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Linear Chebyshev Approximation

in the Complex Plane Using Lawson 's Algorithm

By S. EUacott and Jack Williams

Abstract.   In this paper we discuss the application of Lawson's algorithm for com-

puting best linear Chebyshev approximations to complex-valued functions.   Some

numerical examples are also presented.

1. Introduction and Preliminaries.   In this paper we are concerned with the use

of Lawson's algorithm ([4], [7], [6]) for computing best linear Chebyshev approxi-

mations to complex-valued functions.  Also, we give some results which relate the best

approximation on a compact set A in the complex plane to best approximations on

certain subsets of A.  Some numerical examples are also presented including approxi-

mations by linear combinations of rationals with preassigned poles.

We consider the class C[A] of complex-valued continuous functions/on a com-

pact subset A of the complex plane, with ll/ll = maxze>1 |/(z)|. We assume throughout

that A contains at least n + 2 points.  Let P denote the finite-dimensional subspace of

C[A] whose basis is (p1, <p2, . . . , (bn. Now let /G C[A] - P; then we seek p* G P

for which

11/- p* IK II/- p II    for all p G F

It is known [5, Chapter 2] that p* exists; and if {</>,} forms a Chebyshev set on A,

then p* is unique.

In practice, this approximation problem could occur in one of the following forms.

Problem 1. A = S, a simply-connected region bounded by a piecewise smooth

Jordan curve C; the functions / and {0,} are analytic in S and continuous on S.  Then,

from the maximum modulus theorem, ||/|| = maxzec|/(z)|, so the problem is equiva-

lent to best approximation on the boundary C.  For example, we may wish to obtain

a best polynomial approximation ^nüarzr to ez sin -nz on the quadrant

S:={z: |zK 1, Re(z) > 0, Im(z) > 0}.

Problem 2. A:= {z-: j = 1, 2, . . . , TV} on which we wish to approximate the

values f. = fiZj), j = 1, 2, . . . , TV.  For example, the / values may correspond to a set

of points on the imaginary axis and we seek a best approximation with <j>r = 1 /(z - ar),

r = 1, 2, . . . , n, where {a,.} are preassigned points lying in the left half-plane.

2. Discretization Theory.  In this paper we shall apply Lawson's algorithm to

the above Problems 1 and 2.  Cline (see [2]) has extended* Lawson's algorithm to
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36 S. ELLACOTT AND JACK WILLIAMS

apply to a continuum; but the algorithm we discuss here is only applicable to approxi-

mation on a finite point set.  Naturally, we therefore, "discretize" Problem 1 by first

replacing the boundary curve C by a finite point set Ck which is sufficiently "close"

to C.  Then we compute a best approximation pk to /on Ck.  This process can be

justified on the basis of the following results, the first of which is due to Cheney [1,

Chapter 3].   Cheney's result treats real approximation, but the same proof applies to

the complex case.

Definition.   Let A be a compact subset of the complex plane; then the density

of the subset Z ÇA is given by

|Z| = max inf  \y - z\.
z&A y<EZ v

Theorem 2.1 (Cheney [1]). Let /G C[A] - P and let pk GP be a best ap-

proximation to fon the compact subset Zk C A, where \Zk\ —► 0 as k —► °°; then

lim/c-.« 11/ - Pk II = 11/ ~ P*ll-  If P* /s a unique best approximation to / then

As applied specifically to Problem 1, we now give a result which gives some infor-

mation about the choice of subsets Zk C C. Naturally, for results of this type the

smoothness properties of both / and the boundary curve C are involved.  Here it is

more convenient to measure the density of subsets Zk C C in terms of the parametric

representation of C.   For many practical problems this measure of density would then

be directly related to arc length.  More general results for real approximation are given

by Cheney [1].

Theorem 2.2.  Let C:= (z: z = y(t), t G [0, 1], 7(0) = 7(1)} be a piecewise

smooth Jordan curve consisting of the smooth arcs Cr,  r = 1, 2, . . . , M, and let f

and {0,} be twice continuously differentiable on each arc Cr   Let Zk = Zk(t) Ç C,

k = 1, 2, . . . , be a sequence of finite point subsets which each contain all the points

of discontinuity ofdy(t)/dt, f G [0, 1]. //

\Z, I =    max       min     d(y(t,),y(t.))
1   fc'      y(t2)eCy(tl)(EZk    KTK 1" ,V2"

satisfies \Zk | —► 0 as k —► °°, where

dititj, yit2)) = min{\tl - t2\, 1 - |fj - f2l},

then there exists a positive constant K such that, for k = 1,2, ... ,

11/ - p*\\ - max  \f(z) - pkiz)\ < K\Zk\2,
fc

where pk GP is a best approximation to f on Zk.

Proof.   Consider Zk Ç C and let Hz) = |/(z) - pfc(z)|2.  Suppose that pk is not

a best approximation to /on C; then we can choose f0 G [0, 1] for which |/î(7(f0))l =

11/ - pk\\2 and 7(f0) GC - Zk.  Consider now the interval (f0, fj), f, > t0, where

7(f) Ö Zk for all f G (f0, t,), 7(f,) G Zk.  (For simplicity we have assumed that ti < 1,

otherwise, a simple modification is required.)  From the smoothness of h,
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LINEAR CHEBYSHEV APPROXIMATION 37

f(Ta0)) = 0^/7(7(f1))

= h(y(t0)).+ x(t, - tQ)2 ̂ riiit0 + d(t 1 - f0))),    o < e < i.

Therefore,

(2.1) ||/ - p*\\2 < ||/- pfc||2 < max |/(z) - pk(z)\2 + Wk\Zk\\
z      k

where Qk = sup\d2 h(y(t))/dt21 , and the supremum is taken over 7(f) G Cr,  r = 1, 2, . . . ,

M.  But since \Zk\ —► 0 is also equivalent to the density of the sets tending to zero in

the sense of Theorem 2.1, we have from the convergence of pk to p* that Qk < K,

for some Kl.  Finally on dividing (2.1) by 11/ - p*II and noting that

max|/(z)-pfc(z)|/||/-p*IKl,
zez*

the result follows.

The above theorem shows, for example, that when approximating on a square C,

the corner points should be included in Zk.  Also, in practice, the constant K could be

estimated with the aid of simple difference approximations to d2h/dt2 throughout

each Cr,  r = 1, 2, . . . , M, thus indicating whether the Zk is sufficiently dense in C.

(2.1) could also be used to bound ||/ - pk\\.

3.  The Lawson Algorithm. We now consider exclusively approximation on a

finite point set Z which consists of TV distinct points and where now  11/11 =

maxzez|/(z)|.  Lawson's algorithm computes a sequence of best weighted least squares

approximations, which, under suitable conditions, converges to the best Chebyshev

approximation to / on Z.  The relationship between least squares approximation and

Chebyshev approximation can be seen most satisfactorily by appealing to the following

form of a characterization theorem due to Rivlin and Shapiro [8] (also see [5] ; in

fact, the theorem applies to approximation of real- or complex-valued continuous func-

tions on a compact Hausdorff topological space).

Theorem 3.1 ([8], [5, Chapter 2]).  p GP is a best Chebyshev approximation

to fG C[Z] if and only if there are r points z,, z2, . . . , zr G Z0 and r numbers

w, > 0, . . . , wr > 0, 2 wk = 1, r < 2« + 1 (r < n + 1 in the real case), for which

r _

(3.1) Z ^ [f(zk) - pizk)} 0 (Zfc) = 0,      i = 1, 2.n,
k=l

where the extremal set is denoted by

Z0:={z: \fiz)-piz)\=\\f-p\\,zGZ}.

This result provides a description of the extremal set Z0; and if {0,} is a Cheby-

shev set, then we have in addition r> n + \ [5, Chapter 2].  The theorem illustrates

the fundamental difference between the real and complex case.  In the real case the

characterization can be achieved in terms of n + 1 points (on which the equi-oscillation

property is satisfied if {0r} is a Chebyshev set), whereas in the complex case the exact

number of points is unknown, « + I<r<2« + 1.  It is possible to devise an algorithm
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38 S. ELLACOTT AND JACK WILLIAMS

on the assumption that r = n 4- 1 and this approach has been pursued in [9] ; however,

the method does not in general yield best approximations.

Theorem 3.1 can be viewed in a different way.  From Eqs. (3.1), regarded now

as the "normal equations", it follows that the best Chebyshev approximation on Z is

also a best weighted least squares approximation on Z with suitably defined weights

w(z), l,zw(z) = 1 (where zero weights have been assigned to points z Ö Z0).   Further,

we note that the sufficiency part of the theorem can be established without the con-

dition r <*2n + \.

If the weights {wr} and points {zr} C Z0 were known, the best Chebyshev ap-

proximation could be easily obtained by solving the associated least squares problem

(see Section 6).  Lawson's algorithm may be regarded as an iteration scheme for com-

puting these {wr} and {zr}.  However, the fact that the above theorem is so funda-

mental, that is, it is applicable to very general spaces, strongly suggests that any algorithm

based on the result would not be particularly efficient.  This seems to be the case in

practice (see Section 6).

We now define the set of weight functions

W:= iw: Z -*■ RN | Z w(z) = 1, w(z) > 0 for all z G z\.

Lawson's algorithm consists of an iteration on W which is defined as follows.

(a) Choose w1 G W such that wl(z) > 0 for all z G Z.

(b) Set

wkiz)\ekiz)\
w*+*fr) = -  »       V    ,      *=l,2,...,zGZ,

2Lwk(y)\ek(y)\
z

where ek = f — p   and pk is a best weighted least squares approximation to / on Z,

that is, pk minimizes (2Z wk(z)\f(z) - p(z)|2)1/2 over p GP.   This procedure will be

referred to as the LI algorithm.

We note that wk+1 G W, but wk+l(z) = 0 is possible for some z G Z.  Also, the

definition of the algorithm requires no condition on the basis {0.}.

A proof of the convergence in the real case can be conveniently found in [6], in

which it is necessary to assume that {0,} is a Chebyshev set.  The proof is long (and is

not easy) but can be appropriately modified to establish convergence in the complex

case.  Summarizing, we have, subject to (a) and (b), where {0(} is a Chebyshev set,

the following results.

(i) The sequence {pk} converges to p* which is a best Chebyshev approxima-

tion to / on Zj C Z, where

Z   = C\  Y     and     Y:={z:wkiz)>0,zGZ}.
1       k=l      K K

Zj contains at least n + 1 points.

(ii)  The sequence 6(wk) = 6k = (2zw*(z)|/(z) - pfc(z)|2)1'2 is strictly mono-

tonically increasing (unless convergence takes place in a finite number of iterations)

and
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LINEAR CHEBYSHEV APPROXIMATION 39

0* = lim 6k = max |/(z) - p*(z)|.
fc-»=» zez

(iii)  If during the course of the iteration, wk{z) is set to zero for some z (this

could happen "accidentally") then, from (i), Zxi^Z and so we may have 9* <

maxzez|/(z) - p*(z)|, that is, p* is not the best approximation on Z.  In this case the

algorithm can be restarted with the weight function,

wiz) = (1 - X) lim wkiz) + Xm(z),      0 < X < 1,

where w(z) = 1 for all z G Z - Z, for which |/(z) - p*(z)| > 9*; m(z) = 0 otherwise.

For X sufficiently small 9 > 9* and after a finite number of restarts, the best approxi-

mation to f on Z is obtained.

4.   Rate of Convergence.   In the real case Lawson [4] and Rice-Usow [7] have

observed that ek and 9k converge linearly to e* and ||e*||, respectively, with asymptotic

convergence factor p*, where

p* = max(p = |e*(z)|/||e*|| < 1, z G Z).

Cline [2] has proved that for every X > p* there is an M > 0 such that, for all k,

(4.1) ||p* - pkIKMr,k    and    \\ek\\ - lk*IKTliXfc.

In the complex case some numerical experiments have indicated that the rate of

convergence can be slower than linear.   For example, we considered the case /(z) =

(sin z/z)1!2 with Z consisting of 100 points evenly distributed around the boundary

of the semidisc {z: |z|< 1, Re(z) > 0}.  Then approximation by a cubic polynomial

(0,- = z'_1) required 3, 6, 42 and > 100 iterations to obtain, respectively, 1, 2, 3 and

4 correct significant figures in the norm of the error function.

It is possible to extend some of Cline's preliminary results to the complex case

(subject to the basic assumption that {0,} is a Chebyshev set).   For example, his Lem-

mas 3 and 5 show that at points z not in the extremal set Z0, the weights tend to

zero as rapidly as a geometric progression with ratio related to |e*(z)|/||e*||.  The re-

sults of the form (4.1) fail, however, because, with one exception, the algorithm does

not converge in one step on pure extremal sets.  The exception is the case of extremal

sets consisting of only n + 1 points and is of little value in practice.  In fact, as the

following example shows, sublinear convergence is possible on pure extremal sets con-

sisting of at least n + 2 points.

Example.  A := {1, - 1, /'}, / = z, 0X = 1.  Here p* = 0 and Z0 = Z.  If the initial

weights at 1 and -1 are equal and the weight at /' is nonzero, then

wk3+i = wk3Hwk3 + Vl + (w*)2),       llek|| = \/l +(vv*)2,       ||p* - pk || = wky

It is clear that there does not exist a constant p < 1 such that

Up* -pfc+1IKpllp* -p*ll    for all k.

Unlike the real case, it is quite possible in practice for ZQ= Z (see [5, Chapter 2]
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40 S. ELLACOTT AND JACK WILLIAMS

for examples on the unit disc).  In contrast to the above example, our numerical exper-

ience with such problems is that the convergence is not generally "very slow".   Some

examples of this type are presented in Table 1.

5.  Acceleration of Convergence.  Essentially, we wish to make wk(z) tend to

zero as rapidly as possible except at points in some determining set Z0 Ç ZQ on which

p* is also the best Chebyshev approximation to /  In the real case various schemes for

accelerating this convergence have been proposed ([7], [6]).  When {<¡>¡} is a Chebyshev

set, one such scheme recommended in [7] sets values of wkiz) to zero on the basis

that |efc(z)| is "small" in relation to ||e*||.  The success of this scheme depends essen-

tially on the fact that the extremal set (usually n + 1 points) can be fairly well "regog-

nized" during the course of the iteration.  Unfortunately, on the basis of the problems

we have treated, this device cannot be recommended in the complex case.  Here

|ek(z)| can be close to ||ek|| for many z G Z; this feature is closely related to the fact

that Z0 can be "large" in relation to Z.

Another modification [7] is to redefine the LI algorithm by replacing stage (b)

with:

Setw-(z)=-^^,      *=l,2,...,zGZ.
(c) Zwkiy)\ekiy)\2

z

This scheme, the L2 algorithm, if it converges, makes wkiz) tend to zero like (p*)2k

and so is asymptotically equivalent to two steps of the LI algorithm.  From (c),

(0*+»)2 =Zwfc+10)|ek+1|2 = (¿2wk(y)\ek\2\ek+1A/i9k)2;

and it is now easy to show (using the Cauchy-Schwartz inequality) that 9k+1 > 9k,

k = 1, 2, . . .   .  This is an important part of the convergence proof for the LI algo-

rithm. Unfortunately, we have observed examples which do not converge (similarly

for the real case [4], [7]).  When it does converge, however, the acceleration can be

quite striking, particularly for examples in which Z0 = Z.  Examples are given in

Tables 1 and 2.

As an effective acceleration scheme for the complex case, we recommend the

procedure of applying alternate steps of LI (stage (b)) and L2 (stage (c)). For this

scheme the L3 algorithm, we have also that 9k + 1 > 9k,  k= 1, 2, . . .  .

Theorem 5.1.  Let {<p¡} be a Chebyshev set, and let /G C[Z] - P.  Suppose

that the positive integers are divided into two sets /x and I2 so that if k G Iy step

(b) is performed, otherwise step (c) is performed.   Given w* G W, wxiz) > 0 for all

z G Z, then a sufficient condition for the sequence {pk} to converge to p*, the best

Chebyshev approximation to fon a set Zx C Z, is that Ix be infinite.  If Z^ ¥= Z, then

the algorithm may be restarted with the restart procedure ((iii), Section 3).   The best

Chebyshev approximation to f on Z is then obtained after a finite number of restarts.

Proof.   The proof that the restart procedure is effective is the same as in the LI

case (a continuity argument plus the fact that Z is finite).  Therefore, in order to sim-

plify the proof of the theorem we shall suppose that throughout the iteration no value

of wkiz) is accidentally set to zero. We can then deal with best Chebyshev approxi-
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LINEAR CHEBYSHEV APPROXIMATION 41

mation to / on Z (as opposed to some subset Z,).

Using the same argument as in the convergence proof of the LI algorithm, we can

show that {pk} is uniformly bounded.  Now consider any convergent subsequence

{pk<}.  Since the wk are also restricted to a compact set, we may assume that {w '}

is also convergent and let vv = lim^^w*'.   Using the fact that {0(} is a Chebyshev

set, we can easily show (as in the LI convergence proof) that vv is nonzero at (at least)

« + 1 points.  Therefore, in a neighborhood of vv, the best least squares approximation

p is a continuous function of the weight vv; thus vv corresponds to p where p =

lim,.^p\

Suppose now that p =/= p*, the best Chebyshev approximation to / on Z   By the

uniqueness ofp, 0(vv) < 11/ - p*|.  We shall now examine in W a certain neighborhood

of vv and, by using the fact that /j is infinite, establish a contradiction.

The sequence {0(wk)} is bounded and monotonically increasing, so lim/c_>oo0(wk)

= 0(vv).  Consider now T C W, where

T:= {vv: |0(w) - 0(vv)| < 2,  w G W);

where 2 = &min{0(w), \\f - p*|| - 0(vv)}.  Then 0(w) > 0 for all w G T and by con-

tinuity T is compact.  Given vv G T with corresponding best least squares approxima-

tion p, define the weight function F(w) G W obtained by one step of the LI algorithm

b(w)(z) - -=^—-        z G Z;
Z w(y)|/(y) - P(y)l

yez

and let 5(w) = 0(F(w)) - 0(w).  Then, 5(w) > 0 for all w G T; also, since p is con-

tinuous on T, F is continuous on T so there exists vv0 G T such that Ô = 5(w0) =

infwer5(w).  Since the LI algorithm is convergent ((i), (ii), Section 3), a weight func-

tion vv* corresponding to p* satisfies 0(w*) = ||/ - p*|| and F(w*) = vv*.  Consequently,

w0 cannot be such a vv*; and hence, 5 > 0. We have thus shown that for any vv G T

one step of the LI algorithm must increase the least squares error by at least Ô.

Now consider the original sequence {0(wk)} (generated by the algorithm) along

with the subsequence {0(wk')}.  Choose K such that, for k>K, |0(wfc) - 0(vv)| <

min(5/2, 2).  Since /, is infinite, we may also choose k0 G 7X with k0 > K, so that for

i sufficiently large

Since wk° G T,

k. kn+l kn
8(w l)>9iw °     ) = 9(F(w °)).

0(w*') > 9(wk°) + 6 > (0(vv) - 5/2)+ 5 > 0(vv);

but this contradicts the fact that 0(wk) tends to 0(vv) from below.

We have thus shown that every convergent subsequence of {pk} tends to the best

approximation p*. Since {pk} is uniformly bounded this is sufficient to guarantee that

pk —► p* as k —► °°, which completes the proof.

6.  Computational Details.  Numerical Examples.  For the three algorithms LI,

L2 and L3 we have not observed any examples in which values of wk(z) are acciden-

tially set to zero. (Rice and Usow [7] report for the LI algorithm, in the real case, that

only very rarely is it necessary to use the restart procedure.)
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42 S. ELLACOTT AND JACK WILLIAMS

TABLE 1

Approximation on the unit disc (100 points on the boundary).  All the points are

extremal points, Z   = Z; 0. = z'    , i = 1, 2, . . . , n

m
Correct

significant

figures

LI

iterations

L2

iterations

L3

iterations

5

7

9

11

9

17

18

14

3

5

5

4

3

4

7

9

11

5

6

5

6

4

19

19

18

20

14

2

2

2

2

2

5

5

5

5

3

Table 2

Approximation on {z: |z|< 1, Re(z) > 0} (100 points on the boundary), Z   i= Z,

0. = z''-I,, = l,2, ...,n.

m
Correct

significant

figures

LI L2 L3

iterations iterations        iterations

7

11

2

2

3

3

V(2z + 1)

2

2

1

59

12

4

34

7

3

39

8

5

sin-y/z

Vz

4

5

42

5

21

3

29

3
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LINEAR CHEBYSHEV APPROXIMATION 43

Table 3

Rational approximation with preassigned poles. Approximation of /(z) =

[1 + (z + 1)2]~1/2 using 25 points on {z: z = iy, -20 <y < 20}.  The letter

G indicates that more than 30 iterations we required.

0.                                                Correct L3

f= 1, 2, . . . ,n                n                   significant iterations

figures

1 2

4 2 5

3 26

1 3

5 2 G

3 G

1 3

6 2 5

3 G

1 5

7 2 G

3 G

1 2

4                         2 27

3 G

1 1

_J_                                5                          2 7
(z + i)                                                         3 12

(î+zy-1

1 2

2 15

3 G

1 5

2 17

3 G
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The recommended L3 algorithm consisting of alternate steps of LI and L2 has

been applied successfully to many problems.   Some results are presented in the tables

and comparisons are made in Tables 1 and 2.  For each case, wliz) = 1/TV for all z G

Z.  The weighted least squares problems were solved by using the complex analogue of

the Golub algorithm [3].   In the tables we have indicated the number of iterations re-

quired for a certain number of correct significant figures in the error norm; this was

made possible by using the inclusion interval

0k< ||/-p*IK ll/-pkll

for the final computed iteration.

It is also interesting to compare the behavior of the LI and L3 algorithms when

applied to the example of Section 4, for which some computed results are as follows.

||p* - ps || = 0.1342 (LI), 0.0956 (L3); lie5 II = 1.0090 (LI), 1.0046 (L3),

||p* -p50|| = 0.0187 (LI), 0.0125 (L3);       ||e50|| = 1.000175 (LI), 1.000078 (L3).

Given that a complex least squares routine is available, the L3 algorithm is easily

programmed.  It must be accepted, however, that the ultimate convergence of the

algorithm is in general very slow; but often good approximations are obtained in a

small number of iterations.  We are not aware of an algorithm which is faster.
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