16 and 1/2π are multiplied by
the quantization noise component of the SQINR expression
for CE and 1-bit transmissions. Intuitively, this would make
the SQINR for CE transmission higher than SQINR for 1-bit
transmission, as is confirmed by the simulations in the next
section. In Section IV, we analyze the received signal for BS
with 1-bit quantized ZF precoding, and estimate a closed form
expression for SQINRb for asymptotic scenarios.

IV. PERFORMANCE ANALYSIS OF DOWNLINK
TRANSMISSION WITH QUANTIZED ZF PRECODING

In this section, we mathematically analyze downlink per-
formance, in terms of per-user SQINR, of MU-MIMO trans-
mission with CE and 1-bit quantized transmission at the BS,
assuming sufficiently large numbers of BS antennas and users.
We also assume that ratio of number of BS antennas to
number of users is finite, that is

∣∣Nt
U

∣∣ < ∞, for asymptotic
analysis and simulations in the remaining part of the paper.
While the asymptotic assumption on numbers of users and an-
tennas makes the mathematical calculations feasible, through
simulations we will observe that the analysis holds well for
small numbers of users and antennas as well. We assume ZF
precoding at the BS, with P = H∗(HH∗)−1. The channel
H is assumed to be IID Rayleigh with elements having unit
variance for mathematical analysis, and simulations in this
section, Section V and Section VI. Since HH∗ is a Wishart
matrix, the expected value of the trace of (HH∗)−1 in terms
of number of users U , and number of BS antennas Nt, is [40]

E[tr((HH∗)−1)] =
U

Nt −U
. (34)

The variance of the diagonal entries of (HH∗)−1 is [41]

Var([(HH∗)−1]k,k)
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=
8

(2Nt − U)(2Nt − U − 1)(2Nt − U − 3)
,∀k = 1, . . . , U,

(35)

making the variance of the trace bounded as

Var(tr((HH∗)−1))

6
8U

(2Nt − U)(2Nt − U − 1)(2Nt − U − 3)
. (36)

Since the variance, as given in (36), goes to zero as Nt
becomes large, using (34) and the law of large numbers [35]
asymptotically, the power of the precoded symbols is given by

[Pd]`,`
Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

tr(PP∗)

Nt
(37)

=
tr
(
(HH∗)

−1
)

Nt
(38)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

U

(Nt − U)Nt
, ∀` = 1, . . . , Nt. (39)

Using (39) we observe that for asymptotic scenarios, since
diagonal entries of PP∗ are same, multi-user interference
component of the SQINRCE as given in (25) vanishes. The
channel response of the quantization error vector at the first
user is

h∗1Cq,CEh1

=
(
1− π

4

)
h∗1h1 +

(Nt − U)3Nt
3

U3

π

32
h∗1
(
P◦3nd + I(PP∗)◦2

◦R(PP∗) + j · R(PP∗)◦2 ◦ I(PP∗)
)
h1

+O
(
Nt

10

U5
h∗1P

◦5
nd h1

)
(40)

=
(
1− π

4

)
Nt +

π

16

Nt(Nt − 2U)

U2
+O

(
Nt

2

U3

)
(41)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

(
1− π

4

)
Nt +

π

16

Nt(Nt − 2U)

U2
, (42)

where the expression of Cq,CE from (23), and the asymptotic
approximation of Pd (39), are used for the result in (40),
and the asymptotic value of the second expression of (40),
calculated at (95) in Appendix B is used for (41). Using
SQINRCE expression (25), asymptotic expression for entries
of Pd (39), and asymptotic channel response to quantization
error vector (42), the SQINRCE for sufficiently large values
of Nt and U is

SQINRCE ≈
ρπ4

Nt−U
U

ρ
(
1− π

4

)
+ ρ π16

Nt−2U
U 2 + 1

. (43)

For a sufficiently large number of antennas and users, MUI
at the users vanishes, quantization error along with AWGN
remains the only distortion affecting the received signal and
the received SQINR is attenuated by a factor of π4 with respect
to the unquantized case [42].

When using the Bussgang decomposition with the arcsin
law up to the first order of approximation, along with the law
of large numbers [35], the channel response to the quantization
noise is

h∗1Cq,CEh1 =
(
1− π

4

)
h∗1h1 +O

(
Nt

6

U3
h∗1P

◦3
nd h1

)
(44)

=
(
1− π

4

)
Nt +O

(
Nt

2

U2

)
, (45)

which uses derivation similar the scenario for 1-bit quantized
transmission in [11]. The SQINRCE, for sufficiently large val-
ues of Nt and U with quantization error component calculated
through (45) is

SQINRCE ≈
ρπ4

Nt−U
U

ρ
(
1− π

4

)
+ 1

. (46)

From the quantization noise term in (46), derived from (44),
we can see that the first order approximation of the covariance
matrix E[xx∗] assumes the diagonal elements of PP∗ and
subsequently of Cq,CE to be zero. For the first order ap-
proximation to be accurate, therefore, cross-correlation among
elements of quantization error q should be negligible relative
to the variance of elements of q.

In Fig. 2 (a), we plot simulated and asymptotic values of
SQINRCE as a function of number of users U , for number of
BS antennas Nt = 100, and transmit power ρ = 0 dB. For
unquantized ZF precoding at the BS and fixed transmit power,
the receive SNR should consistently increase, in proportion to
1
U as U is decreased, when complete CSI is available at the BS
[40]. With decreasing U , however, the SQINRCE increases to a
maximum, and then starts decreasing with further decrease in
U . The value of U , as a function of ρ and Nt, which maximizes
the SQINRCE as given in (43) is

Uopt,CE =
Nt

1 +

√
2Nt

(
8
πρ +

8
π − 2

)
− 1

. (47)

The behavior of SQINRCE captured by analysis using Buss-
gang decomposition up to the third order approximation is very
close to the simulated behavior, as shown in Fig. 2 (a). This be-
havior is different from what we obtain from the analysis using
Bussgang decomposition up to the first order approximation,
wherein the SQINRCE monotonically increases with decrease
in U , for all values of U . The difference and deterioration in
SQINRCE is due to high cross-correlation among the elements
of q for small U , which is not captured by the first order
analysis, but by the third-order term in the channel response
of quantization error, as given in (40). Due to high correlation
among the quantization error components, quantization error
elements across the BS antennas combine coherently at the
users, enhancing the quantization noise in the received signal.

For 1-bit quantized transmission at the BS, the channel
response of the quantization noise is

h∗1Cq,bh1

=

(
1− 2

π

)
h∗1h1 +

1

3π

(Nt − U)3Nt
3

U3
h∗1P

◦3
nd h1

+O
(
Nt

10

U5
h∗1P

◦5
nd h1

)
(48)

=

(
1− 2

π

)
Nt +

1

2π

Nt(Nt − 2U)

U2
+O

(
Nt

2

U3

)
(49)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

(
1− 2

π

)
Nt +

1

2π

Nt(Nt − 2U)

U2
, (50)
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where we used the asymptotic expression for Cq,b from (31),
and the asymptotic expression for Pnd from (39) to get (48).
For (49), we used the asymptotic result for h∗1P

◦3
nd h1 from

(93) in Appendix A. Using the SQINR expression from (33),
and asymptotic channel response to quantization error vector
given in (50), for sufficiently large numbers of BS antennas,
Nt and users, U the

SQINRb ≈
ρ 2
π

(Nt−U )
U

ρ
(
1− 2

π + 1
2π

Nt−2U
U 2

)
+ 1

. (51)

For the case of 1-bit quantized transmission in (51), for suffi-
ciently large numbers of antennas and numbers of users, MUI
at the users vanishes, and the received SQINR is attenuated
by a factor of 2

π in comparison to the unquantized case. We
derived this result as a part of our work in [1].

When using the Bussgang decomposition up to the first
order approximation, channel response of the quantization
noise for 1-bit quantization at the BS, as calculated in [11]
is

h∗1Cq,bh1 =

(
1− 2

π

)
h∗1h1 +O

(
Nt

6

U3
h∗1P

◦3
nd h1

)
(52)

=

(
1− 2

π

)
Nt +O

(
Nt

2

U2

)
. (53)

For sufficiently large Nt and U , using (53), and the Bussgang
decomposition up to the first order approximation the

SQINRb ≈
ρ 2
π

(Nt−U )
U

ρ
(
1− 2

π

)
+ 1

. (54)

Similar to (45), the first order analysis, conducted in [11] for
the 1-bit quantized transmission, assumes that the diagonal
elements of PP∗ are much larger than the non-diagonal
elements. The cross-correlation of elements of quantization
error vector qb across the BS antennas is assumed to be
negligible when compared to the variance of its elements.

In Fig. 2 (b) [1], we plot the simulated and asymptotic
closed-form SQINRb as a function of number of users U .
We observe that the SQINRb does not increase monotonically
as U is decreased, for small U . It instead increases to a peak,
and then deteriorates rapidly with further decrease in U , while
SQINRb given by first order asymptotic analysis increases
monotonically for all values of U . Similar to equation (47),
SQINRb attains a peak for the case of 1-bit quantized trans-
mission at the BS at [1]

Uopt,b =
Nt

1 +

√
2Nt

(
π
ρ + π − 2

)
− 1

. (55)

Since, the SQINR given by first order analysis (54) assumes
non-diagonal entries of PP∗ and Cq,b to be negligible relative
to their diagonal entries, we infer that the deterioration of
downlink performance for small U is caused due to high
correlation among components of qb. The deterioration in
the SQINRb, and the cross-correlation among elements of
quantization error is captured by the third-order term of
channel response to quantization error in (48). Decreasing
cross-correlation among the quantization error vector elements

across the BS antennas should, therefore, improve the receive
per-user SQINR for both the CE and 1-bit quantized trans-
mission at the BS, for small U . We, therefore, propose to
add dither to the precoded signal before quantization, and
subsequent transmission, in order to decrease cross-correlation
among elements of quantization noise. In the next section, we
explore the idea of adding dither to the precoded signal before
quantization, and optimizing its power to get the maximum
SQINR for given system parameters.

V. IMPROVING DOWNLINK PERFORMANCE FOR
QUANTIZED LINEAR TRANSMISSION BY ADDING

CORRELATED DITHER

For small U , downlink linear transmission with CE and
1-bit quantized transmission at the BS antennas shows rapid
deterioration in per-user receive SQINR, with decreasing U .
At low power, SU transmission along the dominant eigenvector
is optimal for a MIMO system. With CE and 1-bit quan-
tized transmission, however, downlink massive MIMO based
SU transmission would experience significant attenuation in
SQINR. As established in the previous section, while the re-
ceive per-user SQINR calculated by the asymptotic first-order
analysis, with the assumption of negligible correlation in the
quantization noise components across BS antennas, increases
monotonically with decrease in U , the actual SQINR along
with the third-order approximation experiences monotonic
decrease with decreasing U for small values of U . We predict,
therefore, that reducing correlation among the quantization
error components should help in reducing the deterioration
in SQINR experienced for small U .

To reduce correlation among quantization noise components
for small values of U , we propose the addition of correlated
dither to the precoded signal before quantization, by the trans-
mitter. Researchers in the past have used dither to whiten the
quantization noise [36], and enhance effective bit resolution
of the quantization operation [37]. Previous work has also
explored the idea of experimentally enhancing the performance
of quantized downlink communication through the addition
of dither by the transmitter [38]. In this paper, we use the
Bussgang decomposition to maximize the received SQINR
with respect to the dither power added, and derive the optimal
dither power as a function of the transmit power ρ, number of
users U , and number of BS antennas Nt. IID Gaussian dither
of power σ2, w ∼ CN (0, σ2I) is projected on the null space of
the channel H to remove it from the users’ subspace, as done
in work [38], and reduce the detrimental effect of dither on
the downlink transmission through the channel. We, therefore,
get correlated dither

v = (I−H∗(HH∗)−1H)w. (56)

Considering the general quantization case, correlated dither
obtained through (56) is added to the precoded signal before
quantization to give

x = Q(Ps + v). (57)
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(b) For 1-bit quantized transmission

Fig. 2: Comparison of the per-user SQINR with Nt = 100 and different values of U , for CE and 1-bit quantized transmissions
at the BS antennas. Transmit power is ρ = 0 dB. We can observe that for small values of U , SQINR rapidly deteriorates as U
is decreased. The Bussgang decomposition up to the third-order approximation accurately depicts the SQINR for small values
of U , unlike the first-order approximation. A variation of the plot (b) has been published as part of [1].

Using the Bussgang decomposition, assuming the inputs to be
Gaussian, with the coefficient matrix F, and the quantization
noise vector q, x can be decomposed as

x = F(Ps + v) + q. (58)

Letting xv = Ps + v and RH = I − H∗(HH∗)−1H, the
covariance matrix of the input to the quantizer is

E[xvx∗v] = PP∗ + σ2RH. (59)

As with (11), we have

F(PP∗ + σ2RH)

= ξ

(
P
− 1

2

d +
1

σ
diag(RH)−

1
2

)
(PP∗ + σ2RH), (60)

which results in

F = ξdiag(PP∗ + σ2RH)−
1
2 . (61)

For CE transmission, the covariance matrix of the quanti-
zation error vector qCE, using the expression of Cq,CE from
(22), and F from (61), with ξ =

√
π
4 , is

Cq,CE

= E[xx∗]− F(PP∗ + σ2RH)F∗ (62)

=
π

32
diag(PP∗ + σ2RH)−

3
2 (nondiag(PP∗ + σ2RH)◦3

+ I(PP∗ + σ2RH)◦2 ◦ R(PP∗ + σ2RH) + j · R(PP∗

+ σ2RH)◦2 ◦ I(PP∗ + σ2RH))diag(PP∗ + σ2RH)−
3
2

+O(nondiag(PP∗ + σ2RH)◦5). (63)

With the received signal at the users given by

r =

√
ρ

Nt
HFPs +

√
ρ

Nt
HFv +

√
ρ

Nt
HqCE + n, (64)

at the first user,

SQINRCE

=

ρ
Nt

∣∣[hT
1 FP]1

∣∣2
ρ
Nt
(
∑u=U
u=2

∣∣[hT
1 FP]u

∣∣2 + σ2h∗1(FRHF∗ + Cq,CE)h1) + 1
.

(65)

Along with the quantization noise, MUI and AWGN, an
additional term due to addition of correlated dither to the
precoded signal is added to the distortion experienced by the
received signal.

We now proceed to estimate SQINRCE for asymptotic
scenarios with sufficiently large numbers of BS antennas and
users. For sufficiently large Nt and U , using the law of large
numbers [35], and the expression for tr((HH∗)−1) from (39),
power of the symbols before quantization is,

[diag(PP∗ + σ2RH)]`,`

= [diag(PP∗)]`,` + [diag(σ2RH)]`,` (66)
Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

1

Nt
(tr(PP∗) + σ2tr(RH)) (67)

=
1

Nt
(tr((HH∗)−1) + σ2(Nt −U)) (68)

=
U + σ2(Nt −U )2

(Nt −U )Nt
+O

( √
U

Nt
5/2

)
(69)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

U + σ2(Nt −U )2

(Nt −U )Nt
, ∀` = 1, . . . , Nt. (70)

We can see that in (70) the weight of dither power relative to
the power of precoded symbol grows quadratically with Nt.
Using the asymptotic expression for the diagonal values of
E[xvx∗v] in (70), and the expression for F in (61), we can see
that for sufficiently large values of Nt and U , MUI and channel
response to dither has negligible effect on the SQINR, as given
in (65). In Section VI through simulations, we show that (70)
is highly accurate for small values of U . Using ideas from
estimation of channel response to quantization error at users
for CE transmission without the addition of dither (42), and
asymptotic result (98) from Appendix C, the channel response
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of the quantization error for CE transmission after addition of
correlated dither at the users is

h∗1Cq,CEh1

=
(
1− π

4

)
h∗1h1 +

π

32

Nt
3(Nt − U)3

(U + σ2(Nt − U)2)3
h∗1

(nondiag(PP∗ + σ2RH)◦3 + I(PP∗ + σ2RH)◦2

◦ R(PP∗ + σ2RH) + jR(PP∗ + σ2RH)◦2 ◦ I(PP∗

+ σ2RH))h1 +O(h∗1(nondiag(PP∗ + σ2RH)◦5)h1)
(71)

=
(
1− π

4

)
Nt +

π

16
UNt(Nt − 2U − σ2(Nt − U)2)

(1− σ2(Nt − U))2

(U + σ2(Nt − U)2)3
+O

(
U2

Nt
5

)
(72)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

(
1− π

4

)
Nt +

π

16
UNt(Nt − 2U

− σ2(Nt − U)2)
(1− σ2(Nt − U))2

(U + σ2(Nt − U)2)3
, (73)

for sufficiently large Nt and U , where expression for co-
variance matrix of quantization error derived at (63), and
asymptotic result (70) are used to get (71), and asymptotic
result for (71) from (104) in Appendix D are used to get (73).
For sufficiently large values of Nt and U , using F derived
from (61), expression for SQINRCE calculated in (64), and
asymptotic channel response to the quantization error from
(73), the

SQINRCE

≈
ρ π(Nt−U)
4(U+σ2(Nt−U)2)

ρ
(
1− π

4 + π
16
U(Nt−2U−σ2(Nt−U)2)(1−σ2(Nt−U))2

(U+σ2(Nt−U)2)3

)
+ 1

.

(74)

From (74), we can see that dither affects both the signal
power component of the received signal and the quantization
noise component of the received signal. From (73), we can
see that effect of dither power on the quantization error
is depicted in the third-order term of the channel response
of quantization error in the denominator, which represents
cross-correlation among quantization error elements. Dither
power, therefore, directly impacts the cross-correlation among
elements of quantization error.

As dither power σ2 is increased from 0, its effect on
the quantization operation increases, and quantization noise
component decreases due to decrease in correlation among
elements of quantization error, as given by the expression
U(Nt−2U−σ2(Nt−U)2)(1−σ2(Nt−U))2

(U+σ2(Nt−U)2)3 . With increasing σ2, the

signal power component, π(Nt−U)
4(U+σ2(Nt−U)2) , also decreases. For

sufficiently large σ2, quantization noise power saturates as it is
O(1) with respect to σ2. We therefore predict that SQINRCE
increases as σ2 is increased from 0, reaching a maximum for
finite non-trivial value of σ2. In Fig. 3, we plot the variation of
SQINRCE with σ, validating our prediction. By differentiating
(74) with respect to σ2 and equating it to zero, we calculate
the σ2

opt which maximizes SQINR for given values of system
parameters: transmit power ρ, number of BS antennas Nt, and
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Fig. 3: Variation of the per-user SQINR (calculated using the
Arcsin law) for transmit power ρ = 0 dB, number of BS
antennas Nt = 100, and number of users U = 1 with σ. It
can be seen that as dither power increases from 0, SQINR
increases, reaching a maximum for finite non-trivial value of
σ2, and decreases with further increase in dither power.

number of users U . Differentiating the SQINRCE with respect
to σ2 and equating to zero, we get the following equation

0 =− (Nt − U)
((
ρ
(
1− π

4

)
+ 1
)
(U + σ2(Nt − U)2)3

+
ρπ

16
U(Nt − 2U)(1− σ2(Nt − U))3

)
+

3ρπ

16
UNt(Nt − 2U)(1− σ2(Nt − U))2. (75)

Equation (75) is cubic in σ2. Analyzing the discriminant of
the equation, we deduce that the equation has one real root
and two complex roots for all suitable values of arguments. We
use the real root as optimum dither power needed to maximize
the SQINRCE. The theoretical expression of optimum dither
power, σ2

opt(Nt, U, ρ), is a function of Nt, U , ρ and being a
very large expression cannot be accommodated in this paper.
It, however, gives a closed-form value of optimal dither power
for given system parameters, which can be calculated by the
BS for downlink transmission.

For 1-bit quantization, covariance matrix for quantization
error vector qb, when correlated dither is added to the signal
before quantization, using similar Cq,b expression from (31)

and expression for F from (61) with ξ =
√

2
π , is

Cq,b

= E[xx∗]− Fb(PP∗ + σ2RH)F∗b (76)

=

(
1− 2

π

)
I +

1

3π
diag(PP∗ + σ2RH)−

3
2 nondiag(PP∗

+ σ2RH)◦3diag(PP∗ + σ2RH)−
3
2

+O(nondiag(PP∗ + σ2RH)◦5). (77)
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Asymptotic channel response of the quantization error vector
at the first user is, therefore,

h∗1Cq,bh1

=

(
1− 2

π

)
h∗1h1 +

1

3π

Nt
3(Nt − U)3

(U + σ2(Nt − U)2)3
h∗1nondiag(PP∗

+ σ2RH)◦3h1 +O(h∗1(nondiag(PP∗ + σ2RH)◦5)h1)
(78)

=

(
1− 2

π

)
Nt +

1

2π
UNt(Nt − 2U − σ2(Nt − U)2)

(1− σ2(Nt − U))2

(U + σ2(Nt − U)2)3
+O

(
U2

Nt
5

)
(79)

Nt→∞,U→∞−−−−−−−−−→
|Nt
U |<∞

(
1− 2

π

)
Nt +

1

2π
UNt(Nt − 2U

− σ2(Nt − U)2)
(1− σ2(Nt − U))2

(U + σ2(Nt − U)2)3
, (80)

where asymptotic result (70) is used to get (78), and asymp-
totic result for second term of (78) from Appendix C is used
to get (79). The SQINRb at the first user, for sufficiently large
values of Nt and U , is given as,

SQINRb

≈
ρ 2(Nt−U)
π(U+σ2(Nt−U)2)

ρ
(
1− 2

π

)
+ ρ 1

2π
U(Nt−2U−σ2(Nt−U)2)(1−σ2(Nt−U))2

(U+σ2(Nt−U)2)3 + 1
.

(81)

From (81), we can see that dither affects both the signal power,
and quantization noise component of the received signal. From
(80), we can see that dither directly impacts the third-order
term of the channel response of quantization error, modifying
the cross-correlation among elements of quantization error.

Similar to what we observed for (74), for (81), we can
see that with an increase in dither power σ2 from zero both
the quantization noise power and signal power components of
the SQINRb decrease, with quantization noise power reaching
saturation for sufficiently high σ2. Thus, the SQINRb maxi-
mizes at finite non-trivial value of σ2. We plot the variation of
SQINRb with σ, in Fig. 3. We differentiate the SQINR with
respect to σ2 to get the optimum dither power, σ2

opt(Nt, U, ρ),
required to maximize the SQINR. For the downlink system
with 1-bit quantized transmission, differentiating the SQINRb
from (81) with respect to σ2 and equating it to zero, we get
following equation in terms of σ2, Nt, U and ρ,

0 =− (Nt − U)

((
ρ

(
1− 2

π

)
+ 1

)
(U + σ2(Nt − U)2)3

+
ρ

2π
U(Nt − 2U)(1− σ2(Nt − U))3

)
+

3ρ

2π
UNt(Nt − 2U)(1− σ2(Nt − U))2. (82)

Similar to equation (75), equation (82) is cubic in σ2. We have
derived this result as a part of our work in [2]. For all suitable
values of arguments, this equation has two complex roots and
one real root which we use as optimum dither power needed
to maximize the SQINR. The expression can be calculated
by hand or using tools like Mathematica, to give a closed

form expression of optimal dither power for given system
parameters. The BS can, therefore, calculate the power of
optimum dither required, as a function of system parameters
for downlink transmission.

VI. NUMERICAL ANALYSIS OF LINEAR TRANSMISSION
WITH OPTIMIZED DITHERING

In this section, we analyze impact of dither, and optimized
dither calculated from the methods developed in previous
sections, on the SQINR and the BER of the received signal,
with CE and 1-bit quantized transmissions at the BS antennas.

In Fig. 4, we plot the per user SQINR for different values
of Nt and U , with and without optimized dithering, with
ZF precoding at the BS. Simulations are performed over
1000 IID Rayleigh channel instances for each setting. The
transmit power at the BS is ρ = 0 dB. For high-resolution
downlink MU-MIMO system with ZF precoding, the received
SNR should increase proportionally to 1

U [40], when Nt is
kept constant. Received SNR should also increase linearly
with Nt for constant U , for high resolution systems. We
can see that for both CE and 1-bit quantized transmissions,
the SQINR deteriorates rapidly as U is reduced, for small
values of U when dither is not added at the transmitter.
When Nt is increased for a constant U , the SQINR in-
creases sub-linearly, not benefitting from the array gain of
downlink massive MIMO transmission. The addition of dither
with optimal power σ2

opt(Nt, U, ρ), reduces correlation among
quantization error vector components, maximizing the SQINR
for given values of Nt, U and ρ. Thus, the SQINR for
downlink communication with optimized dithering increases
monotonically as U decreases, for all values of U . It also
increases almost linearly with Nt exploiting the advantage of
array gain.

In Fig. 5, we plot uncoded BER performance of the
downlink transmission system incorporating dithering at the
transmitter, as a function of σ for the CE and 1-bit quantized
downlink massive MIMO systems, with Nt = 100 BS antennas
and U = 1 user. Signal modulation of 16-QAM is assumed
and ZF precoding is implemented at the BS. We simulate
over 1000 IID Rayleigh channel instances, with 1000 bits
transmitted over each channel instance. We can see that as
dither power is increased from zero, BER decreases, as the
decrease in cross-correlation among elements of quantization
error increases with increase in dither power. The received
signal power also reduces with the increase in dither power,
leading to a minimum in the BER for a finite non-trivial value
of σ. As the reduction in signal power starts to dominate the
reduction in quantization noise, BER starts increasing. Dither
power corresponding to the minimum value of BER gives the
σ2

opt(Nt, U, ρ) for the system model considered.
In Fig. 6, we plot coded BER as a function of transmit

power ρ, for 16-QAM symbol modulation, with and without
optimized dithering. The transmitted symbols are coded using
a rate-1/2 LDPC code, for number of BS antennas, Nt = 100,
and number of users, U = 2. Simulations are performed
over 1000 IID Rayleigh channel instances with 1000 bits
transmitted in each channel instance. The quantization noise
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component of the SQINR increases with transmit power
ρ, as shown in (74) and (81). Dithering improves SQINR
by optimally reducing quantization error, at the receiver. It,
therefore, offers small improvement for low transmit power
at the BS. For medium to high transmit power it offers
significant improvement in the receive SQINR. The error floor
experienced at high ρ, which is a major limitation of quantized
linear precoded systems [11], is pushed down significantly
when optimized dithering is used.

In Fig. 7, we plot the optimal dither power σ2
opt as a function

of transmit power, ρ, for different values of Nt and U . We can
see that σ2

opt increases monotonically with ρ. As mentioned
in Section V, the signal power in SQINR decreases with
σ2. Quantization noise power in SQINR decreases as σ2 is
increased from 0, saturating for high σ2. Signal power and
quantization noise power are linear with respect to transmit
power ρ in the SQINR expression given in (74), and (81).
Optimal dither power, which maximizes the SQINR, thus,
strictly increases with ρ for low values of ρ. For high values
of ρ, AWGN becomes small and SQINR, as given in (74),
and (81), does not depend on ρ. Optimal dither power, thus,
saturates at high values of ρ.

In Fig. 8, we plot the variation of σ2
opt with number of BS

antennas, Nt, for U = 1 and transmit power ρ = 0 dB. We
can observe that σ2

opt strictly decreases with rise in number
of BS antennas, for both cases of CE and 1-bit quantized
transmissions. Due to ZF precoding, the power of the precoded
symbols asymptotically falls quadratically with Nt as given in
(39). Therefore, the relative power of dither with respect to
power of the precoded symbols in the quantizer input increases
quadratically with Nt. The rate of decrease in signal power
component of SQINR as a function of σ2, thus, increases with
Nt. A faster decrease in signal power component decreases the
σ2 needed to maximize the SQINR, leading to this variation
of σ2

opt with Nt.

VII. CONCLUSION

In this work, we analyzed the per-user receive SQINR
of linear precoding for downlink MU-massive MIMO with
CE transmission and 1-bit quantized transmission assumed
at the BS antennas. ZF precoding is assumed at the BS.
We used the Bussgang decomposition up to the third-order
approximation to model the quantization operation. For a
small number of users, we observed that as U is decreased,
receive SQINR at the users deteriorated rapidly, due to high
correlation among the quantization error components across
BS antennas, for both CE and 1-bit quantized transmissions.
We inferred that the deterioration, and cross-correlation among
elements of quantization error for small U was depicted by
the third-order term of the channel response to quantization
error at the receivers, as given in (42), and (48) for CE and
1-bit quantized transmissions. To improve the performance for
small number of users, we propose the addition of correlated
Gaussian dither to the precoded signal before quantization, to
improve per user SQINR. Using the Bussgang decomposition,
we estimate closed form expression for per-user received
SQINR as a function of dither power, number of BS antennas,

number of users and total transmit power. We observed that
dither directly impacted the third-order term of the channel
response to quantization error at the receivers as given in
(73) and (80), thereby modifying the cross-correlation among
elements of quantization error, along with affecting the signal
power component of the SQINR. SQINR achieved maximum
for finite non-trivial value of dither power. We estimate the
optimum dither power by maximizing the SQINR for a given
number of BS antennas, number of users and transmit power.

Addition of optimized dither at the transmitter dramatically
improves the SQINR for small values of U , which shows
monotonic increase with decreasing values of U . The downlink
system is also able to show a linear increase in SQINR
with Nt, given that other parameters are kept constant, when
optimized dithering is implemented. We also observe that
with optimized dithering, the error floor observed for BER
at high BS transmit power, which is a significant limitation
of linear precoded CE and 1-bit quantized transmissions, is
pushed down significantly. Optimum dither also decreases
monotonically with increase in number of BS antennas, as
the rate of decrease in signal power component of SQINR as
a function of σ2, increases with Nt. Addition of dither, can,
therefore, help improve downlink performance for small num-
ber of users without any significant increase in computational
complexity, or hardware complexity. For a given BS, optimal
Gaussian dither can be computed by the transmitter based
on the system parameters of the downlink communication,
and applied for per-user receive performance enhancement.
Similar research can be undertaken to explore the effect on
downlink communication with low resolution quantization at
the transmitter when dither other than Gaussian dither, like
triangular dither and exponential dither, are added.

APPENDIX A

We calculate the asymptotic third-order harmonics for chan-
nel response of quantization noise with 1-bit quantized trans-
mission at the BS, given at (48), as follows. The derivation
follows similar reasoning to the derivation in [43]. With (84)
and (85) holding for large U and, approximating the matrix
P◦2nd by its mean in (86), we have

h∗1P
◦3
nd h1

Nt→∞−−−−−→
|Nt
U |<∞

tr(H P◦3nd H∗)

U
(83)

≈ 3

U

∑
k

tr(H
(
nondiag(pkp

∗
k )

◦ nondiag
(∑

k′ 6=k

pk′p
∗
k′
)◦2)

H∗) (84)

≈ 3

U

∑
k

tr(H
(
nondiag(pkp

∗
k ) ◦P◦2nd

)
H∗) (85)

≈ 3

U

∑
k

tr(H
(
nondiag(pkp

∗
k ) ◦ E[P◦2nd ]

)
H∗). (86)
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Fig. 4: Plot of SQINR, for different values of Nt and U , for CE and 1-bit quantized transmission at the BS antennas. With
optimized dithering, the SQINR strictly increases with decreasing value of U , for constant Nt. It also increases linearly with
Nt, for constant U , capturing the advantage of array gain provided by downlink massive MIMO communication. A part of
plot (a), for 1-bit quantized transmission, has been published as a part of [2].
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Fig. 5: BER plot for Nt = 100 and U = 1 for varying dither
power, σ2. Minimum BER is achieved at non-trivial finite
optimal dither power, σ2

opt, beyond which the performance
starts deteriorating. The gap observed between experimental
and theoretical plots is a result of the usage of 16-QAM
constellation instead of Gaussian signaling.

Using the singular value decomposition H = UΣV∗, and the
fact that these matrices are independent if H is IID Gaussian,
we have,

E[P◦2nd ] = E[nondiag(H∗ (HH∗)
−1

H)◦2] (87)

= E[nondiag(VΣ−2V∗)◦2]. (88)

Then, we approximate the distribution of the off-diagonal ele-
ments of VΣ−2V∗ conditioned on Σ by a complex Gaussian
distribution with standard deviation tr(Σ−2)/

√
U/Nt, which

asymptotically holds for large number of users. Therefore,
using the fact that tr(Σ−2) → U/(Nt − U) using (39), we
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Fig. 6: Comparison of the error performance with varying
transmit power ρ, for Nt = 100 and U = 2 for 16-QAM trans-
mission, with and without the addition of optimized dither.
A rate-1/2 LDPC code is used for coding the transmitted
symbols. The improvement in BER performance increases
with BS transmit power, and error floor experienced by the
BER for high BS transmit power is lowered significantly, due
to optimized dithering.

obtain

E[Pnd
◦2] ≈ U(1 + j)

2(Nt − U)2Nt
2 11T . (89)

As a result, (86) becomes

tr(H Pnd
◦3H∗)/U

≈ 3

2(Nt − U)2Nt
2 tr(H PndH

∗) (90)

=
3

2(Nt − U)2Nt
2 (U − tr(H PdH

∗)) (91)
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quantized transmission at the BS antennas. The optimal dither power strictly increases for low transmit power, but saturates
to a constant value at high transmit power. A variation of plot (b) has been published as a part of [2].
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(39)→ 3U

2(Nt − U)2Nt
2

(
1− U

Nt − U

)
(92)

=
3U(Nt − 2U)

2(Nt − U)3Nt
2 . (93)

We have used this calculation in our previous paper to cal-
culate the channel response to the quantization noise at the
receivers for downlink 1-bit quantized transmission [1].

APPENDIX B

We calculate the asymptotic third-order harmonics for chan-
nel response of quantization noise with CE transmission at the
BS, given at (40), as follows. Using (86) and (89) we have,

h∗1
(
I(PP∗)◦2 ◦ R(PP∗) + j · R(PP∗)◦2 ◦ I(PP∗)

)
h1

Nt→∞−−−−−→
|Nt
U |<∞

trH(I(PP∗)◦2 ◦ R(PP∗)

U

+ j
R(PP∗)◦2 ◦ I(PP∗))H∗

U

≈ 1

U

∑
k

tr(H
(
nondiag(pkp

∗
k ) ◦ E[P◦2nd ]

)
H∗) (94)

≈ U(Nt − 2U)

2(Nt − U)3Nt
2 . (95)

APPENDIX C

We calculate the asymptotic third-order harmonics for
channel response of quantization noise with correlated dither
added before quantization, and 1-bit quantized transmission
at the BS, given at (78), as follows. Using the singular value
decomposition H = UΣV∗, we have

E[(Pnd + nondiag(σ2RH))◦2]

= E[(Pnd − nondiag(σ2H∗(HH∗)−1H))◦2] (96)

= E[nondiag(V(Σ−2 − σ2I)V∗)◦2]. (97)
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Using the fact that asymptotically tr(Σ−2 − σ2I) →(
U

Nt−U − σ
2U
)

using (39), with computation similar to (89)
we have

E[(Pnd + nondiag(σ2RH))◦2]

≈ U(1− σ2(Nt − U))2(1 + j)

2(Nt − U)2Nt
2 11T . (98)

Since PP∗ and RH are positive semi-definite matrices,
PP∗ + σ2RH is positive semi-definite and can be expressed
as product of a matrix and its complex-transpose, PP∗ +
σ2RH = P̃P̃∗. Assuming p̃k as kth column of P̃, using
computation similar to (86), and result from (98) we get,

h∗1(Pnd + nondiag(σ2RH))◦3h1

Nt→∞−−−−−→
|Nt
U |<∞

tr(H (Pnd + nondiag(σ2RH))◦3H∗)/U (99)

≈ 3

U

∑
k

tr(H
(
nondiag(p̃kp̃

∗
k )

◦ E[(Pnd + nondiag(σ2RH))◦2]
)
H∗) (100)

≈ 3(1− σ2(Nt − U))2

2(Nt − U)2Nt
2 tr(H(Pnd + nondiag(σ2RH))H∗)

(39)→ 3U(1− σ2(Nt − U))2(Nt − 2U − σ2(Nt − U)2)

2(Nt − U)3Nt
2 .

(101)

We have derived this result as a part of our work in [2].

APPENDIX D
We calculate the asymptotic third-order harmonics for chan-

nel response of quantization noise with correlated dither added
before quantization, and CE transmission at the BS, given at
(71), as follows. Using results from (94), (98) and (100) we
have,

h∗1
(
I(PP∗ + σ2RH)◦2 ◦ R(PP∗ + σ2RH)+

j · R(PP∗ + σ2RH)◦2 ◦ I(PP∗ + σ2RH)
)
h1

Nt→∞−−−−−→
|Nt
U |<∞

tr(H I(PP∗ + σ2RH)◦2 ◦ R(PP∗ + σ2RH)H∗)

U

+ j
tr(H R(PP∗ + σ2RH)◦2 ◦ I(PP∗ + σ2RH)H∗)

U

≈ 1

U

∑
k

tr(H
(
nondiag(p̃kp̃

∗
k )

◦ E[(Pnd + nondiag(σ2RH))◦2]
)
H∗) (102)

≈ (1− σ2(Nt − U))2

2(Nt − U)2Nt
2 tr(H(Pnd + nondiag(σ2RH))H∗)

(103)
(39)→ U(1− σ2(Nt − U))2(Nt − 2U − σ2(Nt − U)2)

2(Nt − U)3Nt
2 .

(104)
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[25] O. Castañeda, S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and
C. Studer, “1-bit massive MU-MIMO precoding in VLSI,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4,
pp. 508–522, Dec 2017.

[26] J. Chen, “Alternating minimization algorithms for one-bit precoding in
massive multiuser MIMO systems,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 8, pp. 7394–7406, Aug 2018.

[27] Y. Yapici, S. J. Maeng, I. Guvenc, H. Dai, and A. Bhuyan, “SLNR
based precoding for one-bit quantized massive MIMO in mmwave
communications,” in Proceedings of the IEEE International Conference
on Communications Workshops, May 2019, pp. 1–6.

[28] A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and
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