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Linear Chebyshev Complex
Function Approximation

1. Introduction

The approximation of desired or given functional behavior by finite sets of

simpler or specified basis functions is a recurrent problem in many fields. For
example, in the mathematical field, we might wish to approximate a (desired)
complex integral by a set of (simpler) sinusoidal components. Or in an antenna
array processing application, we often want to realize a (given) low sidelobe
behavior by means of an array with (specified) element locations which are not
under our control.

For the case where the given functional behavior and the specified basis functions
are all real valued and defined on a finite discrete data set, and where the ap-

proximation is afforded by a real-weighted linear combination of these basis
functions, the optimum solution for minimizing the maximum magnitude error,
i.e., the Chebyshev norm, is in very good shape due to a fine algorithm given in [I].
Specifically, this algorithm solves the following mathematical problem: given real
constants {fi}, {hik, where I4i~m, i4k~n, m;n, the real quantities {ak} ? are
determined that minimize the maximum absolute value of the error residuals

ei=- fi-± akh ik for li4m. (1.1)

This algorithm has recently been used to good advantage in an array processing
application to design some real symmetric weighting functions with very good
sidelobe behavior, subject to constraints on the rate of decay of the distant sidelobes
[2].

Here we wish to employ the algorithm, as described above for real variables in
(1.1), for the minimization of the Chebyshev norm of

en(z) a f(z) - ± akhk(Z) (1.2)
k-1

when f(z) and {hk(z)} ? are complex, and z can take values in an arbitrary finite
discrete point set. The weighting coefficients {ak}n, may be complex, or alter-
natively, they may be restricted to be real. Applications are afforded by an antenna
array with arbitrarily specified element locations, but employing weights that are
restricted to be real, or alternatively by array weights that are also allowed to be
phased (complex). In Section 11, the basic mathematical theory and algorithm for
the minimization of (1.2) is developed. Numerical examples and applications of the
technique, some efforts attempted for extending the method to a continuum of
values of z, and a discussion constitute the rest of the main body of the report. An
Appendix presents a computer program in a form which should be useful to readers
interested in applying the technique to their own particular applications.

1* -
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Although the above algorithm [I] is limited to a discrete set of points, it has been

used fruitfully to minimize the continuous error (1.2) over a real variable z in the

interval [z. , zb], when f and { hk are real, in the following manner. First, an initial

set of mn real points jz(" ' 1'
m was specified and the Chebyshev norm minimized in

the usual fashion, resulting in the coefficient set {atL'}. For this set of optimum

coefficients, the locations ,z42) - of the largest peaks of jen(z)j were located, by

setting the derivative en(z) to zero and solving numerically for {z 2)}); the number I

of such peaks will generally be less than m, but larger than n. (This approach

presumes the availability of computable expressions for f'(z) and {hk(z)I'). Then
the modified set of points Iz(2)

)
t were used for another Chebyshev minimization,

resulting in coefficient set ja2} . Repetition of this procedure stabilized after a few

trials with a unique set of {zj}8 at which the maximum errors were equal and

irreducible. In the examples tried in 121, the number of peaks, 1, at which the

magnitude error len(z)l was largest and equal, turned ouC to be n+ I. Further

discussion of this recursive approach is given in Section V.

11. Mathematical Theory and Algorithm

Let f and h,, ..... hn be complex valued functions defined on the finite discrete
point set Qm = {Z, . ... Zj. For a complex vector a = (a,, . . an) ECn, define
the complex error

n

f(z) - " akhk(z) a en(z;a), ZEQm. (2.1)
k=1

The discrete linear Chebyshev approximation problem is to find a complex* vector
a = (a, . ... a)C so that

En(f) - min max le(z;a) = max I en(z;) I (2.2)
aEC

a 
ZEQm ZEQm

The quantity En(f) is called the discrete Chebyshev, or minimax, error of the ap-
proximation on the point set Qm.

We do not solve this problem exactly. An algorithm presented in [31 for its
solution is erroneous; we have discovered examples (see Section IV) such that the
recursive procedure described there need not converge to a solution of (2.2). We will
show that problem (2.2) can be replaced by a related approximate problem solvable
by available linear programming techniques. The exact solution of this related
problem yields approximate solutions of (2.2). The error in these approximate
solutions to (2.2) can be determined and, in fact, made arbitrarily small, using the
results we prove below; see Theorems 1 and 2.

It can be shown by standard mathematical methods 14, p.11 that a vector a'
satisfying (2.2) exists, although it may not be unique. Sufficient conditions are
known that result in unique i, but we do not need these conditions here. Therefore,
no further assumptions on f, hi t . . . . hn or the point set Qm are made. In order to
proceed,we need the following result.

• The restriction of 3" to real values is discussed at the end of this section.

2
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Lemma 1. If z =x + iy, where x and y are real, then

zi = max (xcosO + ysine) . (2.3)

Proof. If z= 0, the result is obvious. Suppose, then, that zO0. By the Cauchy-

Schwartz inequality, for every real 6,

xcos6 + ysin94(x 1+y)112 (COS, + sin2 69)1" = JZJ

so that

max (xcos9 + ysin9)4 jzi

For the particular value 6 =arg(z), it is seen that (2.3) holds. This completes the
proof.

Now, let the real and imaginary parts of the complex error e,, (z;a) be denoted by
Rn(z;a) and 1,, (z;a), respectively. Thus, from Lemma 1,

le, (z;a)I = max (Rn(z;a) cos 6 + In(z;a) sin 6) . (2.4)

if, in this last equation, we take the maximum over any finite subset T of angles 6 in
the interval -n(O8iT, instead of all angles in the interval -R<6-,n, we must have

en(z;a)I > max (Rn(z;a) cos 6 + !n(z;a) sin 6) . (2.5)
OET

It will be seen shortly that the next result is very important and central to our

problem.

Lemma 2. LetO =j 7(j-)/p, j= 1,2, . 2p, where the integerp,>2. Let z x +iy,
and let

M =max (xcosO . + y sin 6.) (2.6)
4 2P

Then

M < zI 4M sec (n/2p) . (2.7)

Proof. That jzj > M is obvious, so we only have to prove Izj < M sec (11/2p). Let
P(x,y) be the point in the Euclidean plane corresponding to the complex number
z x +iy 0, so that

x = jzi cos (arg z)
y = jzj sin (arg z).

'A __ ____3
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Thus, for any angle Cp, we must have

( IzI cos (arg z) - x) cos gp + ( IzI sin (arg z) - y) sin op 0

which, after simple algebraic manipulation, can be written

IzI = x'(qo) sec a( p) (2.8)

where x'(Cp) = x cos cp + y sin cp and cr(cp) = arg (ze-'). Alternatively, (2.8) can be
derived geometrically by considering x' to be the x coordinate of the point P(x,y)
after a rotation of the axes through the angle p. From (2.8) we have

IzI = x'(6.) sec ,(.),j= . . 2p . (2.9)

Let the index k be such that

M = x'(0k) = max x'(0).
I-<j<2P (2.10)

With the particular angles 6. chosen here, x'(Oj + p) = -x'(@,) for j = 1, .... p, so that
we must have x'(Ok)>O. Since z*O is fixed in (2.9), it is clear from (2.10) and thedefinition of the angles a(8 ) that

0<sec a(0k) = min Isec a(0O)I < sec(n/2p).
IKj(<2p

Therefore,

Iz = x'(Ok) sec a(k)

= M sec(n/2p).

This concludes the proof.

We are now in a position to describe a problem that we can solve exactly and that
is related to the given discrete linear Chebyshev approximation problem (2.2). For
notational convenience, we define, for any complex vector aECn,

G (z;a) = R,(z;a) cos 0 + In(z;a) sin 0j, j = 1, .... 2p , (2.11)

where ,, ... , 02, are the angles given explicitly in Lemma 2. We seek a complexA A A

vector a = a .... an) ECn satisfying

MP(f)- min max max G (z;a)
aEC n  ZEQm '....2p

= max max G (z; ) (2.12)

zEQm ,.2p

Using standard mathematical methods, it is easy to see that at least one such vector
LCn exists. The connection between the problem (2.12) and the problem (2.2) is
explored in the next few results.

4



Theorem 1. Let p>,2 be an integer, and let 8, no~-)/p, j 1,2, . 2p. Then R60

Mn~)4E()4Mpf e n2) (2.13)

Proof. Using a' and a as in (2.2) and (2.12), respectively, we have

Mn(f) =max max G i(Z;A) from (2.12)
uQm 14j4

2
p

< max max G.i(z; a) from (2.12)
ZLQm I<j42p

4 max len(z;a')I implied by (2.7)
ZEQM

from (2.2)
=En(f)

max Ien(za) from (2.2)
ZLQM

maxm max~ G (za) sec/2p) implied by (2.7)

= M np(f) sec(n/2p)

This concludes the proof.

Theorem 2. Let p>,2 be an integer, and let 0,= nOj-i)/p, j = 1,2, ... ,2p. Let

4' (f) = max len(Z a) (2.14)
ZLQM

where the complex vector LiCn is any vector satisfying (2.12). Then

En(f 46'(f) -- En(f) sec(tr/2p) . (2.15)

Proof. Using a' and A as before, we have

En~f ' -p~f)from (2.2)

=max Ien(z;g)I from (2. 14)
ZLQM

Smax max G.(;a) sec(nT/2p) implied by (2.7)
EQm Ikj42P

4 max max G.i(z;3) sec(n/2p) from (2.12)
Z&Qm 14jef2p

4 max le (z;a )Isec(Tr/2p) implied by (2.7)
ZLQ'

=En(f) sec(n/2p).

5
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This concludes the proof.

Corollary 2. 1. Under the conditions of Theorem 2,

Mnp(f) 4 E (f) < i-"~(f). (2.16)

Proof. Immediate.

The preceding corollary evidently gives excellent upper and lower bounds on the

discrete linear Chebyshev approximation error En(f), and these bounds are readily
available after the numerical computation of zCn and Mno(f) has been co,npleted.
We point out that the above two theorems substantially generalize results in
[3, p.85 4 1.

Using the Maclaurin series for sec x in (2.15) gives the relative discrepancy

0 -(f)-E(f) < sec (n/2p) - I = - + o p-. (2.17)
En(f) 8p 2

Note that this upper bound on the relative error is independent of f, the point set

QM ' the basis functions { hk }, and n.

We will now explicitly formulate an overdetermined system of real linear

equations to be solved in the Chebyshev norm (to be defined) which is equivalent to

solving the problem (2.12). Referring to the choice of j's in Lemma 2, we observe

that 0p+j = 1r + 8j, j = 1, . . . ,p, and, and so from (2.11), we have

Gp+j(z;a) = -G (z;a) , j = 1, . p. .

Therefore, we may rewrite (2.12) as

Mnp(f) = min max IGj(zt;a)l (2.1S;
aECn I-t~m

Now, breaking the following quantities into their real and imaginary components

f(z) = u(z) + iv(z)
hk(Z) = rk(Z) + iSk(Z) , k = 1, .... n, (2.19)

ak = bk + iCk, k = 1, n,

we may write

Rn(z;a) = u(z) - bkrk(Z) + k skk(Z)

n n (2.20)

I (z;a) = v(z)-I bk sk(z)-I ckrk(Z).

Using (2.11) and (2.20) gives

6
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GY(7 :)- utz) Cos 8 + V(Z) sin e

X bk [rk(z,) cos 0+ sz 1 sin 81

n

I ck [r,(z,) sin 0J- s k(ZL) COS 81. (2.21)

Note that Gj(z,; a) is a real linear equation in the 2n variables {bk} and ICK},
k = 1, . . . , n, and that all the coefficients of this equation are computable directly
from known data.

Define the mp x 2n real matrix B in the partitioned form

B, D,

B D
m m

with the p x n submatrices

-=[b'!)J and D,=- dv I, t=l, . .,m

whose general real entries are

b i!k)= r k (Zt) COS8 + k(Zd sin 0

j=1....p;k=l....n.

d~)= rk ()sin nB.Sk~~o (2.22)

Also, define the real vector

., gj gp ', gp, , 2 1 gP T (2.23)

of length mp, where

gtj = u(z1 ) cos Oj + v(z,) sin Ojt= 1, . m; j 1. p.

Finally, define the real vector

x = [b1, . . . I b,,, c . .. cj T (2.24)

of length 2n. With this notation in hand, it is easily seen that the overdetermined
system of mp equations in 2n unknowns

Bx e (2.25)
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has a residual error vector defined by

g - Bx

whose mp components are precisely the mp real numbers Gj(z,; a) arranged in a

special order. Therefore, the problem (2.18) can be solved by computing a solution

to the overdetermined linear system (2.25) in the Chebyshev norm; i.e., the largest

magnitude component of the residual vector g-Bx is minimized over all choices of

the vector x.

This equivalent problem in linear algebra can, in principle, be solved exactly and

in a finite number of steps using linear programming methods [1], [3]. The proof of

this fact is the content of the following self-contained mathematical result.

Theorem 3. Let A=[a IJ be a real r x s matrix with r>,s>l, and let b=(b, ..... br)

be a real vector of length r. Let a*, a*, w* denote a solution of the following

primal linear program in the s+2 real variables a. ... a,+, w with 2r linear

constraints:

Minimize: w
subject to: a,> 00 .. ... as + > 0 , W >0,

Iakaik +a s bj, j=l .. r,

S (2.26)
-1 akajk-as+IA + w >-bi, j=l . r
k=l

where
s

Aj a, j= I .. .. r . (2.27)
k-l

Define

xk = a as* , k=l, . s. . s. (2.28)

If

M = min max lb -I avik Yk

I<j<r k i (2.29)

with the minimum taken over all real y., y, then

M = c* = max Ibj- ajkXkl

Ij<r k i (2.30)

where x, ..... x, are given by (2.28).

8
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Proof. We first prove that M<tw*. From (2.28), we have a* a*, + x which,

substituted into the constraints (2.26) and using (2.27), gives

I ak x k + o* >bj , j =1 ... r ,
k-I

and

-~ ajkXk + * > j-b- ,j= . r

Clearly, these last sets of inequalities together imply

max Ibj-I ajk xkl <* C. (2.31)
I-j-r k = 1

Hence, from (2.29), MNwo*.

We next prove that w*<M. Let x', ..... x' denote any solution of (2.29). Then
we may write

Ibj-I ak xkl < M, jr=,....r

or, without absolute values,

bj- I ajkx* < M
k-I

, r (2.32)
s

-bI + a x * M<
k-

Now, define

fi+ 1 = max {0,-min x.*} (2.33)

Pk 
= X*+ k = 1,. s

Clearly, the s + 2 real numbers/J t . , M are non-negative by construction.
Furthermore, substituting x* P + 1, k = 1, ... s, into (2.32), and using

(2.27), gives

bj - ajk/ k -s + I Aj>< M

-b} + 7_t a 
j
k l k + PI I Aj i < M .

Clearly these inequalities show that the numbers/Jr .#.I . + 1, M satisfy all the
constraints (2.26). Hence, it must be that w*<M. Since we have already established
that M-<t*, we conclude that M = w*. Hence the inequality (2.31) must actually be
an equality in light of the definition (2.29). This completes the proof.
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Theorem 3 does not require that the solutions of either the linear program or of

(2.29) be unique. Theorem 3 states only that from a given solution of the linear

program, we may construct a solution of (2.29) using (2.28). Conversely, it is easy

to see that any solution of (2.29) can be used to construct a solution of the linear

program using (2.33).

An excellent algorithm, which we will refer to as ACM 495, is available in the

literature (11 for solving the linear program of Theorem 3. It requires as input only

the overdetermined system of equations Ax = b. The linear program is then set up

and solved by the algorithm, so that knowledge of linear programming techniques is

not necessary to use the algorithm in practice. The computational procedure, in-

ternal to the algorithm, actually solves the dual of the above primal linear program

using a modification of the simplex method. The dual formulation of this problem
is available in [5, p. 2961. We will not discuss the details of the linear programming

technique further in this report.

A very simple modification [3, p. 863] of ACM 495 yields an algorithm for
solving any real overdetermined system of linear equations in the Chebyshev norm
subject to the additional constraints that all the residuals be non-negative. For A
and b as in Theorem 3, this problem takes the form

minimize max,(b.-_ aj X k) (2.34)

subject to the r constraints

bi a,, X >0, j=l ..... r. (2.35)

The solution x p . . . 9 x, returned by this modified algorithm is correct, even though

the residuals returned may be in error. The correct residuals, if desired, must be
calculated directly from the solution. Alternatively, if the residuals are required to
be non-positive,.then the same modified algorithm will work with A and b replaced
by -A and -b, respectively.

Requiring non-negative residuals in the overdetermined system (2.25) has in-
teresting geometrical interpretations. For example, if we take p = 2 in Lemma 2,
then 8, = 0 and 02 = n/2. Thus, from (2.11), G (z;a) and G,(z;a) are merely the real
and imaginary parts of the complex error en(z;a). Thus, the 2m components of the

residual vector g-Bx are precisely the real and imaginary parts of en(z;a) evaluated
at all m data points. Therefore, if the system (2.25) is required to have non-negative
residuals, we have forced the error curve to lie entirely in the first quadrant of the
complex plane. More generally, we may always constrain en(z;a) to lie in a given
convex wedge shaped sector Yf of the complex plane with vertex at the origin, by

making different, but appropriate, choices of the angles 6g and 6.,. Further ex-
ploration of this idea shows that upper and lower bounds for the error W(f),
defined by

10
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W (f) min max le,,(z;a)!
at" ZrQm

subject to: e,(z;a) E*, zEQ M

where en(Z;a) is given by (2.1), can be obtained in terms of the error Wnr(f), defined

by

Wnp(f) = min max max G (z;a)
aeC

n  
ZQm j=1-..,p

subject to: G,(z;a) > 0, ZEQm,j= ..... p

where G.(z;a) is given by (2.21), but for a different set of angles OP ... , 0 . The
quantity W (f) may be computed by solving the linear system analogous to (2.25)

nP.
in the Chebyshev.norm with the constraint of non-negative residuals. This approach
is especially effective when the vertex angle of the wedge does not exceed n/2. This
topic is lot pursued further in this report.

Suppose, finally, that the complex solution vector aECn of problem (2.12) is
required to be strictly real, while f and {hk} are complex. Then, in the vector x of
(2.24), c1 = ... = c = 0. Thus, the overdetermined system Bx=g of mp
equations in 2n unknowns can be replaced by a smaller system = g of mp
equations in only n unknowns, where the mp x n real matrix A is defined in
partitioned form by

BI

B2

Bm  (2.36)

where the p x n submatrices B1 .... BM are unchanged from (2.22), and the real
vector A = [b1, .... bn ]T. A solution of k = g in the Chebyshev norin can be

computed using linear programming and algorithm ACM 495 as before.

III. Numerical Examples and Efficiency of Approach

We illustrate the procedure of the preceding section by approximating the
complex function f(x)=exp (i3x) by a weighted sum of the basis functions 1,
exp(ix), exp(i2x). That is, we seek to minimize the magnitude of the complex error

curve

3
e3(x) exp(i3x) - ak exp(i(k- I )x) (3.1)

k=1

over interval [0, n/4], by choice of al, a,, a3, by solving the problem M P(f) of
(2.12). Two cases are of interest; in the first, the coefficients {aJ)} are restricted to

IIi

_ _ _ _ _ _ _
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be rea. I, hieas tin the scond. these :od I icieni, can ha cll pl. I he num her I II , i

equ,,paced \-\ al ue, at %% I:h 1. I s ,,ampled, i taken to he cither I I, 1I, or I Il,
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error tititiitat ion, tI aken to e 2, 6, IS. 54, a LaIl 1 ensu rti he ubset bellas (or oI

the smaller ,ize cases. Note that p and the phase ,hift s , are as gisen in Theorem

lin s ection II.

The optimum real coefficients in 3.1) for the problem M ,(f) are given in table I

for these choices of m and p, and a plot of the magnitude of the error for several

representative cases is given in figure I. The best approximation of all cases con-

sidered is afforded by m = 1001, p = 54* and its error curve is plotted as a solid line;

its maximum error is .1078, which is realized at two points in the interval 10, n/4].
The cases for smaller m (less sampling of the abscissa) and smaller p (less sampling

of the phase of the complex error) are poorer; for example, the maximum error for

m I1, p =2 is .1184, realized at only one point, namely x = n4.

Table 1. Coefficients for the Real Weight Case

m p a, a. a,

11 2 .936738 -2.443144 2.518388

6 .828404 -2.280319 2.396455

18 .858547 -2.321885 2.425096

54 .844146 -2.301461 2.410611

101 2 .936781 -2.443223 2.518458

6 .831314 -2.284548 2.399525

18 .865131 -2.331446 2.432033

54 .853823 -2.315301 2.420506

1001 2 .936785 -2.443232 2.518466

6 .831237 -2.284448 2.399461

18 .865213 -2.331571 2.432127

54 .853443 -2.314772 2.420138

We have not plotted the other error curves with real coefficients for m = 101 and

1001, because they are indistinguishable from figure 1, as a perusal of table I ,hows.

For example, the coefficients for m = 11, p =2 are very close to those for m = 101.

p = 2 and m= 1001, p = 2. Thus, our sampling in x is already "fine enough" at

m = 11. However, there is a significant change in the coefficients as p is varied, for a

fixed value of m; that is, p = 2 yields very coarse phase-sampling of the error curve

and should definitely be made larger.

The Chebyshev error curve (m = 1001, p=54) in figure I realizes its maximum

value at only n-I points, rather than at n + I points, where n = 3 is the number of

coefficients for this example. This is probably related to the fact that we have

'In this case, % e ob,er.eithai a, - v-2 a, a a1  0.
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Figure 1. Error Cure% for Real (oeffkiens; m = II

minimized both the real and imaginary parts of the complex error, but have allowed
ourselses to use only real coefficients.

The solution of the problem N,,,(f) for complex %,eights is given in table 2 for the
same choices of m and p as above. Again, the change in coefficient values is more
marked w ith p than with n. Magnitude-error curves for m = I I and 101 are gien in

figuies 2 and 3. respecti%ely; the cures for m = 1001 are indistinguishable from
those for m = 101 and are not presented.

Table 2. Coefficients for the Complex Weight Case

m p Re(a1 ) lm(a1 ) Re(a,) lm(a,) Re(a,) Im(a1 )

11 2 .364737 .954343 -2.021670 -2.119639 2.669023 1.153207
6 .378045 .907888 -2.016657 -2.018598 2.648834 1.100488

18 .373079 .898715 -2.003032 -2.003205 2.639992 1.094451

54 .371586 .896504 -1.999352 -1.999473 2.637788 1.092947

101 2 .362962 .953469 -2.018255 -2.119960 2.667544 1.154238
6 .376532 .904026 -2.012095 -2.014055 2.646131 1.099461
18 .370549 .893500 -1.995913 -1.997062 2.635782 1.093144

54 .368950 .890017 -1.991172 -1.991196 2.632622 1.090777

1001 2 .362947 .953499 -2.018253 -2.120028 2.667560 1.154275
6 .376502 .903926 -2.011979 -2.013914 2.646047 1.099417

18 .370711 .893848 -1.996440 -1.997545 2.636145 1.093278

54 .369179 .890566 -1.991954 -1.991974 2.633175 1.091006

13
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The Chebyshe% error curve (11 = 100, p = 54) is no%% synmlnetric about tile

midpoint of the intersal of interest and has four equal error peaks of %alue .0147.

This error i,, 7.3 times smaller than that for the real coefficient case. Also the

number of equal error peaks no" equals I plus the number of coefficients; s,.hether

this property holds generally is not kno% n.

Upper and lower bounds on the discrete Chebyshev error E,,(f) for the real and

complex coefficient cases are given in table 3. These bounds are precisely those

presented in (2.16). They correspond to sampling the complex error (3.1) both in the

abscissa x and in the phase of e3(x). The lower bounds monotonically increase with

increasing m or p. The upper bounds decrease with increasing p, but increase with

increasing m. All these trends follow from the fact that smaller sample sizes are

subsets of the larger sizes.

Table 3. Bounds on the Discrete Chebyshev Error E(f)

m p Real Coefficients Complex Coefficients

Lower Bound Upper Bound Lower Bound Upper Bound

11 2 .083718 .118396 .012089 .017097

6 .105074 .108780 .013963 .014456

18 .107307 .107717 .014143 .014197

54 .107612 .107658 .014168 .014174

101 2 .083731 .118414 .012252 .017328

6 .105192 .108893 .014436 .014946

18 .107556 .107967 .014677 .014733

54 .107767 .107813 .014703 .014709

1001 2 .083734 .113418 .012255 .017331

6 .105191 .108901 .014440 .014950

18 .107565 .107976 .014679 .014735

54 .107775 .107821 .014704 .014712

However, the maximum magnitude error, evaluated over the continuum of x-

values in the interval [0, Tr/41 (actually computed on a dense discrete sampling

space), obeys none of these monotonic relations, as table 4 demonstrates. For

example, the maximum error in the real case for m - 11, p = 18 is less than that for

m I , p=54. Also, the maximum error in the complex case for m = 11, p=6 is

greater than that for m= 101, p=6. The reason for this behavior is that we have

minimized a discrete approximation to our problem of interest, sampling both in the

abscissa x and in the phase values of the complex error. However, the numerical

discrepancies are small, as they must be for reasonably fine sampling in both

variables. (A recursive gradient procedure could be used with any of these coef-

ficient sets to improve the final maximum magnitude-error if desired.)

The FORTRAN program listing in the Appendix is the exact code used to

generate the complex weights in example (3.1) for m = 101 and p =6. The imbedded
comments should enable anyone seeking to use and understand the code to do so.

Further remarks are given in the discussion in Section VI.

NZEIS
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Table 4. Maximum Magnitude Error,
Computed Over 2001 Equispaced Points in 10, n/41

m p Real Coefficients Complex Coefficients

I1 2 .118396 .017097

6 .108780 .015142

18 .107890 .015004

54 .107983 .015005

101 2 .118415 .017329

6 .108893 .014946

18 .107967 .014733

54 .107813 .014711

1001 2 .118417 .017331

6 .108902 .014950

18 .107976 .014735

54 .107821 .014712

Efficv ,-c, and timing estimates for actual calculation of complex Chebyshev
a!'pr n:. .dns by the method of this report is an important consideration in some

applicationn. If we define an operation as consisting of a multiplication followed by
an addition, then it is known [6] that the number of operations per simplex iteration

requi-i J by algorithm ACM 495 [1] is exactly the number of equations times the

number of unknowns. In our case, the number of equations is mp, and the number
of unknowns is 2n if the coefficients are complex, or n if the coefficients are
required to be real. Thus, the operation count per iteration is either 2nmp or nmp.

The number of iterations required is difficult to estimate, since it depends on the

particular problem. However, in randomly generated problems, it has been ob-
served [6] that the number of iterations, I, is approximcately the number of

r unknowns times some small constant c, where usually i <3. (Similar estimates

have been observed [7 ,p. 160], 181 in more general linear programs as well.) Thus, in
our case, I = 2cn if the coefficients are complex and I = cn if they are real.

The CPU time should be proportional to the total operation count, which equals

the product of the number of iterations and the number of operations per iteration.

That is, we expect the CPU time to be proportional to n2mp. For the particular

example here, however, we obtain an excellent fit to the limited data in table 5 with

CPU time (msec) = .128 n' . 13 m l
'
8 p' 18,

where n = 6 if the coefficients are complex, and n = 3 if they are real. This fit was

obtained by letting the exponents of n, m, and p vary separately. Other examples,

however, lead us to anticipate that, more generally,

CPU time cn- (mp)'.

with a proportionality factor of the order of .01 -.03 msec, where n is either twice the

number of approximation coefficients if the coefficients are complex, or exactly the

number of coefficients if they are required to be real.

16
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Table 5. Number of Simplex Iterations and CPU Time

m p Real Coefficients Complex Coefficients

Simplex CPU (s) Simplex CPU (s)

11 2 6 .02 10 .05

6 8 .08 15 .16

18 11 .23 21 .58

54 13 .81 27 2.25

101 2 7 .25 10 .40

6 9 .73 17 1.60

18 13 2.65 21 5.78

54 15 11.39 28 24.27

1001 2 9 3.05 13 5.00

6 10 10.34 17 19.38

18 13 48.16 24 105.47

54 16 170.52 28 359.20

The CPU time estimates apply, of course, only to the DEC VAX 11/780 com-

puter on which the calculations were performed. The virtual memory feature of this

system allows very large problems to be solved; however, for sufficiently large
problems, the system overhead incurred (page faulting, and so on) may significantly

and adversely affect these estimates.

IV. Application to Array Design with a Constraint

Consider a linear antenna array with N elements located at arbitrary fixed
positions I xIN receiving a plane wave arrival of wavelength A. from direction 8a

<0ae - relative to a normal to the array. If the array is steered to look in

direction 0,, -- <8 .L then the complex transfer function of the beamformer is

given by

N

T(u) = NV k exp(-idku) ,

k=n (4.1)

where {wk )"are the element weights, and

dk = 
2nx k/A for 1<k-<N

u = sin0a -sin 0.

Observe that the total range of u depends on the look direction 01; for example, if

el = 0, then the range of u is the closed interval [-1,1]. The peak response of T(u)

should occur at u =0, so we normalize (without loss of generality) according to

N

T(0) = I = wk

17
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To realize small sidelobes, we must minimize !T(u)l for all u values in some subset

U of the total range of u. I-or example, iftO = 0, the total range of' u is-, ,and

U could be the union of intervals [-l,-uoj and [un, I, where uO>O is chosen small
relative to 1. For the special case of real weights {w k,, since from (4.1),

T(-u) = T*(u), we can confine attention to U = [u, 1]. The normalization con-

straint is most easily accounted for by solving for w and eliminating it; we obtain

then

N-I

T(u) = exp(-idNu) -7' wk (exp(-idNU) - exp(-idkU)) . (4.2)
k=l

This problem now fits the framework of (2.1) if we identify

Z U I

n = N-I

en(z) = T(u)

f(z) = exp(-id Nu)

ak = Wk

hk(z) = exp(-idNU) - exp(-idkU)

Qm = finite subset of U . (4.3)

There has been no statement, thus far, as to the real or complex nature of the
weights {Wk}. This distinction depends upon the application and the capability of

the beamformer. Both cases fit the above framework; the only difference is that the
number of unknowns to be solved for will be twice as large for the complex weights
as for the real weights.

If the array is half-wavelength equispaced, then the computed element weights
will be identical to the classical Dolph-Chebyshev weights and can, in this instance,

be computed analytically. The general case of arbitrary spacings, however, cannot

be computed analytically, yet the algorithm presented in this report can always be

applied.

In the remainder of this section, we presume that the elements are equispaced at

half-wavelength. Then xk = kA/2 and (4.1) becomes

N

T(u) = I wk exp(-inku) . (4.4)
k=l

Observe now that T(u) in (4.4) has period 2 in u, regardless of whether the weights

{wk} are real or complex, or whether some elements have failed, i.e., zero weight

values. This means that we can study and control T(u) in (4.4) over any convenient

u-interval of length 2, and need not confine our investigation to [-1,!]. In par-

ticular, we concentrate on the u-interval 10,21 in the following.

As an illustration of the capability of the minimization technique of this report, a

50-element half-wavelength equispaced linear array was initially designed for peak

18
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sidelobes of -30 dB relative to the main peak. This is of course a staiidard Dolph-
Chebvshev case, and gives -30 dB sidelobes throughout the u-range IuO, 2-u(J,

where u = .0538117.* Then 100,o of the elements were randomly eliminated from

the array, but the remaining weights were unchanged; this corresponds to 5 element,

failing in the array. The relative response of this particular array, with elements 7,

22, 40, 43, 50 failed, is illustrated in figure 4. The peak sidelobe has increased from

-30 dB to -21.58 dB, a degradation of 8.4 dB, and there is a large variety of dif-

ferent size peaks.

-10

-20 __ _

I N if

- 401

0 .25 .5 .75 1 1.25 1.5 1.75 2

u = sin a - sin Ot

Figure 4. Relative Pattern for 5 Elements Failed

When our method with p = 2 and m = 251 equispaced points in [u0, 2-u] is ap-

plied to this defective array, and the remaining 45 elements are weighted with real

coefficients, subject to the constraints that the mainlobe width be the same as the
ideal 50-element array, and that the steering range in u be the same, the resultant
array pattern is displayed in figure 5. The peak sidelobe is now -23.62 dB, an im-

provement of 2.04 dB over figure 4; however, there is still a significant variation in

the values of the sidelobes, due to an insufficient number of phase controls, namely

only p = 2.

When we increase the parameter values to p = 8, m = 501, the resultant best real
weights are displayed graphically in figure 6 and the corresponding array pattern is

given in figure 7. The gaps in figure 6 at locations 7, 22, 40, 43, 50 correspond to

zero weighting at the failed elements. The general character of the weights is a bell-

*For an N-element array and -t dB peak sidelobes. we hae u0= 2,n) arc cos(I/z 0 ) where

2zo = [r + 11T I \1 + Jr- 4 T I I\I, r I 0t ,20  and M = N-1.
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-10_______ _____ __

dB-20-

-30 - _____ _______

-40-
0 .25 .5 .75 1 1.25 1.5 1.75 2

u= sin 8a - sinejf

FigureS5. Relative Pattern for p = 2, mn 251, Real Weights

Element Location (1 to 50)

Figure 6. Rest Real Weights for p =8. rn 501~
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-10 -, _

dB
-20 -

-30

-40 -'

0 .25 .5 .75 1 1.25 1.5 1.75 2

u = sin ea - sin l

Figure 7. Relative Pattern for p = 8. m = 501, Real %eights

shaped one of all positive numbers, but there is significant fluctuation in the actual
weight values, of the order of 100o. The pattern in figure 7 has a peak sidelobe of

-25.20 dB, an improvement of 3.62 dB over figure 4, but still 4.80 dB poorer than

the ideal 50-element array.

When the weights were allowed to be complex, and the maximum sidelobe
minimized in the same steering range [u0 , 2-u 0] for p =2 and m = 501 equispaced

points in [uf), 2-u 0], the best complex weights turned out to be virtually pure real.
and the corresponding pattern was almost identical to figure 5. A much improved

pattern for complex weights was achieved when we took p = 8, m = 501; in fact. the

best complex weights were real (within 10-6 relative error) and the pattern was the
same as figure 7. Although we had anticipated a better pattern for the complex
weight case than for the real weights, that did not materialize; the best complex
weights for this equispaced linear array with 5 missing elements were real. The

reason for this behavior is unknown, but it is an encouraging result from the array
design viewpoint, for it indicates that there is no need to allow phasing at the in-
dividual elements; gain alone will achieve all the sidelobe reduction that can be

achieved. This conclusion is drawn only for the half-wavelength equi-spaced line

array with omnidirectional element response.

The use of linear programming to design antenna arrays is not entirely new. In [9]
and [101, linear programming was used to synthesize desired complex transfer
functions to within 3 dB of the best possible sidelobe level. Their method
corresponds to taking p = 2 in the method presented in this report.

21
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The computation of tl real kc i, (it biu-m 6 (\ , hee p 2, m - 25l , and in = 44)

and of figure 7 (% here p -- , in 501 , and n 441 required 1.2 minutes 205

iterations and 38.4 minutes, 402 iterations, rc,."',',ek . ()n the other hand, %%hen

the weights were allowed to be comple\ (replacing n =44 bi n = 88, but leaxing p

and m unchanged in both cases), the computations required 7.0 minutes 657

iterations and 179 minutes '262 iteration,,, respectis el\,. The io of these four cases

requiring the smallest CPU times encountered almost no s,\stem o,.erhead due to

program size, However, the twi cases requiring the largest CPU times encountered

very significant system overhead because their large memory requirements caused

significant usage of the virtual memory feature of the DEC VAX 11/780. The 38.4

minute case required over 3.6 million page faults, while the 179 minute case

required over 11 million page faults. It is important to bear in mind that the DEC
VAX 11/780 is essentially a mini-computer, and that without virtual memory, only

the largest mainframe computers could have solved either of these two problems.

V. Efforts to Extend the Method

Our basic problem is to minimize the maximum magnitude of complex error

n

en(z) = f(z) - T_ ak hk(Z) (5.1)
k=l

over a continuum of values of z, when f, {hJ, and {ak} are complex. We im-
mediately approximate this desired problem by discretizing the z variable to a finite

number of values, in order to make the problem computable. Furthermore, at any z
value of interest, we additionally discretize the number of phase errors we are

willing to consider. To be specific, since the algorithm in [1] applies only to real

quantities, we consider the "projection" of a rotated version of -he complex error:

P(z,k4) = Re{exp(iR) en(z), (5.2)

Then, since the argument of complex error (5.1) is unknown a priori, we let Wl take
on a finite set of values spaced over any rt radian interval, and minimize the
magnitude of projection (5.2) over all these selected 'V values. This is equivalent to
the method of Section II.

In an effort to eliminate this second discretization process in 4), a perturbation
method was put forth in [3] that claimed guaranteed convergence to the optimum
weights, for any given finite discrete set of z-values. When applied to the examples

in [31, the proposed perturbation technique did indeed converge. However, when
applied to the following example, of approximation of exp(i3x) by the three basis
functions 1, exp(ix), exp(i2x), over 100 equispaced points in the domain [0, nr/4] in

x, it sometimes failed to converge, depending on the initial weights employed. The
reason for this failure is that the "direction of the minimum" furnished by the

perturbation is often totally irrelevant, and the best scale factor to apply to this

perturbation is very small. Thus there occurs a small random meander in the

coefficient space, and occasional convergence to a non-optimum point.

22
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A modification of this technique was attempted wherein the magnitude of the

perturbation was bounded. Although this improved the situation somewhat,

convergence to the optimum was not always obtained.

It was thought that this meander in coefficient space might be eliminated by

tracking the exact z-values at which (5.1) is a maximum. Recall that in the real case

discussed in the Introduction, convergence to the absolute optimum over a con-

tinuum of real z-values was achieved in a practical example by re-evaluating the z-

points of maximum error and using these in a recursive approach. When this idea

was extended to the two continuous variables z, tP in (5.2), and only the 2n + I

largest error points were retained, convergence was not obtained. When however,

the single "point" of a maximum, i.e., a pair of values (zk, 'k), was replaced by a
"patch", i.e., a set of values {(z k, ' P kP)} covering the maximum point (z., tP.), the

convergence to the absolute optimum for the examples considered was apparently

achieved. The patch width in 4; was of the order of a degree in most cases. The

problem with this latter modification is that a large number of computations of the

error function and its derivative must be evaluated, and the improvement over the

method of Section 11 is insignificant when p there is large.

If the final error in (5.2), after application of the method of Section 11, is

inadequate, due to inadequate sampling in z and/or tP, it is possible, for a given

coefficient set {ak}, to locate the point (zm, '
4 m) at which (5.2) is largest, and then

use a gradient approach to decrease this maximum error at (zm, 'Pm). Of course. the

particular point of maximum will jump around as the set {ak) is perturbed;

nevertheless, the technique does converge (although slowly) and does lead t ) smaller

errors at the maximum of (5.2) in a continuum for z and tP.

VI. Discussion and Summary

It has been observed that two of the locations of maximum magnitude error often
occur at the endpoints, if the specified domain in (1.2) is a real interval; for

example, see figures 2 and 3. (The example of real coefficients in figure I had one of

the maximum error points at an endpoint, but not the other. However, if we had
specified domain [-n/4, r/41 in that example, we would have observed four peak-

error points, two of which would have been at endpoints, due to the conjugate

property of the desired function and the basis functions.) Since the endpoints may

be the only ones we can anticipate a priori and specify as locations of maximum

error, an obviously useful procedure is to use more values of phase shift '4 in (5.2)

(alternatively, the angles 18i} in Lemma 2) at the endpoints than in the interior, so

as to better control these very-likely locations of maximum error. For example, we

might use p = 6 in the interior of a specified real interval domain of z and use p = 12

or 20 at the two endpoints. This does not add greatly to the total computation, since

there are generally far more interior points than (two) endpoints. The program in

the Appendix may be readily used with different values of p at different data points

by exploiting the INDEX array in the user-supplied subroutine named ZPHASE.

The p different phase shifts 'P selected in (5.2) have been chosen here to be equally

spaced over a 180' span (along with their 180' mates). This is the most reasonable
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selection in the absence of a priori knowledge of the complex error, its magnitude,
and phase because it gives the best upper bound (2.7) in Lemma 2 of an) set ot
phases. However, one could select any value of 40 to investigate the error; for
example, different sets of values of 4' could be used at various values of abscissa z.
The program in the Appendix may be used with any desired set of phases at any, or
all, of the data points simply by altering the user-supplied subroutine named
ZPHASE.

The potential for significant round-off error accumulation is always present in
linear Chebyshev complex function approximation. For example, in approximating
f(x) = cos (12x) + i sin (3x) by a complex linear combination of the 12 basis
functions 1, exp(ix), . . , exp (ilIx) on the interval [0, Tr/4], the complex coef-
ficients of best approximation were observed to be large in magnitude and lie in all
quadrants of the complex plane; therefore, significant numerical round-off error
occurred during computation of the residuals within algorithm ACM 495[ ]. Even if
the coefficients of best approximation had happened to be better behaved, serious
cancellation error may still occur in some problems because of the very nature of
complex arithmetic. It might, therefore, be wise to use a double precision version of
algorithm ACM 495 routinely in complex Chebyshev approximation problems to
alleviate such cancellation errors.

One method of detecting the presence of significant round-off errors is supplied
by the nature of the approximation problem itself. That is,Theoreni I and the third
step of the proof of Theorem 2 together imply that

Mnp(f) -< ",fnp(f') < Mnp(f) sec (rt/2p). .1)

Once MNP(f) and the coefficients have been computed in algorithm ACM 495, these
bounds may be checked to see if significant numerical round-off error has occurred.
In the example presented in the Appendix, rounding to 5 significant digits gives

.014436 = Mnp(f)< -P(f) = MnP(f)sec(n/2p) = .014946

However, if we round to 6 significant digits instead, it is seen that the second
inequality in (6.1) does not quite hold. We conclude that the effects of round-off
errors, although visible in the results, are not significant in this example. (Single
precision numbers on the DEC VAX 11/780 have approximately 7 significant
decimal digits.)

A sensitivity analysis on the optimum coefficients may be in order in some ap-
plications to determine their utility. This consideration is completely independent of

their numerical accuracy. For example, in an antenna array design problem where
some elements are spaced significantly less than a half-wavelength apart, it might
well turn out that the optimum coefficients need to be spec~fied with a relative error
of better than 10-6. Then, although the mathematical results may be correct and
accurate, practical usage is precluded. This sensitivity can be determined by per-
turbing the optimum weights a few percent and observing if a drastic change occurs
on the desired sidelobe behavior. (Such arrays are referred to as super-directive
arrays.)
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AppendixI The Computer Program

NUNSER OF BASIS FUNCTI01-S N a 3

LOWLR POWr 4 SECANT&( PI/(2*P) ) 0 .1494551E..u1

CALCULATELJ IAhK s 6 ,AS EXPFCTMD.

U?4IQUL, bOLUTIOAJ3

REAL PART I.'AAG PART
I 0.37653J93 0.90402~50

2 -2.012OVD474 -2.01405S49

3 2.4118 1,09$o4b-44
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* TYPE ZMAIN.FOR

C
C ThIS mAIN ROUTINE SOLVVS A LINEAR CO

m
PLEX FUNCTION

C APPROXIMATION PROSLEm. THE COMPUTED APPROXIMATION CAN

C BE MADE AS CLOSE TO THF PLST CE4PYStEV, 3R MINIMAX.

C APPROXIMATION AS DESIRFD. TnF APPROXIMATION IS CONSTRUCTED

C O6 A FINITE DATA SET FROM AkBITRAeY BASIS FUNCTIONS.

C

C

C REFERENCE:
C ROY L. STREIT AND ALdERT 4. tUTTALL, "LINEAR CHEBYSHEV

C COMPLEX FUNCTION APPRuXIMATION#" hUSC TECHNICAL REPORT b403,

C NAVAL UNnER*ATER SYSTEVS C914TER, hEw LONOON, CT,06320.

C
C
C
C THIS APPROACH SuLVES AT MOST m*P LINEAR EQUATIONS IN 2*N

C UNKNOWNS IN ThE CdEdYSHEV NORM; THAT IS, THE MAXIMUM MAGNITUDE

C RLSIDUAL IS NIN141ZED. ALL EOUATIONS ANu UNKNOWNS ARE REAL.

C ThE SOLUTION IS COMPUTFD USIN4. LTNEAR PROGRAMMING.

C SINGLE PRECISION IS USED TO SOLVE THE SYSTEM OF EQUATIONS;
C HOWEVER, DOUBLE PAECISION IS USED TO SFT UP THE SYSTEM

C ITSELF IN ORDER TO MINIMIZE POSSIoLE ROUMD-OFF ERRORS.

C
C
C
C THE N COPPLEX COEFFICIETS OF APPROXIMATION ARE GIVEN BY:
C

C COFF(A) + I * COFF(Nh+) * KZ1,2,..0,N.

C
C THE COEF ARRAf IS COmPlJTF0 IN SUBROuTIME AC:495.
C

C
C
C USERS MUST SPECIFY THE FOLOWI-'G SIX NUmRERS:
C
C ThE NumbER Of BASIS FuCTIfwS:

PARAMETEP N3

C
C THE NUmbFR OFP DATA PC~INTS:

PARAMETER mPIOI

C
C THE NubE AL F PHASES PFR LATA PUI,.T: EA GAiF. 2

PARAMETER Px6

C
C MUST THE FINAL CnEFFICIENTS BE REAL? (TsF.AL=1 1FF YES]

PARAMETER TREALsO

C

C M3ST IHE RESIDUALS 6F :'f:-rE.ATAVE? C[SID£Su1 IFF YES]
PARAMETEP ISIOESxO

C
C RELATIVE ERROR CRITERIC;i: [KELFRR=O.O TFF CHE6YSHEV SOLUTION]

DATA REwFRR/O.O/

28
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I.. C
C

C 11SERS NLED, CHANGE NOThIr1 G MORE ILN THIS6 ROUTINE, BUT
C THEY MUST MAKE APPRopRIATE CHANGES IN THE FOLLOWING

C SUBROUTINES CALLED BY THtIS MAIN ROUTINE:

C

C ZFIJhCT - DFFlii.F TIItJ FilzwCTION APPROXIMATED
C ZbASIS D EFINES TNi aASTS ruNCrIONS
C ZASSCS - DEFINES THE FINITE DATA SET

C ZPHASE - DEFIL.ES THE PH1ASES AT ALL DATA POINTS

C

C

C
PARAMETER MIP:M*P,MDIM:MIP.1,N2z2*MNDTMxN2+3
DIMENSION BATA(NDIM4,MD.M),FDATA(MTnIM),COEF(ND)IM),

I INDEX(y)
DGUaLE PRECISION COSDTA(CRIP),61IDTA(MIP),ARGCMIP),ZRDATA(N),

I zIoATACM),RESIUR(m),inESTOI(M),CHESER,DZEROPI

INTEGER OCODERANK

DATA EDO/

DATA PI/3.1415926569~9793238D0/

C

C SET THE UNIT ROUND-OFF ERROR (FUR VAX 11/780)

DATA TOL/.596L-7/

C
C

C INITIALIZE
C

C
IF(MIP.GE.'4)GO TO 50

PRINT 51,MIP,N

51 FORMAT(/,' *** N.TIALIZATION ERROR: m*P MUST EXCEED V,'

1 /60 BU* LT: M*P zj' AND N *110

2 /10 *;;**,

3 /' *o EXECUTION TERMINATED')

GO TO 9999
50 CONTINUE

C

00 89 121,N.2

COEFCI)=ZiRO

89 CONTINUE

Du 91 I1,Nl

Rz;SIn4C I )=DZE80
RES!DI C1)xDZEhO

91 CONTINUE

C

C

C DEFINE THE PROHcLEM

C

C

C DETERMIASE TrIE DATA POILNTS

CALL ZABSCS(ZRDATA,ZIDATA,l)

C

C fliTLRMTeeE THE PmiASES AT AL.L flATA PfIINTS

CALL ZPNASF(INDEX,AMG,A,IP,MIPSUM,RSIDR,RESIDI)

C COMPUTE ThF NECESSARY SINeS AND COSIES

29



TR 6403

CALL ZTRIGD(ARG,COSDTA,STNInTA,MIPbUM,INDEX)

C SET UP THE UVER-DETERMTNFD SY5TEm OF R~EAL EQUATIONS
CALL ZFNSETCBDATA,TDATA ,COSDTA,.SliwDTA, INOEX,NDIM.NM,

1 ZRDATA,aIDArA,TREAL)

C
C SET CONJSTRAINlT IF CUFFF1CiLEITS 01UST HE REAL

NSET=N2

TF(IREAL,. )NSElvN
CI C SET OPTION FOR Q'Jt SIDED SOLIUTION OF OVEP-DETERNXNED SYSTEM

?STDESz2
IFCISIDES.EQ. 1)NSIDES=1

C

C GET INITIAL TIMING AND PAGING INFOPMATIOE tFOR THE VAX 11/780)

CALL GETJPI (NCPUI~, NPFSI)

C

C SOLVE THP OVER-DETERMINED SYSYTEM Of kTPSUM FQUATItINS

C TN NSET UNKniOANS. ALL EQUATInNS AN~D UNKNnWNS AR6 REAL.

C
C

CALL ACN495(MIPSJM, SET, MOIK, NPI', SDATA, FDATA, TOL,RELERR,COEF,
1 RANK,RES'4AXITER,OCOOD..NSIDES)

C
C COMPUTE THE RESIDUALS DIRECTiLY FOR GREATER ACCURACY

CALL ZRESID(RESIDR,RrsioI,i,M,COEFZRDATA,ZIDATA,CHEBER)

C

C GET FINJAL TIMING AND PAGING IaFVOPmATION (FOR VAX 11/780)

CALL GETJPICNCPU2,NPFS2)

C
C

C PRTNT SUMMARY DATA

C

C
C PRINT ELAPSED TIMING AN~D PAGING TNFOPMATION (FOR VAX 11/780)

DCPUC(NCPU2-NCPUI) /100.

TOP F=AjjPF S2 -sNPFS

PRINT 110,CPij

110 FujRmk1(/,' CPU TIm'E IN SEC So1F10.2)
PRINT I14,IDPF

114 FOR1AATC' PAGE FAULTS= I0

C
PRINT t0O,ITER

l00 FORMiAT(, NIINBER OF ITERATIONS ',110)
PRINT 111,4'

PAIINT 112,N:,E1;

14 FRM~AT(/,' THE COEFFIC1L'TS AAF REQUTRPD TO BE REAL.)
.1
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109 FORM~AT(' LOWEA~ dOjND 4 SECAN.T( FI/(2*P) I l~bW

IF (RANK.EQ.NSET)G1 TG 119

PRINT 171,PANK
171 TOP#4AT(/,' CAL1COLATE' RANK( a ',l11,'.'

PRIgiT 118,NST
119 OMTCJ'./W)/ THE ikAt,:K %WOULD EQUAL ',11O,*.*,

1 W, CHECK FUR PUSSIbLE EIRRS IU LeRGkAm ANU/OR PROBLEM',

GO TO 181
119 CONTINUE

PRINiT 117,RANK

117 FORMAT(/D CALCULATED' RANJK z *,110, *A$ EXPECTED.')

181 CONTINUE

C

C PRIN~T RELATIVEi ER'xOx OF AXI'mU4 R4IOUAL IF NE.CESSARY

IF(kLRR.GT.ZR)PrCIiT 124,PELRO

124 FORMAT(//,# RELATIV6 E.ROM IN TdiE MAXImum RESIDUAL INCURRED',

1 /,' BY TH4IS AIPPROX!MAIE SOLUTION SE68/

IF(OCODE.EQO)PRINT 121

IF(OCODk.CQol)PRTh~T 122

TFCOC0DE.EQ.2)PkINT 123

121 FORr4AT(/, THE fOw.LOWING SOiOLTIGOI IS PRORAPLY NUN-UNIQUES*,/)

122 FORMAT(/,# UNIQUE SOLOjT10ti?,/)

123 FOR?4AI1,0 PREM~ATUR'E TFRPINATirla DUL TO ROUND-OFF EI4RORS.0,

I W, BEST CrJMPUTEI SULUTIfnN:,/)

C
PRINT 133

133 FORmAT(15x,RE46. PART$, 7X,'IAA PAaxT')

C PRI14T TilE CU~frCleLTS LJ APPRnAIM.ATION

C

C

102 FQRmATCI5,3X,2F16.8)

C

C EAD OF MAINJ PkOGRA1

C

Cr9999 Ei"D

S TYPE ZF6NCT*FJR

C

C
C

C ZFqhR x REAT, PART U.F ~'Tm Fw.1CTiC% (OUTPtT1

C ZFNL z iMAG PART 07 TrIE F .i'CTIO.'. (CuTPUT)
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C ZR aREAL PART OF TilE DATA P~OINT (INPUT)
C ZI z IMAG PART OF THE DATA POINdT (IhPUT)

C

C

DOUBLE PRECISION ZR,ZL,ZWNR,ZfNl

iC

C

C

C

C
C ID USE T DE FO SPECTIC L PRO SLEM

C =h OF SURUTN (INPUT)

C

C

C B~ASIS FUNRC10 ATj A SPCIFIED n APIT

C
C

C
C o zTE84S llTO ,DX 4P
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C END USER COOP FOR SPECTFIC PROSL1FM

C

C

C

RETURN

END

S TYPE ZAbSCSFOR

C
C SUBROUTINE ZABSCS DEFINES THE DATA POINTS ON

C WijICH THE APPROXIMATION IS CONSrRUCTED*

C

C
C

C ZRDATACI) a REAL PART OF THE I-rH DATA POINI (OUTPUT)

C ZIDATA(I) a ImAG PART CF TSE 1-fH DATA POINT (OUTPUT)

C m a TO~TAL NUMSFR OF DATA POINTS (INPUT)

C ss***.****..;.s~;***.ss;~**
C

SUBROUTINE ZAbSCS(ZHDATAZIDATA,4)

C
DOUBLE PRECISION ZRDATA(1),ZIDATAC1)

C

ZDATA PI/311525597328

C

C 0 ECDOFINU~~ThEZ~

C

C
C ~ ~~ EDUSE COO FG PCFCNOi

CN
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S TYPE ZPHASE.FOP

C
C SUBROUTINE ZPmASE DEFINES ThE PmASEb AT FACH DATA
C POINT, AS WELL AS THE TOTAL NUbEk OF PHASES.

C NOTE THAT "IF TOTAL NUv3EH OF PHASES EOUALS THE

C TOTAL NUMBER OF EOATIOS SOLVFD aY ACM495.

C

C

C $** CAUTION *** TAE TOTAL NUMbER OF PHASPS MUST NEVER

C *$**S*$* EXCEED THE PRCjDUCT M*P. HOWEVER, THE

C $****** NUMBER OF PHASES MAY 8E VARIED FROM DATA

C s*********$ POINT TO DATA POINT. SEE NUSC REPORT 0043.

C
c
C INDEX(I) a NUMBER OF PHASES AT THE I-TH DATA POINT (OUTPUT)

C ARG x AGGREGATE ARRAY OF ALL PHASES AT ALL DATA
C POINTS IN LEXICOGRAPHICAL ORDER (OUTPUT)
C M a NUMBER OF DATA POINTS (INPUT)

C P = THE INTEGER PARAMETER P OF MAIN ROUTINE (INPUT)

C MIPSUM = TOTAL NUMBER OF PHASES IN THE ARRAY ARG (OUTPUT)
c
C THE FOLLOO1NG TWO ARRAYS ARE ZFRn FILLED, UNLESS AN

C INITIAL APPROXIMATION HAS BEN PROVIDED IN THE MAIN

C ROUTINE. USi ONLY IF NEEDED, OR ELSE IGNMRE THEM.

C
C RESIDR(I)z HEAL PART OF CuMPLEX RESIDUAL AT THE I-TH
C DATA POINT (INPUT)

C PESIDI(I)= IMAG PART OF CO"PLEX RESIDUAL AT TAE I-TH

C DATA POINT (INPUT)

C
C
C

SUBROUTINE ZPHASECIDEX,ARG,P,UIPSUM,RPSIDR,RESIDI)

INTEGER P

DIMLNSON IwnEX(1)

DOUBLE PRECISIO,, AR (1),PESIDVR(,fPSIDI(1)
C

C BEGIN USEk COO) FOR SPFCTFTC iRuRLFM
C
C
C THIS CODE DEFINES THF PHASES

C PIl*(J-1)/P ,Jzl,2,...,P,
C Al EACH OF fw6 m DATA POINT.

nOUBLE PRECISIO,, PT,X

DATA PI/3.1415926b3509793236DO/
C

C nEFINE THE NUMBER OF PHASLS AT £CH nATA POINT

C
DO In Ia1.,
INDEX(I)zP

10 CONTINUE

C
C DLFINE ALL IHf PHAES
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CMLOOPsO

DO 20 Iul,M
LOOPE INDEX CI)
XuLOOP
DO 30 Jx1,LOOP
MLOOPuJ'LOOP+ I
ARG(MLOOP)xPl*(J1I)/X

30 CONTINUE
20 CONTINUE

C TOTAL NUMBER OF PHASES
C

MIPSUMLOOP
C
C
C END USER CODE FOR SPECIFIC PROBLEM
C
C
C
c
C END OF SUBROUTINE ZPHASE
C
C

RETURN
END

$ TYPE ZTRIGDoFOR

C
C SUBROUTINE ZTRIGD COMPUTES THE REQUIRED SINES AND COSINES
c
C

SUBROUTINE ZTRIGD(ARG,COSDTA,SINDTA,MIPSUM,INDEX)
C

DOUBLE PRECISION X,ARG(1),COSDTA(l),SINDTAC1)
DIMENSION INDEX(l)

C
DO 10 Ia1,MIPSUM
XxARG(I)
COSDTA(I)zCOS(X)

SINDTA(I)sSINCX)
10 CONTINUE

C
C
C END OF SUBROUTINE ZTRIGD
C
C

RETURN
END

* TYPE ZFNSET.TOR
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C
c SUR.H0UTINE ZFNSET SETS UP THE TANSPOSE nF THE COEFFICIENT

C MATRIX OF THE REQJlhRED OVER-DET0KRINED SYSTEM OF EQUATIONS

C IN THE ARRAf NAMEO) dDATA. SPECIFICALLY,
C
C TRAtiSPOSE(9DATA) A FDATA

C

C WHERE FDATA IS THE CONSrANT VECIOR ANDO X IS THE UNKNOWN

C SOLUTION VECTOR. 14E FDATA ARRAJ 15 ALSO. FILLED BY THIS

C SUBROUTINE, IF THE X VTCTQR IS RFQtJ1RED TU BE REAL, THEN

C ThE "LAST" mALjF nF EACH OF THE REQ~UIRED EQUATIONS ARE

C IGNORED IN THE FINAL COMPdTATIOtiS. HENCE, THIS PART OF THE
C BOATA ARRAY IS NO~T CO~IPUTED IF AND UNJLY IF IRE AL = I
C
C

SUBROUTINE ZFNSET(BoJATA,FUATA,(XSCTA,SIN)TA, INDEX,NDIM,N,M,

1 Z~fATA,ZI0AIA,IRFAL)

C
DIMENSION IN0dDX(1.,f)ATA(i.Dim,),kD)ATA(l)

DOUd3LL PRECISION ZuR,Z,ZRDATA(1),ZTOA1A(1),COSDTA(1),SINDTA(1),

1 LF--uR,ZFvJI

C

C FILL THE FDATA ARRAf

c
mLOt)P=0

DO 10 T=1,4A
ZR=ZRDATA (li

ZI=LIOATA(I)
CALL ZFUNCTZFNR,ZNI,ZR,Za)
LOOP=INDEX( I)

DU 2Z0 Jzl,LOnP

mLOCP=LOP.

FOATA(MLOOP)uZFiR*CLiSOTA (MLUOP)+ZF'Ji*5IL4DTA( mLOOP)

20 CON.iINUE
10 CONTIN~UE

C
C FILiL THiL BDATA ARtRA'

C
no 30 K1.VJ

vLOG P=0
I0j 40 I21,m

ZR=LRDATA (I)
ZI=ZTO.ATA( I)
CALL ZAASIS( 18r, 0~,%F*'I ,ZR ,ZI)

LCOPINDEX (I)
D~j 50 J=I,LDOP
;AL0CP=M60fO+

BiAAKMOPmFRC;DAtn)Z'lSN)AMOP

IF (!RFAL.N.i)G1 TZ 50

BOAIA(K+NA,O0P)ZFv*SINLTA.'LOP)-ZNI*CSTA(MLOOP)
C

so CONTTIMUE

40 CG!'rlt'.uE

30 C11

C
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C
C END OF SUBROUTINE ZFNST

C
c

RETURN

Ed'D

$ TYPE ZRESID.FOR

c

C SUBROUTINE ZRESID CUJMPUTFS THE COPPLEX RESIDUAL AT EACH

C OF THE DATA POINTS OTRECTLY FROM THL DEFINITION*

c $*$4P*****$*4***;*#*

C

C ****;*e.s*******

C RiSIDR(I) z REAL iPAiT OF SESIOUAL AT THE I-TH DATA POINT

C RESIDICI) a IMAG PAR~T OF AVSIOUAL AT THE I-TH DATA POINT

c N amUMSER OF BASIS FuNCTI!&S

C M NUM1BER~ OF DATA POINTS

C COEF(I) z REAL PART OF THE. I-Tm CoEtFICLENT, I31.2,9..N

C COEF(N+l) a IMAG PAiAT nF THE I-Th CCEjFICIENTO IX102... 1 N

C ZRDATACI) aREAL PART OF THE 1-TH DATA P"'INT ,z,#..

C ZIDATACI) z IrnAG PART OF TIHL I1'4 DATA POINT ,121,2,...,M

C CHEBER a MAXI'4u% vAGNITUCE QLSIDQ&L VN'EdYSHLV ERROR)

C

C
SUBROUTINE £RESID(RESIDR, E5'T I,K,h,CCFF,ZRVATA,ZIDATA,

I ChEOEIR)

DO(JdLE PRECISION RESILR(1),RESIOII) 1ZROATA(1),ZIDATA(l),

1 £R.ZI,ZFNRZFN1 .CHEBERRESR,RESI

DIMENSION COEFCI)

C
CHEERzI .D0

00 10 IM'

ZR:ZRDATA(T)
ZIZ!IDAIA (I)

C

CALL ZFUCT(ZFNR,ZFNIR,Z.T)

C

R&S5RzZFNR

Rk.SI=ZFN I

ZR:ZRDAIA(T)
ZIsZT0ATA (I)

Do 20 Jxt,N

Idai

C
CALu. ZBAS1l tI8,ZFiR,ZFsiI,!.P, Zi)

C

CC0EFR=COEV (j)
cOEFIzCLcEf N+J)

RESRzR.zCCFR*ZFRCOFFT*Zf 'i)

RE SI: REST -(CO EF R* Z F NiI Cu F14Z f '\)

20 CONTIm~U4

RESIDR(I)xRESR
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RESIDI(I)zRESI

C

ZRaSORT(RESR*RESR RESI*RESI)

IF(ZR.GT.CHESER)CHEdER=ZR

10 CONTINUE

C

C

C

C END OF SUBROUTINE ZRFSID

C
C

RETURN

END

$ TYPE ACM495,FOR

C
C SUBROUTINE ACM495 SOLVES THE REAL OVER-OETERMINED SYSTEM OF

C 9 LINEAR EQUATIUNS IN N UNKNOoNS

C

C TRANSPOSEA) * X a b

C

C IN THE CHEBYSHEV NORM; THAT TS, THE MAXIMUM MAGNITUDE

C COMPONENT OF THE RESIcA'AL VECTOR E = B-TRANSPOSE(A)*X
C IS MINIMIZED OVER ALL CHOICES OF THE UNKNOWN VECTOR X.

C

C ONF SIDED CHESYSHEV SOLUTIONS CAN ALSO BE COMPUTED; THAT IS,

C THE MAXIMUM COMPONENT OF THE RESIDUAL VECTOR IS MINIMIZED

C SUBJECT TO THE RevUIREMENT THAT ThE RESIOUAL VECTOR BE

C NON-NEGATIVE. (SEE REF. 2,PAGE 863.3

C

C

C
C REFERENCE;

C 1, I. BARRODALE AND C. PHILLIPS, "SOLUTInN OF AN OVERDETERMINED

C SYSTEM OF LINEAR EQUATIONS IN THE CHERYSHEV NORM," ACM

C TRANS. ON MATH. SOFTwARE, VOL. 1, NC. 3, SEPTEMBER 1975,

C PP. 264-270,

C
2. I. BARRO)ALE, L. M. DELVES, AN-D J. C. MASON, "LINEAR

C CHEBYSEV APPRUXIMATIO,, OF CuAPLLX-VALuEO FUNCTIONS,"

C MATH, CnMP., VOL. J?, %0. 143, JOji 079, PP. 83-863.

C

C
SUBROUTINE ACk495(M, , DT,4, DIMAATOLQELERR,X,RANK,

I RESMAX,IT.POCODE,NSIQES)
C

C
C M= NUMBER OF E, JATIOS.

C N = NJMbER OF (INK;OnNS. (S 4UST 'OT EXCEED M)

C mOIN z NIA.RER OF COLUMNS OF A. (vDIm.GE.4+1)

C NOIM z NUMPER OF RODS OF A. (NOIM.GE.43)

C A = TwO DIMENSIONAL REAL ARRAY OIMFmSIONPD ACNDIMMDIM),
C ON ENTRf, THE TRANSPOSE OF THE mATRIX OF COEFFICIENTS

C OF THE OVER-0ET4RlINEi SYSTEM MuST BE STORED IN THE
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C FIRST V COLUMNS AND N ROWS OF A. THESE VALUES ARE

C DESTROYED Bi THIS SUBROUTINE.
C B x ONE DIMENSIONAL REAL ARRAY OF LENGTH MDIMo

C ON ENTRY, B CONTAINS THE RIGHT HAND SIDES OF THE

C N EQUATIONS Of THE OVER-DETERMINED SYSTEM IN ITS FIRST
C M LOCATIONS. ON EXIT, B CONTAINS THE RESIDUALS FOR THE
C EQUATIONS IN ITS FIRST M LOCATIONS. (SEE NSIDES.) THESE
C RESIDUALS ARE NOT COMPUTED DIRFCTLY FROM THE DEFINITION.

C TOL a A SMALL POSITIVE TOLERANCE, TYPICALLY THE UNIT
C ROUND-OFF ERROR OF THE COMPUTER.
C RELERR a A REAL VARIABLE wHICH ON ENTRY MUST EQUAL 0.

C IF A CHEBYSHEV SOLUTION IS REQUIRED. IF RELERR
C IS POSITIVE, THIS SUBROUTINE CALCULATES AN

C APPROXIMATE SOLUTION WITH RELERR AS AN UPPER
C BOUND ON THE RELATIVE ERROR ON ITS LARGEST
C RESIDUAL. ON EXIT, RELERR GIVES A SMALLER UPPER
C BOUND FOR THIS RELATIVE ERROR, (SEE REF. 1,3

C X a ONE DIMENSIONAL REAL ARRAY OF LENGTH NDIM.
C ON EXIT, X COITAINS A SOLUTION TO THE PROBLEM IN THE

C FIRST N LOCATIONS, THE CONTENTS OF X(N+*)..., X(NDIN)

C ARE UNCHANGED.
C RANK a AN INTEGER WHICH GIVES ON EXIT THE RANK OF THE
C COEFFICIENT MATRIX. (WILL DEPEND ON TOL.)

C RESMAX a ON EXIT, THE LARGEST MAGNITUDE RESIDUAL.

C OCODE x 0 IF OPTIMAL SOLUTION IS PROBABLY NONUNIQUE, A DEFINITE

C STATEMENT REQUIRES FURTHER COMPUTATION WHICH IS NOT
C DEEMED TO BE COST EFFECTIVE.

C z I IF UNIQUE OPTIMAL SOLUTION.
C = 2 IF CALCULATIONS TERMINATFD PREMATURELY DUE TO
C ACCUMULATED ROUND-OFF ERRORS.

C NSIDES a 1 IF ONE SIDED CdEBYSHEV SOLUTION IS COMPUTED.

C IN THIS CASE THE RESIDUALS RETURNED FROM THIS
C PROGRAM ARE ERRONEOUS AND MUST BE COMPUTED IN

C THE CALLING ROUTINE. (SEE REF. 2.]
C - 2 IF TwO SIDED CHCBYSHEV APPROXIMATION IS COMPUTED,

C THIS IS THE STANDARD FORM. THE RESIDUALS RETURNED
C FROm THIS PROGRAM ARE CORRECT IN THIS CASE. MORE

C NU4ERICAL ACCURACY IN THE RESIDUALS MAY RESULT
C FROM DIRECT CALCULATION IN THE CALLING PROGRAM.
C

C
OIMENSION A(NDIM,IOIm),B(MDIm),X(NDIM)
ITEGER PROW,PCOL,RANK,RAiKPI,OCODF

C
C THE FOLLOWING NUMBER IS MACHINE DEPENDENT.

DATA BTG/1I.+3R/

C

C
C INITIALIZATION
C
C

IF(NSIDES.LEI)SIDES=1.

IF(NSIDES.GE.2)SIDES2.

MPII MI
NPI=N+

MP2=N+2

NPIMRSI

RANKwN
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RELTt4PZRELERR
RELERR:0.

DO 10 3.1,4
ACNPI ,J)u1.
A(NP2,J)a-%(J)
A(NP3,J)BN44

10 CONTINUE
ACNP1,MPI)z09

ITERNO
OCODEuI
DO 20 I.1,N
X(I)ao,
A(IONPI)aI

20 CONTINUE
C
C
C LEVEL I
C
C

LEVaI

KwC
30 KUKeI

C
C THE NEXT VARIABLE IS NOT USED, BUT IS IN THE PUBLISHED CODE.

KPIuKi1

C
NPI MK=NP 1-K
MODE2 0
DO 40 J=K,M
8(3)z1.

40 CONTINUE
C
C DETERMINE THE VECTOR TO ENTER THE BASIS
C

50 Dc-BIG
DO 60 J=K,14
IF(B(3).EQ,0.)GO TO 60
DD=ABSCNP2*j))
IF(DD.LE.D)GO TO 60
PCOLxJ
0:00

60 CONTINUE
IF(K.GTo1)GO TO 70

C
C TEST FOR ZERO RIG.AT HAND SluE
C

TAFCO.GT*TGL)GO TO %
RESMAX=0.

GO TO 300

C DTERArNE T.IE VECTOR TO LEAVE TmtiP ASIS
C

70 DXTOL
00 80 Ist,NPINK
'DuA8S(A(I,9COL))
If(DO.LEoQ)GO TO dO
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60 CONTINUE

IF(D.GT.TOL)GO TO 330
C

C CHECK FOR LINEAR DEPENDENCE IN LEVEL 1

IF(AODE.EQ.1)GO TO 50
DO 100 J:K#A

IF(BCJ).EQ.0.)GO TO 100
DO 90 Iz1,NP1MK
IFCABSCI,J))LE.TOL)GO TO 90
IODEZI

GO TO 50
90 CONTINUE

100 CONTINUE

RANKxK-1

NPII4R=NPi-RANK

OCODE=O
GO TO 160

110 IFCPCOL.EQeK)GO TO 130
C
C INTERCHANGE COLUM4NS IN LEVEL 1

C
DO 120 lxI,NP3
D=A(IPCOL)

ACI,PCOL)aA(I#K)
A(I,K)zD

120 CONTINUE

130 IF(PROWoEQ.NP1MK)GO TO 150
C
C INTERCHANGE ROWS IN LEVEL I

C
Do 140 jal,AP1

DuA(PROiu,J)
A(PROWe,J)EA(NP1MK,J)
A CNPIMK ,3) .

140 CONTINUE
150 TF(KeLT.N)10 TO 30

160 IF(RANK.EQ.,4)GO TU 390

R ANK P :R A N K

C

C
C LLVEL 2

C
C

* LEV&2

C
C DETERINtE THE VECTnR TO ENTEP TME RASIS

C
DzTOL

D0 170 ,JRRAivyPI,M
DDuABS(A(NP72,J))

IF(DDoLERD)GO TU. 170

PCOLXJ
0DOD

170 CONTINUE

C
C COMPARE CHEBYSHEV ERRGR WITh. TOL
C
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IFCD.GT.TOL)GO TO 190
RESMAXwO,

MODER3
GO TO 380

180 IF(A(14P2,PCOL).LT.-TOL)GO TO 200
ACRP1,PCOL)xSIDES-ACNP1 .PCOL)
DO 190 IaMPIMR#NPJ
IFCI.EQsNPI)GO TO 190
A CI.PCOL) UeA(I *PCOL)

190 CONTINUE'C
C ARRANGE FOR ALL ENTRIES IN PIVOT COLUMN
C (EXCEPT PIVOT) TO BE NEGATTVE
C

200 DO 220 IsNPLMR,N

? F(A(IPCOL).LTsTOL)GO TO 220
DO 210 JzI.M
A(NPI ,J)uACNPL,J)4SIDES*A(I,J)
A(I,J)z.A(I,J)

210 CONTINUE
ACI,MPI )u-A(I,MPI)

220 CONTINUE
PRO WNPI
GO TO 330

230 irCRAkKPI.EQ.A)GO TO 390
IF(PCOLoEQM)GO TO 250

C
C INTERCHANGE COLUMNS IN LEVFL 2
C

00 240 IuNPIMR,NP3
DuA(I,PCOL)
A(IPCOL)aAI,4)

240 CONTINUE
250 P4mluM-1

C
C
C LEVEL 3
C
C

LLV=3
C
C DtTERMINE TaiE VECrCR TO FhTEP TiiF BASIS
C

260 Dz-TOL
VALSIDE*A(JP?, )

DO 290 JzRAiKPI,M41
ir(A(NP2,J).;6.0)GC TO 270
PCOLSJ
DsA CNP2,J)
MO DEZZ0

GO 10 280
270 DDxVAL-ACNP2,.J)

XFCDD.GE.D)GO TO 290
hRODEu1

DUDD
280 CONTINUE

IF(O.GE.-TOL)GO TO 380
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DDa-D/ACNP2tm)

IF(DD.GEqREL.TMP)GO TO 290
RELERREDD
PODEz4
GO TO 390

290 IFCHODEsEQ.0)GO TO 310
Do 300 IaNPIMR#NPI
A(I,PCOL)uSIDES*ACI,!4)-ACIPCOL)

300 CONTINUE
A CNP2,PCOL)=

A (NP3,PCOL)=3ACNP3,PCOL)

C DETERMINE THIE VECTOR TO LEAVE THE BASIS

31 mIF.TBG)OT 3

320 32 OTIN R,

GOAIPO),ETLG TO 390

33 DIOUA(PROW,(IPCOL)
IFDO~ EDG 340 320

340 CONTINUE

IF(J.EQ.PCO)GO TO 30

GOIEQPONG TO 350

SPIOT)ONAC.J)-*APCOL)

330 PIVOT:-(PIOT#C
DO 370 I3nP1,ftP
ACT POLJ)aA(IPOL)/PIVOT

370 CONTINUE

A (PRC,PCOL)GO TOPI3O0
D=ACPROWMP)

A=AC~MI#)ACNP,PCOL)

A (TP,PCOL)zD(,CL)TIO

ITERzITER+1
GO TO C110,230P260),LEV

C

C

C

380 DO 390 Jz~
B(J):0,

390 CONTINUE
IFCMOE*EQ*2)GO TO 450
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Do 400 ju1,RANK
KaA(NP3,J)
X(K)2ACNP2,J)

400 CODNEQ.O.AKE.)OT40
400DF,*~qAKE0MG CONT4NU

0O 410 ISNPINRINPI
KaAdSCA(I,NPlJ).7LOAT(N)
8(K)2ACN92,M)*SIGNCI. ,AC1,MPI))I410 CONTINUE
IF(R&AKP.EQ.M)GO TO 430
DO 420 J*RAhXPI,NM1
KrABS(ACNP3,J) )-FLOAT(M)
BCK)xCACNP2,NI).A(NP2,J))*SIGN(1*.A(NP3,js)

420 CONTINUE
C
C TEST FOR NON-UNIQUE SOLUTION
C

430 DO 440 I=NPINRpNP1

IF(ABS(A(I*M))*GT.TOL)C0 TO 440

OCOOEZO
GO TO 450

440 CONTINUE
450 !FCIOENE2AND.MODE.N.3)ESAXXA(NP2,M~)

IF(RAN4KoEQ*M)RES'4AXz0.

IF (MODE.EQ .4)RjES4AXXRESHAX-0
C
C
C END OF SUBROUTINE hCM495
C
C

RETURN
END
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