

MICROCOPY RESOLUTION TEST CHART national burlau of siandaros 1963 a

Linear Chebyshev Compiex Function Approximation

Roy L. Streit
Information Services Department

Q

Albert H. Nuttall
Surface Ship Sonar Department

Naval Underwater Systems Center

 Newport, Rhode Island / New London, Connecticut
81429038

Preface

The research presented in this report was conducted under NUSC Project No. A75205, Subproject No. ZR0000101, "Applications of Statistical Communications Theory to Acoustic Signal Processing,' Principal Investigator, Dr. A. H. Nuttall (Code 3302), and under NUSC Project No. A70210, Subproject No. ZR000010, "Optimization of Mutually Coupled Arrays," Principal Investigator, Dr. R. L. Streit (Code 7122). The Program Manager is CAPT D. F. Parrish (MAT 08L).

The Technical Reviewer of this report was B. G. Buehler (Code 3292).

20. (Continued) :
both a priori and a posteriori error assessments. Efforts to extend the method to functions whose domain of definition is a continuum are discussed. Numerical examples and a FORTRAN program listing are included.

An application is presented involving Pre-shading a 50-element antenna array to minimize the effects of a 10% element failure rate, while maintaining full steering capability and mainlobe beamwidth. .-.

Table of Contents

Page
I. Introduction 1
II. Mathematical Theory and Algorithm 2
III. Numerical Examples and Efficiency of Approach 11
IV. Application to Array Design with a Constraint 17
V. Efforts to Extend the Method 22
VI. Discussion and Summary 23
References 25
Appendix - The Computer Program 27
List of Figures
Figure Page
1 Error Curves for Real Coefficients; $m=11$ 13
2 Error Curves for Complex Coefficients; m=11 14
3 Error Curves for Complex Coefficients; $\mathrm{m}=101$ 14
4 Relative Pattern for 5 Elements Failed 19
5 Relative Pattern for $p=2, m=251$, Real Weights 20
6 Best Real Weights for $p=8, m=501$ 20
7 Relative Pattern for $\mathrm{p}=8, \mathrm{~m}=501$, Real Weights 21
List of Tables
Table Page
1 Coefficients for the Real Weight Case 12
2 Coefficients for the Complex Weight Case 13
3 Bounds on the Discrete Chebyshev Error $\mathrm{E}_{\mathrm{n}}(\mathrm{f})$ 15
4 Maximum Magnitude Error, Computed over 2001 Equispaced Points in [$0, \pi / 4$] 16
5 Number of Simplex Iterations and CPU Time 17

Linear Chebyshev Complex Function Approximation

I. Introduction

The approximation of desired or given functional behavior by finite sets of simpler or specified basis functions is a recurrent problem in many fields. For example, in the mathematical field, we might wish to approximate a (desired) complex integral by a set of (simpler) sinusoidal components. Or in an antenna array processing application, we often want to realize a (given) low sidelobe behavior by means of an array with (specified) element locations which are not under our control.

For the case where the given functional behavior and the specified basis functions are all real valued and defined on a finite discrete data set, and where the approximation is afforded by a real-weighted linear combination of these basis functions, the optimum solution for minimizing the maximum magnitude error, i.e., the Chebyshev norm, is in very good shape due to a fine algorithm given in [1]. Specifically, this algorithm solves the following mathematical problem: given real constants $\left\{f_{i}\right\},\left\{h_{i k}\right\}$, where $1 \leqslant i \leqslant m, 1 \leqslant k \leqslant n, m \geqslant n$, the real quantities $\left\{a_{k}\right\}_{1}^{n}$ are determined that minimize the maximum absolute value of the error residuals

$$
\begin{equation*}
e_{i} \equiv f_{i}-\sum_{k=1}^{n} a_{k} h_{i k} \quad \text { for } 1 \leqslant i \leqslant m \tag{1.1}
\end{equation*}
$$

This algorithm has recently been used to good advantage in an array processing application to design some real symmetric weighting functions with very good sidelobe behavior, subject to constraints on the rate of decay of the distant sidelobes [2].

Here we wish to employ the algorithm, as described above for real variables in (1.1), for the minimization of the Chebyshev norm of

$$
\begin{equation*}
e_{n}(z) \equiv f(z)-\sum_{k=1}^{n} a_{k} h_{k}(z) \tag{1.2}
\end{equation*}
$$

when $f(z)$ and $\left\{h_{k}(z)\right\}_{1}^{n}$ are complex, and z can take values in an arbitrary finite discrete point set. The weighting coefficients $\left\{a_{k}\right\}^{n}$, may be complex, or alternatively, they may be restricted to be real. Applications are afforded by an antenna array with arbitrarily specified element locations, but employing weights that are restricted to be real, or alternatively by array weights that are also allowed to be phased (complex). In Section II, the basic mathematical theory and algorithm for the minimization of (1.2) is developed. Numerical examples and applications of the technique, some efforts attempted for extending the method to a continuum of values of z, and a discussion constitute the rest of the main body of the report. An Appendix presents a computer program in a form which should be useful to readers interested in applying the technique to their own particular applications.

Although the above algorithm [1] is limited to a discrete set of points, it has been used fruitfully to minimize the continuous error (1.2) over a real variable z in the interval $\left[z_{\mathrm{a}}, z_{b}\right]$, when f and $\left\{h_{h}\right\}$ are real, in the following manner. First, an initial set of $m \geqslant n$ real points $\left\{z_{i}^{(1)}\right\}_{1}^{m}$ was specified and the Chebyshev norm minimized in the usual fashion, resulting in the coefficient set $\left\{a_{k}^{1}\right\}_{1}^{n}$. For this set of optimum coefficients, the locations $\left\{z_{i}^{(2)}\right\}_{1}^{\ell}$ of the largest peaks of $\left|e_{n}(z)\right|$ were located, by setting the derivative $e_{n}^{\prime}(z)$ to zero and solving numerically for $\left\{z_{i}^{(2)}\right\}_{1}^{\ell}$; the number ℓ of such peaks will generally be less than m, but larger than n. (This approach presumes the availability of computable expressions for $f^{\prime}(z)$ and $\left.\left\{h_{k}(z)\right\}_{1}^{n}\right)$. Then the modified set of points $\left\{z_{i}^{(2)}\right\}_{1}^{\ell}$ were used for another Chebyshev minimization, resulting in coefficient set $\left.\left\{a_{k}^{12}\right\}\right\}_{1}^{n}$. Repetition of this procedure stabilized after a few trials with a unique set of $\left\{z_{i}\right\}_{1}^{\}}$at which the maximum errors were equal and irreducible. In the examples tried in [2], the number of peaks, $\mathbb{1}$, at which the magnitude error $\left|e_{n}(z)\right|$ was largest and equal, turned out to be $n+1$. Further discussion of this recursive approach is given in Section V.

II. Mathematical Theory and Algorithm

Let f and h_{1}, \ldots, h_{n} be complex valued functions defined on the finite discrete point set $Q_{m}=\left\{z_{1}, \ldots, z_{m}\right\}$. For a complex vector $a=\left(a_{1}, \ldots, a_{n}\right) \varepsilon C^{n}$, define the complex error

$$
\begin{equation*}
f(z)-\sum_{k=1}^{n} a_{k} h_{k}(z) \equiv e_{n}(z ; a), \quad z \varepsilon Q_{m} \tag{2.1}
\end{equation*}
$$

The discrete linear Chebyshev approximation problem is to find a complex* vector $\tilde{\mathrm{a}}=\left(\tilde{\mathrm{a}}_{1}, \ldots, \tilde{\mathrm{a}}_{\mathrm{n}}\right) \varepsilon \mathbf{C}^{\mathrm{n}}$ so that

$$
\begin{equation*}
E_{n}(f) \equiv \min _{a \varepsilon C^{n}} \max _{z \varepsilon Q_{m}}\left|e_{n}(z ; a)\right|=\max _{z \varepsilon Q_{m}}\left|e_{n}(z ; \tilde{a})\right| \tag{2.2}
\end{equation*}
$$

The quantity $E_{n}(f)$ is called the discrete Chebyshev, or minimax, error of the approximation on the point set Q_{m}.

We do not solve this problem exactly. An algorithm presented in [3] for its solution is erroneous; we have discovered examples (see Section IV) such that the recursive procedure described there need not converge to a solution of (2.2). We will show that problem (2.2) can be replaced by a related approximate problem solvable by available linear programming techniques. The exact solution of this related problem yields approximate solutions of (2.2). The error in these approximate solutions to (2.2) can be determined and, in fact, made arbitrarily small, using the results we prove below; see Theorems 1 and 2.

It can be shown by standard mathematical methods [4, p.1] that a vector \tilde{a} satisfying (2.2) exists, although it may not be unique. Sufficient conditions are known that result in unique $\tilde{\mathrm{a}}$, but we do not need these conditions here. Therefore, no further assumptions on f, h_{1}, \ldots, h_{n} or the point set Q_{m} are made. In order to proceed, we need the following result.

[^0]Lemma 1. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, where x and y are real, then

$$
\begin{equation*}
|z|=\max _{-\pi<\theta \leqslant \pi}(x \cos \theta+y \sin \theta) . \tag{2.3}
\end{equation*}
$$

Proof. If $z=0$, the result is obvious. Suppose, then, that $z \neq 0$. By the CauchySchwartz inequality, for every real θ,

$$
x \cos \theta+y \sin \theta \leqslant\left(x^{2}+y^{2}\right)^{1 / 2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{1 / 2}=|z|
$$

so that

$$
\max _{-\pi<\theta \leqslant \pi}(x \cos \theta+y \sin \theta) \leqslant|z|
$$

For the particular value $\theta=\arg (z)$, it is seen that (2.3) holds. This completes the proof.

Now, let the real and imaginary parts of the complex error $e_{n}(z ; a)$ be denoted by $R_{n}(z ; a)$ and $I_{n}(z ; a)$, respectively. Thus, from Lemma 1 ,

$$
\begin{equation*}
\left|e_{n}(z ; a)\right|=\max _{-\pi<\theta \leqslant \pi}\left(R_{n}(z ; a) \cos \theta+1_{n}(z ; a) \sin \theta\right) \tag{2.4}
\end{equation*}
$$

If, in this last equation, we take the maximum over any finite subset T of angles θ in the interval $-\pi<\theta \leqslant \pi$, instead of all angles in the interval $-\pi<\theta \leqslant \pi$, we must have

$$
\begin{equation*}
\left|e_{n}(z ; a)\right| \geqslant \max _{\theta \varepsilon T}\left(R_{n}(z ; a) \cos \theta+I_{n}(z ; a) \sin \theta\right) . \tag{2.5}
\end{equation*}
$$

It will be seen shortly that the next result is very important and central to our problem.

Lemma 2. Let $\theta_{j}=\pi(j-1) / \mathrm{p}, \mathrm{j}=1,2, \ldots, 2 \mathrm{p}$, where the integer $\mathrm{p} \geqslant 2$. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, and let

$$
\begin{equation*}
\mathbf{M}=\max _{j=1, \ldots . .2 p}\left(x \cos \theta_{j}+y \sin \theta_{j}\right) \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
M \leqslant|z| \leqslant M \sec (\pi / 2 p) \tag{2.7}
\end{equation*}
$$

Proof. That $|z| \geqslant M$ is obvious, so we only have to prove $|z| \leqslant M \sec (\pi / 2 p)$. Let $P(x, y)$ be the point in the Euclidean plane corresponding to the complex number $z=x+i y \neq 0$, so that

$$
\begin{aligned}
& x=|z| \cos (\arg z) \\
& y=|z| \sin (\arg z) .
\end{aligned}
$$

Thus, for any angle φ, we must have

$$
(|z| \cos (\arg z)-x) \cos \varphi+(|z| \sin (\arg z)-y) \sin \varphi=0
$$

which, after simple algebraic manipulation, can be written

$$
\begin{equation*}
|z|=x^{\prime}(\varphi) \sec \alpha(\varphi) \tag{2.8}
\end{equation*}
$$

where $\mathrm{x}^{\prime}(\varphi)=\mathrm{x} \cos \varphi+\mathrm{y} \sin \varphi$ and $\alpha(\varphi)=\arg \left(\mathrm{ze}^{-\mathrm{i} \varphi}\right)$. Alternatively, (2.8) can be derived geometrically by considering x^{\prime} to be the x coordinate of the point $P(x, y)$ after a rotation of the axes through the angle φ. From (2.8) we have

$$
\begin{equation*}
|z|=x^{\prime}\left(\theta_{j}\right) \sec \alpha\left(\theta_{j}\right), j=1, \ldots, 2 p . \tag{2.9}
\end{equation*}
$$

Let the index k be such that

$$
\begin{equation*}
M=x^{\prime}\left(\theta_{k}\right)=\max _{1 \leqslant j \leqslant 2 p} x^{\prime}\left(\theta_{j}\right) . \tag{2.10}
\end{equation*}
$$

With the particular angles θ_{j} chosen here, $x^{\prime}\left(\theta_{j+p}\right)=-x^{\prime}\left(\theta_{j}\right)$ for $j=1, \ldots, p$, so that we must have $x^{\prime}\left(\theta_{k}\right)>0$. Since $z \neq 0$ is fixed in (2.9), it is clear from (2.10) and the definition of the angles $\alpha\left(\theta_{j}\right)$ that

$$
0<\sec \alpha\left(\theta_{\mathrm{k}}\right)=\min _{1 \leqslant j \leqslant 2 \mathrm{p}}\left|\sec \alpha\left(\theta_{\mathrm{j}}\right)\right| \leqslant \sec (\pi / 2 \mathrm{p}) .
$$

Therefore,

$$
\begin{aligned}
|\mathrm{z}| & =\mathrm{x}^{\prime}\left(\theta_{\mathrm{k}}\right) \sec \alpha\left(\theta_{\mathrm{k}}\right) \\
& =\mathrm{M} \sec (\pi / 2 \mathrm{p}) .
\end{aligned}
$$

This concludes the proof.
We are now in a position to describe a problem that we can solve exactly and that is related to the given discrete linear Chebyshev approximation problem (2.2). For notational convenience, we define, for any complex vector $a \varepsilon \mathbf{C}^{\mathrm{n}}$,

$$
\begin{equation*}
G_{j}(z ; a)=R_{n}(z ; a) \cos \theta_{j}+I_{n}(z ; a) \sin \theta_{j}, j=1, \ldots, 2 p \tag{2.11}
\end{equation*}
$$

where $\theta_{1}, \ldots, \theta_{2 \mathrm{p}}$ are the angles given explicitly in Lemma 2 . We seek a complex vector $\hat{a}=\left(\hat{a}_{1}, \ldots, \hat{a}_{n}\right) \varepsilon C^{n}$ satisfying

$$
\begin{align*}
M_{n p}(f) & \equiv \min _{a \varepsilon \mathbf{C}^{n}} \max _{z \varepsilon Q_{m}} \max _{j=1, \ldots, 2_{p}} G_{j}(z ; a) \\
& =\max _{z \varepsilon Q_{m}} \max _{j=1, \ldots, 2 p} G_{j}(z ; a ;) \tag{2.12}
\end{align*}
$$

Using standard mathematical methods, it is easy to see that at least one such vector ${ }^{\mathrm{a}} \varepsilon^{\mathrm{C}}{ }^{\mathrm{n}}$ exists. The connection between the problem (2.12) and the problem (2.2) is explored in the next few results.

Theorem I. Let $\mathrm{p} \geqslant 2$ be an integer, and let $\theta_{j}=\pi(j-1) / \mathrm{p}, \mathrm{j}=1,2, \ldots, 2 \mathrm{p}$. Then

$$
\begin{equation*}
M_{n p}(f) \leqslant E_{n}(f) \leqslant M_{n p}(f) \sec (\pi / 2 p) . \tag{2.13}
\end{equation*}
$$

Proof. Using ã and â as in (2.2) and (2.12), respectively, we have

$$
\begin{array}{rlr}
M_{n p}(f) & =\max _{z \varepsilon Q_{m}} \max _{1 \leqslant j \leqslant 2 p} G_{j}(z ; a \hat{a}) & \text { from (2.12) } \\
& \leqslant \max _{z \varepsilon Q_{m}} \max _{1 \leqslant j \leqslant 2 p} G_{j}(z ; a ̃) & \text { from (2.12) } \\
& \leqslant \max _{z \varepsilon Q_{m}}\left|e_{n}(z ; a ̃)\right| & \text { implied by (2.7) } \\
& =E_{n}(f) & \text { from (2.2) } \\
& \leqslant \max _{z z Q_{m}}\left|e_{n}(z ; \hat{a})\right| & \text { from (2.2) } \\
& =\max _{z z Q_{m}}\left\{\max _{1 \leqslant j \leqslant 2 p} G_{j}(z ; \hat{a})\right\} \sec (\pi / 2 p) & \text { implied by (2.7) } \tag{2.7}\\
& =M_{n p}(f) \sec (\pi / 2 p) . &
\end{array}
$$

This concludes the proof.
Theorem 2. Let $\mathrm{p} \geqslant 2$ be an integer, and let $\theta_{\mathrm{j}}=\pi(\mathrm{j}-1) / \mathrm{p}, \mathrm{j}=1,2, \ldots, 2 \mathrm{p}$. Let

$$
\mathscr{E}_{\mathrm{np}}(\mathrm{f})=\max _{z \varepsilon \mathrm{Q}_{\mathrm{m}}}\left|e_{\mathrm{n}}(z ; \hat{a})\right|
$$

where the complex vector $\hat{A}_{\varepsilon} \mathbf{C}^{\mathrm{n}}$ is any vector satisfying (2.12). Then

$$
\begin{equation*}
E_{n}(f) \leqslant \mathscr{E}_{n p}(f) \leqslant E_{n}(f) \sec (\pi / 2 p) \tag{2.15}
\end{equation*}
$$

Proof. Using ã and â as before, we have

$$
\begin{array}{rlr}
E_{n}(f) & \leqslant \mathscr{E}_{n p}(f) & \text { from (2.2) } \\
& =\max _{z \varepsilon Q_{m}}\left|e_{n}(z ; \hat{a})\right| & \text { from (2.14) } \\
& \leqslant \max _{z \varepsilon Q_{m}}\left\{\max _{1 \leqslant j \leqslant 2 p} G_{j}(z ; \hat{a})\right\} \sec (\pi / 2 p) & \text { implied by (2.7) } \tag{2.7}\\
& \leqslant \max _{z \varepsilon Q_{m}} \max _{1 \leqslant j \leqslant 2 p} G_{j}(z ; \tilde{a}) \sec (\pi / 2 p) & \text { from (2.12) } \\
& \leqslant \max _{z \varepsilon Q_{m}}\left|e_{n}(z ; a ̃)\right| \sec (\pi / 2 p) & \text { implied by (2.7) } \\
& =E_{n}(f) \sec (\pi / 2 p) . &
\end{array}
$$

This concludes the proof.

Corollary 2.1. Under the conditions of Theorem 2,

$$
\begin{equation*}
M_{n p}(f) \leqslant E_{n}(f) \leqslant \varepsilon_{n p}(f) \tag{2.16}
\end{equation*}
$$

Proof. Immediate.
The preceding corollary evidently gives excellent upper and lower bounds on the discrete linear Chebyshev approximation error $\mathrm{E}_{\mathrm{n}}(\mathrm{f})$, and these bounds are readily available after the numerical computation of $\hat{a}_{\mathrm{s}} \mathrm{C}^{\mathrm{n}}$ and $\mathrm{M}_{\mathrm{np}}(\mathrm{f})$ has been conpleted. We point out that the above two theorems substantially generalize results in [3, p.854].

Using the Maclaurin series for sec x in (2.15) gives the relative discrepancy

$$
\begin{equation*}
0 \leqslant \frac{\bigodot_{n p}(f)-E_{n}(f)}{E_{n}(f)} \leqslant \sec (\pi / 2 p)-1=\frac{\pi^{2}}{8 p^{2}}+o\left(\frac{1}{p^{4}}\right), p \rightarrow \infty \tag{2.17}
\end{equation*}
$$

Note that this upper bound on the relative error is independent of f, the point set Q_{m}, the basis functions $\left\{h_{k}\right\}$, and n.

We will now explicitly formulate an overdetermined system of real linear equations to be solved in the Chebyshev norm (to be defined) which is equivalent to solving the problem (2.12). Referring to the choice of θ_{j} 's in Lemma 2, we observe that $\theta_{p+j}=\pi+\theta_{j}, j=1, \ldots, p$, and, and so from (2.11), we have

$$
G_{p+j}(z ; a)=-G_{j}(z ; a), j=1, \ldots, p .
$$

Therefore, we may rewrite (2.12) as

$$
M_{n p}(f)=\min _{\mathrm{a} \varepsilon \mathbf{C}^{n}} \max _{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant p}}\left|\mathrm{G}_{\mathrm{j}}\left(\mathrm{z}_{\mathrm{l}} ; \mathrm{a}\right)\right|
$$

Now, breaking the following quantities into their real and imaginary components

$$
\begin{align*}
f(z) & =u(z)+i v(z) \\
h_{k}(z) & =r_{k}(z)+i s_{k}(z), k=1, \ldots, n, \tag{2.19}\\
a_{k} & =b_{k}+i c_{k}, k=1, \ldots, n,
\end{align*}
$$

we may write

$$
\begin{align*}
& R_{n}(z ; a)=u(z)-\sum_{k=1}^{n} b_{k} r_{k}(z)+\sum_{k=1}^{n} c_{k} s_{k}(z) \\
& I_{n}(z ; a)=v(z)-\sum_{k=1}^{n} b_{k} s_{k}(z)-\sum_{k=1}^{n} c_{k} r_{k}(z) . \tag{2.20}
\end{align*}
$$

Using (2.11) and (2.20) gives

$$
\begin{align*}
& G_{j}\left(7_{i}: a\right)-u\left(z_{l}\right) \cos \theta_{j}+v\left(z_{l}\right) \sin \theta_{j} \\
&-\sum_{k=1}^{n} b_{k}\left[r_{k}\left(z_{l}\right) \cos \theta_{j}+s_{k}\left(z_{l}\right) \sin \theta_{j}\right] \\
&-\sum_{k=1}^{n} c_{k}\left[r_{k}\left(z_{l}\right) \sin \theta_{j}-s_{k}\left(z_{l}\right) \cos \theta_{j}\right] \tag{2.21}
\end{align*}
$$

Note that $G_{j}\left(z_{i} ; a\right)$ is a real linear equation in the $2 n$ variables $\left\{b_{k}\right\}$ and $\left\{c_{k}\right\}$, $\mathrm{k}=1, \ldots, \mathrm{n}$, and that all the coefficients of this equation are computable directly from known data.

Define the $m p \times 2 n$ real matrix B in the partitioned form

$$
B=\left[\begin{array}{cc}
B_{1} & D_{1} \\
B_{2} & D_{2} \\
\vdots & \vdots \\
B_{m} & D_{m}
\end{array}\right]
$$

with the $\mathrm{p} \times \mathrm{n}$ submatrices

$$
\mathrm{B}_{\mathrm{t}}=\left[\mathrm{b}_{\mathrm{jk}}^{(t)}\right] \quad \text { and } \quad \mathrm{D}_{\mathrm{t}}=\left[\mathrm{d}_{\mathrm{jk}}^{(!)}\right], t=1, \ldots, \mathrm{~m}
$$

whose general real entries are

$$
b_{j k}^{(1)}=r_{k}\left(z_{\mathrm{l}}\right) \cos \theta_{j}+s_{k}\left(z_{\mathrm{l}}\right) \sin \theta_{j} \quad j=1, \ldots, p ; k=1, \ldots, n
$$

$$
\begin{equation*}
\mathrm{d}_{\mathrm{jk}}^{(t)}=\mathrm{r}_{\mathrm{k}}\left(z_{\mathrm{l}}\right) \sin \theta_{\mathrm{j}}-\mathrm{s}_{\mathrm{k}}\left(z_{\mathrm{t}}\right) \cos \theta_{\mathrm{j}} \tag{2.22}
\end{equation*}
$$

Also, define the real vector

$$
\begin{equation*}
g \equiv\left[g_{11}, \ldots, g_{1 p}, g_{21}, \ldots, g_{2 p}, \ldots, g_{m 1}, \ldots, g_{m p}\right]^{\top} \tag{2.23}
\end{equation*}
$$

of length mp, where

$$
g_{t j}=u\left(z_{t}\right) \cos \theta_{j}+v\left(z_{t}\right) \sin \theta_{j}, t=1, \ldots, m ; j=1, \ldots, p
$$

Finally, define the real vector

$$
\begin{equation*}
x=\left[b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}\right]^{T} \tag{2.24}
\end{equation*}
$$

of length 2 n . With this notation in hand, it is easily seen that the overdetermined system of $m p$ equations in $2 n$ unknowns

$$
\begin{equation*}
B x=\underline{g} \tag{2.25}
\end{equation*}
$$

has a residual error vector defined by

$$
\mathrm{g}-\mathbf{B x}
$$

whose $m p$ components are precisely the $m p$ real numbers $G_{j}\left(z_{i} ; a\right)$ arranged in a special order. Therefore, the problem (2.18) can be solved by computing a solution to the overdetermined linear system (2.25) in the Chebyshev norm; i.e., the largest magnitude component of the residual vector $g-B x$ is minimized over all choices of the vector x.

This equivalent problem in linear algebra can, in principle, be solved exactly and in a finite number of steps using linear programming methods [1], [3]. The proof of this fact is the content of the following self-contained mathematical result.

Theorem 3. Let $A=\left[a_{j k}\right]$ be a real $r \times s$ matrix with $r \geqslant s \geqslant 1$, and let $b=\left(b_{1}, \ldots, b_{r}\right)$ be a real vector of length r. Let $\alpha_{1}^{*}, \ldots, a_{9+1}^{*}, \omega^{*}$ denote a solution of the following primal linear program in the $s+2$ real variables $\alpha_{1}, \ldots, \alpha_{s+1}, \omega$ with $2 r$ linear constraints:

Minimize: ω
subject to: $\alpha_{1} \geqslant 0, \ldots, \alpha_{s+1} \geqslant 0, \omega \geqslant 0$,

$$
\begin{align*}
& \sum_{k=1}^{s} \alpha_{k} a_{j k}+\alpha_{s+1} A_{j}+\omega \geqslant b_{j}, \quad j=1, \ldots, r, \\
& -\sum_{k=1}^{s} a_{k} a_{j k}-\alpha_{s+1} A_{j}+\omega \geqslant-b_{j}, \quad j=1, \ldots, r, \tag{2.26}
\end{align*}
$$

where

$$
\begin{equation*}
A_{j}=-\sum_{k=1}^{s} a_{j k}, \quad j=1, \ldots, r \tag{2.27}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}}=a_{\mathrm{k}}^{*}-\alpha_{\mathrm{s}+1}^{*}, \quad \mathrm{k}=1, \ldots, \mathrm{~s} \tag{2.28}
\end{equation*}
$$

If

$$
\begin{equation*}
M=\min \max _{1 \leqslant j \leqslant r}\left|b_{j}-\sum_{k=1}^{s} a_{j k} y_{k}\right| \tag{2.29}
\end{equation*}
$$

with the minimum taken over all real y_{1}, \ldots, y_{5}, then

$$
\begin{equation*}
M=\omega^{*}=\max _{1 \leqslant j \leqslant r}\left|b_{j}-\sum_{k=1}^{\delta} a_{j k} x_{k}\right| \tag{2.30}
\end{equation*}
$$

where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{5}$ are given by (2.28).

Proof. We first prove that $\mathrm{M} \leqslant \omega^{*}$. From (2.28), we have $\alpha_{h}^{*}=\alpha_{i+1}^{*}+\mathrm{x}_{k}$ which, substituted into the constraints (2.26) and using (2.27), gives

$$
\sum_{h=1}^{s} a_{j h} x_{h}+\omega^{*} \geqslant b_{j}, j=1, \ldots, r
$$

and

$$
-\sum_{k=1}^{y} a_{j k} x_{k}+\omega^{*} \geqslant-b_{j}, j=1, \ldots, r
$$

Clearly, these last sets of inequalities together imply

$$
\begin{equation*}
\max _{1 \leqslant j \leqslant r}\left|b_{j}-\sum_{k=1}^{s} a_{j k} x_{k}\right| \leqslant \omega^{*} \tag{2.31}
\end{equation*}
$$

Hence, from (2.29), $M \leqslant \omega^{*}$.
We next prove that $\omega^{*} \leqslant M$. Let $x_{1}^{*}, \ldots, x_{5}^{*}$ denote any solution of (2.29). Then we may write

$$
\left|b_{j}-\sum_{k=1}^{s} a_{j k} x_{k}\right| \leqslant M, \quad j=, \ldots, r
$$

or, without absolute values,

$$
\begin{align*}
b_{j} & -\sum_{k=1}^{s} a_{j k} x_{k}^{*} \leqslant M \\
-b_{j} & +\sum_{k=1}^{s} a_{j k} x_{k}^{*} \leqslant M \tag{2.32}
\end{align*}
$$

Now, define

$$
\begin{gather*}
\beta_{s+1}=\max \left\{0,-\min _{1 \leqslant k \leqslant s} x_{k}^{*}\right\} \tag{2.33}\\
\beta_{k}=x_{k}^{*}+\beta_{s+1}, \quad k=1, \ldots, s .
\end{gather*}
$$

Clearly, the $s+2$ real numbers $\beta_{1}, \ldots, \beta_{s+1}$, M are non-negative by construction. Furthermore, substituting $x_{k}^{*}=\beta_{k}-\beta_{s+1}, k=1, \ldots, s$, into (2.32), and using (2.27), gives

$$
\begin{aligned}
& b_{j}-\sum_{k=1}^{s} a_{j k} \beta_{k}-\beta_{s+1} A_{j} \leqslant M \\
& -b_{j}+\sum_{k=1}^{s} a_{j k} \beta_{k}+\beta_{s+1} A_{j} \leqslant M
\end{aligned}
$$

Clearly these inequalities show that the numbers $\beta_{1}, \ldots, \beta_{s+1}, M$ satisfy all the constraints (2.26). Hence, it must be that $\omega^{*} \leqslant M$. Since we have already established that $M \leqslant \omega^{*}$, we conclude that $M=\omega^{*}$. Hence the inequality (2.31) must actually be an equality in light of the definition (2.29). This completes the proof.

Theorem 3 does not require that the solutions of either the linear program or of (2.29) be unique. Theorem 3 states only that from a given solution of the linear program, we may construct a solution of (2.29) using (2.28). Conversely, it is easy to see that any solution of (2.29) can be used to construct a solution of the linear program using (2.33).

An excellent algorithm, which we will refer to as ACM 495, is available in the literature [1] for solving the linear program of Theorem 3. It requires as input only the overdetermined system of equations $A x=b$. The linear program is then set up and solved by the algorithm, so that knowledge of linear programming techniques is not necessary to use the algorithm in practice. The computational procedure, internal to the algorithm, actually solves the dual of the above primal linear program using a modification of the simplex method. The dual formulation of this problem is available in $[5, \mathrm{p} .296]$. We will not discuss the details of the linear programming technique further in this report.

A very simple modification [3, p. 863] of ACM 495 yields an algorithm for solving any real overdetermined system of linear equations in the Chebyshev norm subject to the additional constraints that all the residuals be non-negative. For A and b as in Theorem 3, this problem takes the form

$$
\begin{equation*}
\operatorname{minimize}_{x_{1} \ldots, x_{5}} \max _{1 \leqslant j \leqslant r}\left(b_{j}-\sum_{k=1}^{s} a_{j k} x_{k}\right) \tag{2.34}
\end{equation*}
$$

subject to the r constraints

$$
\begin{equation*}
b_{j}-\sum_{k=1}^{s} a_{j k} x_{k} \geqslant 0, \quad j=1, \ldots, r \tag{2.35}
\end{equation*}
$$

The solution $\mathrm{x}_{1}, \ldots, \mathrm{x}_{5}$ returned by this modified algorithm is correct, even though the residuals returned may be in error. The correct residuals, if desired, must be calculated directly from the solution. Alternatively, if the residuals are required to be non-positive, then the same modified algorithm will work with A and b replaced by -A and -b, respectively.

Requiring non-negative residuals in the overdetermined system (2.25) has interesting geometrical interpretations. For example, if we take $p=2$ in Lemma 2, then $\theta_{1}=0$ and $\theta_{2}=\pi / 2$. Thus, from (2.11), $G_{1}(z ; a)$ and $G_{2}(z ; a)$ are merely the real and imaginary parts of the complex error $e_{n}(z ; a)$. Thus, the $2 m$ components of the residual vector g-Bx are precisely the real and imaginary parts of $e_{n}(z ; a)$ evaluated at all m data points. Therefore, if the system (2.25) is required to have non-negative residuals, we have forced the error curve to lie entirely in the first quadrant of the complex plane. More generally, we may always constrain $\mathrm{e}_{\mathrm{n}}(\mathrm{z} ; \mathrm{a})$ to lie in a given convex wedge shaped sector \mathscr{W} of the complex plane with vertex at the origin, by making different, but appropriate, choices of the angles θ_{1} and θ_{2}. Further exploration of this idea shows that upper and lower bounds for the error $W_{n}(f)$, defined by

$$
\begin{array}{r}
W_{n}(f) \equiv \min _{a \varepsilon C^{n}} \max _{« \varepsilon Q_{m}}\left|e_{n}(z ; a)\right| \\
\text { subject to: } e_{n}(z ; a) \varepsilon \mathscr{H}, \quad z \varepsilon Q_{m}
\end{array}
$$

where $e_{n}(z ; a)$ is given by (2.1), can be obtained in terms of the error $W_{n p}(f)$, defined by

$$
\begin{gathered}
W_{n p}(f) \equiv \min _{a \in C^{n}} \max _{z \varepsilon Q_{m}} \max _{j=1, \ldots, p} G_{j}(z ; a) \\
\text { subject to: } G_{j}(z ; a) \geqslant 0, \quad \operatorname{z\varepsilon }^{z} Q_{m}, j=1, \ldots, p,
\end{gathered}
$$

where $G_{j}(z ; a)$ is given by (2.21), but for a different set of angles $\theta_{1}, \ldots, \theta_{p}$. The quantity $W_{n p}(f)$ may be computed by solving the linear system analogous to (2.25) in the Chebyshev norm with the constraint of non-negative residuals. This approach is especially effective when the vertex angle of the wedge doas not exceed $\pi / 2$. This topic is not pursued further in this report.

Suppose, finally, that the complex solution vector $a \varepsilon C^{n}$ of problem (2.12) is required to be strictly real, while f and $\left\{h_{k}\right\}$ are complex. Then, in the vector x of (2.24), $c_{1}=\ldots=c_{n}=0$. Thus, the overdetermined system $B x=g$ of mp equations in $2 n$ unknowns can be replaced by a smaller system $\hat{B} \hat{X}=g$ of mp equations in only n unknowns, where the $m p \times n$ real matrix \hat{B} is defined in partitioned form by

$$
\hat{B}=\left[\begin{array}{c}
B_{1} \tag{2.36}\\
B_{2} \\
\vdots \\
B_{m}
\end{array}\right]
$$

where the $p \times n$ submatrices B_{1}, \ldots, B_{m} are unchanged from (2.22), and the real vector $\hat{x}=\left[b_{1}, \ldots, b_{n}\right]{ }^{\top}$. A solution of $\hat{B} \hat{x}=g$ in the Chebyshev norm can be computed using linear programming and algorithm ACM 495 as before.

III. Numerical Examples and Efficiency of Approach

We illustrate the procedure of the preceding section by approximating the complex function $f(x)=\exp (i 3 x)$ by a weighted sum of the basis functions 1 , $\exp (i x), \exp (i 2 x)$. That is, we seek to minimize the magnitude of the complex error curve

$$
\begin{equation*}
e_{3}(x) \equiv \exp (i 3 x)-\sum_{k=1}^{3} a_{k} \exp (i(k-1) x) \tag{3.1}
\end{equation*}
$$

over interval $[0, \pi / 4]$, by choice of a_{1}, a_{2}, a_{3}, by solving the problem $M_{n p}(f)$ of (2.12). Two cases are of interest; in the first, the coefficients $\left\{a_{k}\right\}_{1}^{3}$ are restricted to
be real, whercas in the second, these coneflicients can be comples. It he number m, al

 error mimmizatom, is taken to be 2,6, 18, 54, agam empurmg the subee behator of the valler siec cases. Nolle that p and the phave shifi, $; \theta ;$, are an given in Theorem I in Section II.

The optimum real coefficients in (3.1) for the problem $M_{n p}(f)$ are given in table 1 for these choices of m and p, and a plot of the magnitude of the error for several representative cases is given in figure 1 . The best approximation of all cases considered is afforded by $m=1001, p=54^{*}$ and its error curve is plotted as a solid line; its maximum error is .1078 , which is realized at two points in the interval $[0, \pi / 4]$. The cases for smaller m (less sampling of the abscissa) and smaller p (less sampling of the phase of the complex error) are poorer; for example, the maximum error for $m=11, p=2$ is .1184 , realized at only one point, namely $x=\pi / 4$.

Table 1. Coefficients for the Real Weight Case

m	p	a_{1}	a_{2}	a_{3}
11	2	.936738	-2.443144	2.518388
	6	.828404	-2.280319	2.396455
	18	.858547	-2.321885	2.425096
	54	.844146	-2.301461	2.410611
101	2	.936781	-2.443223	2.518458
	6	.831314	-2.284548	2.399525
	18	.865131	-2.331446	2.432033
	54	.853823	-2.315301	2.420506
1001	2	.936785	-2.443232	2.518466
	6	.831237	-2.284448	2.399461
	18	.865213	-2.331571	2.432127
	54	.853443	-2.314772	2.420138

We have not plotted the other error curves with real coefficients for $m=101$ and 1001, because they are indistinguishable from figure 1 , as a perusal of table 1 shous. For example, the coefficients for $m=11, p=2$ are very close to those for $m=101$. $p=2$ and $m=1001, p=2$. Thus, our sampling in x is already "fine enough" at $m=11$. However, there is a significant change in the coefficients as p is varied. for a fixed value of m; that is, $p=2$ yields very coarse phase-sampling of the error curve and should definitely be made larger.

The Chebyshev error curve ($\mathrm{m}=1001, \mathrm{p}=54$) in figure 1 realizes its maximum value at only $n-1$ points, rather than at $n+1$ points, where $n=3$ is the number of coefficients for this example. This is probably related to the fact that we have

[^1]

Figure 1. E.rror Curves for Real Coefficients; $m=11$
minimized both the real and imaginary parts of the complex error, but have allowed ourselves to use only real coefficients.

The solution of the problem $M_{n n}(f)$ for complex weights is given in table 2 for the same shoices of m and p as above. Again, the change in coefficient values is more marked with p than with m . Magnitude-error curves for $\mathrm{m}=11$ and 101 are given in figures 2 and 3, respectively; the curves for $m=1001$ are indistinguishable from those for $\mathrm{m}=101$ and are not presented.

Table 2. Coefficients for the Complex Weight Case

\mathbf{m}	p	$\operatorname{Re}\left(\mathrm{a}_{1}\right)$	$\operatorname{Im}\left(\mathrm{a}_{1}\right)$	$\operatorname{Re}\left(\mathrm{a}_{2}\right)$	$\operatorname{Im}\left(\mathrm{a}_{2}\right)$	$\operatorname{Re}\left(\mathrm{a}_{3}\right)$	$\operatorname{Im}\left(\mathrm{a}_{3}\right)$
11	2	.364737	.954343	-2.021670	-2.119639	2.669023	1.153207
	6	.378045	.907888	-2.016657	-2.018598	2.648834	1.100488
	18	.373079	.898715	-2.003032	-2.003205	2.639992	1.094451
	54	.371586	.896504	-1.999352	-1.999473	2.637788	1.092947
101	2	.362962	.953469	-2.018255	-2.119960	2.667544	1.154238
	6	.376532	.904026	-2.012095	-2.014055	2.646131	1.099461
	18	.370549	.893500	-1.995913	-1.997062	2.635782	1.093144
	54	.368950	.890017	-1.991172	-1.991196	2.632622	1.090777
1001	2	.362947	.953499	-2.018253	-2.120028	2.667560	1.154275
	6	.376502	.903926	-2.011979	-2.013914	2.646047	1.099417
	18	.370711	.893848	-1.996440	-1.997545	2.636145	1.093278
	54	.369179	.890566	-1.991954	-1.991974	2.633175	1.091006

TR 6403

Figure 2. Error Curves for Complex Coefficients; $\boldsymbol{m}=11$

Figure 3. Error Curves for Complex Coefficients: $\mathbf{m}=101$

The Chebshev error curse $(m=1(0)!, p=54)$ is now wmmetric about the midpoint of the interval of interest and has four equal error peak, of value . 0147 . This error is 7.3 times smaller than that for the real coe?ficient case. Also the number of equal error peaks now equals 1 plus the number of coefficients; whether this property holds generally is not known.

Upper and lower bounds on the discrete Chebyshev error $E_{n}(f)$ for the real and complex coefficient cases are given in table 3. These bounds are precisely those presented in (2.16). They correspond to sampling the complex error (3.1) both in the abscissa x and in the phase of $e_{3}(x)$. The lower bounds monotonically increase with increasing m or p. The upper bounds decrease with increasing p, but increase with increasing m. All these trends follow from the fact that smaller sample sizes are subsets of the larger sizes.

Table 3. Bounds on the Discrete Chebyshev Error $\mathrm{E}_{\mathbf{n}}(\mathbf{f})$

m	p	Real Coefficients		Complex Coefficients	
		Lower Bound	Upper Bound	Lower Bound	Upper Bound
11	2	.083718	.118396	.012089	.017097
	6	.105074	.108780	.013963	.014456
	18	.107307	.107717	.014143	.014197
	54	.107612	.107658	.014168	.014174
101	2	.083731	.118414	.012252	.017328
	6	.105192	.108893	.014436	.014946
	18	.107556	.107967	.014677	.014733
	54	.107767	.107813	.014703	.014709
1001	2	.083734	.113418	.012255	.017331
	6	.105191	.108901	.014440	.014950
	18	.107565	.107976	.014679	.014735
	54	.107775	.107821	.014704	.014712

However, the maximum magnitude error, evaluated over the continuum of x values in the interval $[0, \pi / 4]$ (actually computed on a dense discrețe sampling space), obeys none of these monotonic relations, as table 4 demonstrates. For example, the maximum error in the real case for $m=11, p=18$ is less than that for $m=11, p=54$. Also, the maximum error in the complex case for $m=11, p=6$ is greater than that for $m=101, p=6$. The reason for this behavior is that we have minimized a discrete approximation to our problem of interest, sampling both in the abscissa x and in the phase values of the complex error. However, the numerical discrepancies are small, as they must be for reasonably fine sampling in both variables. (A recursive gradient procedure could be used with any of these coefficient sets to improve the final maximum magnitude-error if desired.)

The FORTRAN program listing in the Appendix is the exact code used to generate the complex weights in example (3.1) for $m=101$ and $p=6$. The imbedded comments should enable anyone seeking to use and understand the code to do so. Further remarks are given in the discussion in Section VI.

Table 4. Maximum Magnitude Error, Computed Over 2001 Equispaced Points in [0, $\pi / 4]$

m			p
11	2	Real Coefficients	Complex Coefficients
	6	.118396	.017097
	18	.108780	.015142
	54	.107983	.015004
101	2	.118415	.015005
	6	.108893	.017329
	18	.107967	.014946
	54	.107813	.014733
1001	2	.118417	.014711
	6	.10890	.017331
	18	.107976	.14950
	54	.107821	.014735

Effic: $n c$ and timing estimates for actual calculation of complex Chebyshev aporsuinis ans by the method of this report is an important consideration in some applications. If we define an operation as consisting of a multiplication followed by an addition, then it is known [6] that the number of operations per simplex iteration requi- J d by algorithm ACM 495 [1] is exactly the number of equations times the number of unknowns. In our case, the number of equations is mp , and the number of unknowns is 2 n if the coefficients are complex, or n if the coeificients are required to be real. Thus, the operation count per iteration is either 2 nmp or nmp . The number of iterations required is difficull to estimate, since it depends on the particular problem. However, in randomly generated problems, it has been observed [6] that the number of iterations, 1, is approximately the number of unknowns times some small constant c, where usually $1 \leqslant c \leqslant 3$. (Similar estimates have been observed [7,p.160], [8] in more general linear programs as well.) Thus, in our case, $\mathrm{I}=2 \mathrm{en}$ if the coefficients are complex and $\mathrm{I}=\mathrm{cn}$ if they are real.

The CPU time should be proportional to the total operation count, which equals the product of the number of iterations and the number of operations per iteration. That is, we expect the CPU time to be proportional to $\mathrm{n}^{2} \mathrm{mp}$. For the particular example here, however, we obtain an excellent fit to the limited data in table 5 with

$$
\text { CPU time }(\mathrm{msec})=.128 \mathrm{n}^{1.13} \mathrm{~m}^{1.18} \mathbf{p}^{1.18}
$$

where $n=6$ if the coefficients are complex, and $n=3$ if they are real. This fit was obtained by letting the exponents of n, m, and p vary separately. Other examples, however, lead us to anticipate that, more generally,

$$
\text { CPU time } \propto n^{2}(m p)^{1 \cdot} .
$$

with a proportionality factor of the order of .01 .03 msec , where n is either twice the number of approximation coefficients if the coefficients are complex. or exactly the number of coefficients if they are required to be real.

Table 5. Number of Simplex Iterations and CPU Time

m	p	Real Coefficients		Complex Coefficients	
		Simplex	CPU (s)	Simplex	CPU (s)
11	2	6	.02	10	.05
	6	8	.08	15	.16
	18	11	.23	21	.58
	54	13	.81	27	2.25
101	2	7	.25	10	.40
	6	9	.73	17	1.60
	18	13	2.65	21	5.78
	54	15	11.39	28	24.27
1001	2	9	3.05	13	5.00
	6	10	10.34	17	19.38
	18	13	48.16	24	105.47
	54	16	170.52	28	359.20

The CPU time estimates apply, of course, only to the DEC VAX 11/780 computer on which the calculations were performed. The virtual memory feature of this system allows very large problems to be solved; however, for sufficiently large problems, the system overhead incurred (page faulting, and so on) may significantly and adversely affect these estimates.

IV. Application to Array Design with a Constraint

Consider a linear antenna array with N elements located at arbitrary fixed positions $\left\{x_{k}\right\}_{1}^{N}$, receiving a plane wave arrival of wavelength λ from direction θ_{a}, $-\frac{\pi}{2} \leqslant \theta_{a} \leqslant \frac{\pi}{2}$, relative to a normal to the array. If the array is steered to look in direction $\theta_{l},-\frac{\pi}{2} \leqslant \theta_{l} \leqslant \frac{\pi}{2}$, then the complex transfer function of the beamformer is given by

$$
\begin{equation*}
T(u)=\sum_{k=1}^{N} w_{h} \exp \left(-\mathrm{id}_{k} u\right), \tag{4.1}
\end{equation*}
$$

where $\left\{w_{k}\right\}$ Vare the element weights, and

$$
\begin{gathered}
d_{k}=2 \pi x_{k} / \lambda \quad \text { for } 1 \leqslant k \leqslant N, \\
u=\sin \theta_{a}-\sin \theta_{l} .
\end{gathered}
$$

Observe that the total range of u depends on the look direction θ_{ℓ}; for example, if $\theta_{l}=0$, then the range of u is the closed interval $[-1,1]$. The peak response of $T(u)$ should occur at $u=0$, so we normalize (without loss of generality) according to

$$
T(0)=1=\sum_{k=1}^{N} w_{k} .
$$

To realize small sidelobes, we must minimize $|\mathrm{T}(\mathrm{u})|$ for all u values in some subset U of the total range of u. For example, if $\theta_{f}=0$, the total range of u is $\{-1,1]$, and U could be the union of intervals $\left[-1,-u_{0}\right]$ and $\left[u_{0}, 1\right]$, where $u_{0}>0$ is chosen small relative to 1. For the special case of real weights $\left\{w_{h}\right\}$, since from (4.1), $T(-u)=T^{*}(u)$, we can contine attention to $U=\left[u_{0}, 1\right]$. The normalization constraint is most easily accounted for by solving for w_{v} and eliminating it; we obtain then

$$
\begin{equation*}
T(u)=\exp \left(-i d_{N} u\right)-\sum_{k=1}^{N-1} w_{k}\left(\exp \left(-i d_{N} u\right)-\exp \left(-i d_{k} u\right)\right) . \tag{4.2}
\end{equation*}
$$

This problem now fits the framework of (2.1) if we identify

$$
\begin{align*}
z & =u \\
\mathrm{n} & =\mathrm{N}-1 \\
\mathrm{e}_{\mathrm{n}}(\mathrm{z}) & =\mathrm{T}(\mathrm{u}) \\
\mathrm{f}(\mathrm{z}) & =\exp \left(-i d_{\mathrm{N}} \mathrm{u}\right) \\
\mathrm{a}_{\mathrm{k}} & =\mathrm{w}_{\mathrm{k}} \\
\mathrm{~h}_{\mathbf{k}}(\mathrm{z}) & =\exp \left(-i d_{\mathrm{N}} \mathrm{u}\right)-\exp \left(-\mathrm{id}_{\mathrm{k}} \mathrm{u}\right) \\
\mathrm{Q}_{\mathrm{m}} & =\text { finite subset of } U . \tag{4.3}
\end{align*}
$$

There has been no statement, thus far, as to the real or complex nature of the weights $\left\{\mathrm{w}_{k}\right\}$. This distinction depends upon the application and the capability of the beamformer. Both cases fit the above framework; the only difference is that the number of unknowns to be solved for will be twice as large for the complex weights as for the real weights.

If the array is half-wavelength equispaced, then the computed element weights will be identical to the classical Dolph-Chebyshev weights and can, in this instance, be computed analytically. The general case of arbitrary spacings, however, cannot be computed analytically, yet the algorithm presented in this report can always be applied.

In the remainder of this section, we presume that the elements are equispaced at half-wavelength. Then $x_{k}=k \lambda / 2$ and (4.1) becomes

$$
\begin{equation*}
T(u)=\sum_{k=1}^{N} w_{k} \exp (-i \pi k u) . \tag{4.4}
\end{equation*}
$$

Observe now that $T(u)$ in (4.4) has period 2 in u, regardless of whether the weights $\left\{w_{k}\right\}$ are real or complex, or whether some elements have failed, i.e., zero weight values. This means that we can study and control $\mathrm{T}(\mathrm{u})$ in $(4,4)$ over any convenient u-interval of length 2, and need not confine our investigation to $[-1,1]$. In particular, we concentrate on the u-interval $[0,2]$ in the following.

As an illustration of the capability of the minimization technique of this report, a 50 -element half-wavelength equispaced linear array was initially designed for peak
sidelobes of -30 dB relative to the main peak. This is of course a staindard DolphChebyshev case, and gives -30 dB sidelobes throughout the u-range $\left[u_{0}, 2-u_{0}\right]$, where $u_{0}=.0538117 . *$ Then 10% of the elements were randomly eliminated from the array, but the remaining weights were unchanged; this corresponds to 5 element, failing in the array. The relative response of this particular array, with elements 7 , $22,40,43,50$ failed, is illustrated in figure 4. The peak sidelobe has increased from -30 dB to -21.58 dB , a degradation of 8.4 dB , and there is a large variety of different size peaks.

Figure 4. Relative Pattern for 5 Elements Failed
When our method with $p=2$ and $m=251$ equispaced points in $\left[u_{0}, 2-u_{0}\right]$ is applied to this defective array, and the remaining 45 elements are weighted with real coefficients, subject to the constraints that the mainlobe width be the same as the ideal 50 -element array, and that the steering range in u be the same, the resultant array pattern is displayed in figure 5 . The peak sidelobe is now -23.62 dB , an improvement of 2.04 dB over figure 4 ; however, there is still a significant variation in the values of the sidelobes, due to an insufficient number of phase controls, namely only $p=2$.

When we increase the parameter values to $\mathrm{p}=8, \mathrm{~m}=501$, the resultant best real weights are displayed graphically in figure 6 and the corresponding array pattern is given in figure 7. The gaps in figure 6 at locations 7, 22, 40, 43, 50 correspond to zero weighting at the failed elements. The general character of the weights is a bell-

[^2]TR 6403

Figure 5. Relative Pattern for $p=2, m=251$, Real Weights

Figure 6. Best Real Weights for $p=8, m=501$

Figure 7. Relative Pattern for $\mathbf{p}=\mathbf{8 , m}=\mathbf{5 0 1}$, Real W eights
shaped one of all positive numbers, but there is significant fluctuation in the actual weight values, of the order of 10%. The pattern in figure 7 has a peak sidelobe of -25.20 dB , an improvement of 3.62 dB over figure 4 , but still 4.80 dB poorer than the ideal 50 -element array.

When the weights were allowed to be complex, and the maximum sidelobe minimized in the same steering range $\left[\mathrm{u}_{0}, 2-\mathrm{u}_{0}\right]$ for $\mathrm{p}=2$ and $\mathrm{m}=501$ equispaced points in $\left[u_{0}, 2-u_{0}\right]$, the best complex weights turned out to be virtually pure real. and the corresponding pattern was almost identical to figure 5. A much improved pattern for complex weights was achieved when we took $\mathrm{p}=8, \mathrm{~m}=501$; in fact. the best complex weights were real (within 10^{-6} relative error) and the pattern was the same as figure 7. Although we had anticipated a better pattern for the complex weight case than for the real weights, that did not materialize: the best complex weights for this equispaced linear array with 5 missing elements were real. The reason for this behavior is unknown, but it is an encouraging result from the array design viewpoint, for it indicates that there is no need to allow phasing at the individual elements; gain alone will achieve all the sidelobe reduction that can be achieved. This conclusion is drawn only for the half-wavelength equi-spaced line array with omnidirectional element response.

The use of linear programming to design antenna arrays is not entirely new. In [9] and [10], linear programming was used to synthesize desired complex transfer functions to within 3 dB of the best possible sidelobe level. Their method corresponds to taking $p=2$ in the method presented in this report.

The compataion of the real wesha of tigut 6 (where $p .2, \mathrm{~m}=251$, and $\mathrm{n}=4+$) and of tigure 7 (where $p=A, m=501$, and n. 4) required 1.2 minute 205 iterations and 38.4 minutes 402 iteratoms. renrevacly. On the other hand, when the weights were allowed to be comple (replacing $n=4+$ by $n=88$, but leaving p and m unchanged in both cases), the computatom required 7.0 minutes 657 iterations and 179 minutes : 262 iterations, respectuels. The wo of these four cases requiring the smallest CPU times encountered almosi no stsem overhead due to program size. However, the twe cases requiring the largest (PL times encountered very significant system overhead because their large memory requirements caused significant usage of the virtual memory feature of the DEC VAX 11 780. The 38.4 minute case required over 3.6 million page faults, while the 179 minute case required over 11 million page faults. It is important to bear in mind that the DEC VA.X $11 / 780$ is essentially a mini-computer, and that without virtual memory, only the largest mainframe computers could have solved either of these two problems.

V. Efforts to Extend the Method

Our basic problem is to minimize the maximum magnitude of complex error

$$
\begin{equation*}
e_{n}(z)=f(z)-\sum_{k=1}^{n} a_{k} h_{k}(z) \tag{5.1}
\end{equation*}
$$

over a continuum of values of z, when $f,\left\{h_{k}\right\}$, and $\left\{a_{k}\right\}$ are complex. We immediately approximate this desired problem by discretizing the z variable to a finite number of values, in order to make the problem computable. Furthermore, at any z value of interest, we additionally discretize the number of phase errors we are willing to consider. To be specific, since the algorithm in [1] applies only to real quantities, we consider the "projection' of a rotated version of the complex error:

$$
\begin{equation*}
P(z, \Psi)=\operatorname{Re}\left\{\exp (i \Psi) e_{n}(z)\right. \tag{5.2}
\end{equation*}
$$

Then, since the argument of complex error (5.1) is unknown a priori, we let Ψ take on a finite set of values spaced over any π radian interval, and minimize the magnitude of projection (5.2) over all these selected Ψ values. This is equivalent to the method of Section II.

In an effort to eliminate this second discretization process in Ψ, a perturbation method was put forth in [3] that claimed guaranteed convergence to the optimum weights, for any given finite discrete set of z-values. When applied to the examples in [3], the proposed perturbation technique did indeed converge. However, when applied to the following example, of approximation of $\exp (i 3 x)$ by the three basis functions 1 , $\exp (i x), \exp (i 2 x)$, over 100 equispaced points in the domain $[0, \pi / 4]$ in x, it sometimes failed to converge, depending on the initial weights employed. The reason for this failure is that the "direction of the minimum" furnished by the perturbation is often totally irrelevant, and the best scale factor to apply to this perturbation is very small. Thus there occurs a small random meander in the coefficient space, and occasional convergence to a non-optimum point.

A modification of this technique was attempted wherein the magnitude of the perturbation was bounded. Although this improved the situation somewhat, convergence to the optimum was not always obtained.

It was thought that this meander in coefficient space might be eliminated by tracking the exact z-values at which (5.1) is a maximuin. Recall that in the real case discussed in the Introduction, convergence to the absolute optimum over a continuum of real z-values was achieved in a practical example by re-evaluating the z points of maximum error and using these in a recursive approach. When this idea was extended to the two continuous variables z, Ψ in (5.2), and only the $2 n+1$ largest error points were retained, convergence was not obtained. When however, the single "point" of a maximum, i.e., a pair of values $\left(z_{k}, \Psi_{k}\right)$, was replaced by a "patch", i.e., a set of values $\left\{\left(z_{k p}, \Psi_{k p}\right)\right\}$ covering the maximum point $\left(z_{k}, \Psi_{k}\right)$, the convergence to the absolute optimum for the examples considered was apparently achieved. The patch width in Ψ was of the order of a degree in most cases. The problem with this latter modification is that a large number of computations of the error function and its derivative must be evaluated, and the improvement over the method of Section II is insignificant when p there is large.

If the final error in (5.2), after application of the method of Section II, is inadequate, due to inadequate sampling in z and/or Ψ, it is possible, for a given coefficient set $\left\{a_{k}\right\}$, to locate the point $\left(z_{m}, \Psi_{m}\right)$ at which (5.2) is largest, and then use a gradient approach to decrease this maximum error at $\left(z_{m}, \Psi_{m}\right)$. Of course. the particular point of maximum will jump around as the set $\left\{a_{h}\right\}$ is perturbed; nevertheless, the technique does converge (although slowly) and does lead i, smaller errors at the maximum of (5.2) in a continuum for z and Ψ.

VI. Discussion and Summary

It has been observed that two of the locations of maximum magnitude error often occur at the endpoints, if the specified domain in (1.2) is a real interval; for example, see figures 2 and 3. (The example of real coefficients in figure 1 had one of the maximum error points at an endpoint, but not the other. However, if we had specified domain $[-\pi / 4, \pi / 4]$ in that example, we would have observed four peakerror points, two of which would have been at endpoints, due to the conjugate property of the desired function and the basis functions.) Since the endpoints may be the only ones we can anticipate a priori and specify as locations of maximum error, an obviously useful procedure is to use more values of phase shift Ψ in (5.2) (alternatively, the angles $\left\{\theta_{i}\right\}$ in Lemma 2) at the endpoints than in the interior, so as to better control these very-likely locations of maximum error. For example, we might use $p=6$ in the interior of a specified real interval domain of z and use $p=12$ or 20 at the two endpoints. This does not add greatly to the total computation, since there are generally far more interior points than (two) endpoints. The program in the Appendix may be readily used with different values of p at different data points by exploiting the INDEX array in the user-supplied subroutine named ZPHASE.

The p different phase shifts Ψ selected in (5.2) have been chosen here to be equally spaced over a 180° span (along with their 180° mates). This is the most reasonable
selection in the absence of a priori knowledge of the complex error, its magnitude, and phase because it gives the best upper bound (2.7) in Lemma 2 of any set of phases. However, one could select any value of Ψ to investigate the error; for example, different sets of values of Ψ could be used at various values of abscissa z. The program in the Appendix may be used with any desired set of phases at any, or all, of the data points simply by altering the user-supplied subroutine named ZPHASE.

The potential for significant round-off error accumulation is always present in linear Chebyshev complex function approximation. For example, in approximating $f(x)=\cos (12 x)+i \sin (3 x)$ by a complex linear combination of the 12 basis functions $1, \exp (i x), \ldots, \exp (i 11 x)$ on the interval $[0, \pi / 4]$, the complex coefficients of best approximation were observed to be large in magnitude and lie in all quadrants of the complex plane; therefore, significant numerical round-off error occurred during computation of the residuals within algorithm ACM 495[1]. Even if the coefficients of best approximation had happened to be better behaved, serious cancellation error may still occur in some problems because of the very nature of complex arithmetic. It might, therefore, be wise to use a double precision version of algorithm ACM 495 routinely in complex Chebyshev approximation problems to alleviate such cancellation errors.

One method of detecting the presence of significant round-off errors is supplied by the nature of the approximation problem itself. That is, Theorem 1 and the third step of the proof of Theorem 2 together imply that

$$
\begin{equation*}
M_{n p}(f) \leqslant \leqslant_{n p}(f) \leqslant M_{n p}(f) \sec (\pi / 2 p) \tag{5.1}
\end{equation*}
$$

Once $M_{n p}(f)$ and the coefficients have been computed in algorithm ACM 495, these bounds may be checked to see if significant numerical round-off error has occurred. In the example presented in the Appendix, rounding to 5 significant digits gives

$$
.014436=M_{n p}(f)<\epsilon_{n p}(f)=M_{n p}(f) \sec (\pi / 2 p)=.014946
$$

However, if we round to 6 significant digits instead, it is seen that the second inequality in (6.1) does not quite hold. We conclude that the effects of round-off errors, although visible in the results, are not significant in this example. (Single precision numbers on the DEC VAX $11 / 780$ have approximately 7 significant decimal digits.)

A sensitivity analysis on the optimum coefficients may be in order in some applications to determine their utility. This consideration is completely independent of their numerical accuracy. For example, in an antenna array design problem where some elements are spaced significantly less than a half-wavelength apart, it might well turn out that the optimum coefficients need to be specified with a relative error of better than 10^{-6}. Then, although the mathematical results may be correct and accurate, practical usage is precluded. This sensitivity can be determined by perturbing the optimum weights a few percent and observing if a drastic change occurs on the desired sidelobe behavior. (Such arrays are referred to as super-directive arrays.)

References

1. I. Barrodale and C. Phillips, "Solution of an Overdetermined System of Linear Equations in the Chebyshev Norm," Algorithm 495, ACM Transactions on Mathematical Software, vol. 1, no. 3, September 1975, pp 264-270.
2. A. H. Nuttall, "Some Windows with Very Good Sidelobe Behavior," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 1, February 1981. (Also in NUSC Technical Report 6239, 9 April 1980.)
3. I. Barrodale, L. M. Delves, and J. C. Mason, "Linear Chebyshev Approximation of Complex-Valued Functions," Mathematics of Computation, vol. 32, no. 143, July 1978, pp. 853-863. MR 58 \#3313.
4. G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, 1967.
5. I. Barrodale and A. Young, "Algorithms for Best $L_{\text {, }}$ and L_{∞} Linear Approximations on a Discrete Set," Numerische Mathematik, vol. 8, 1966, pp. 295306.
6. I. Barrodale, private communication, 18 December 1980.
7. G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, N.J., 1963.
8. E. H. McCall, Performance Results of the Simplex Algorithm for a Set of Real-World Linear Programming Models, Technical Report 80-4, Computer Science Department, University of Minnesota, Minneapolis, Minnesota, January 1980.
9. G. W. McMahon, B. Hubley, and A. Mohammed, "Design of Optimum Directional Arrays Using Linear Programming Techniques', Journal of the Acoustical Society of America, vol. 51, no. 1, part 2, 1972, pp. 304-309.
10. G. L. Wiison, "Computer Optimization of Transducer-Array Patterns," Journal of the Acoustical Society of America, vol. 59, no. 1, Jan. 1976, pp. 195203.

Appendix

The Computer Program

3 RUNI ZACM

CPU TINE INSEC	$=$	1.01
PAGE FALLTS	$=$	1
NUMGEK GF ITERATIONS	$=$	17

$\begin{array}{lll}\text { NUNGER CF DATA ROINTS } & \mathrm{N}= & 101 \\ \text { NUNBER OF BASIS FUNCTLOIUS } & \mathrm{N}=\quad 3\end{array}$
NUMGER CF PHASES PEK POINT P = 0
LOWER RGUND FOR BEST CHEAYSAEV EPRAR $=0.14436293 E-01$
UPPER RUIIND FOR BESI CHERISHEV ERKOK = U.14946010D-01

Calculatel ramk $=\quad 6$,as Exffcted.

UnIQUE SOLUTION:

	REALPART	IMAGPART
1	0.37053953	0.90402507
2	-2.01209474	-2.01405549
3	2.64013148	1.09546144


```
THIS MAIN ROUIINE SOLVFS A LINEAR CONPLEX FUNCTION
APPKOXIMATION PROBLEM. THE COMPUTED APPROXIMATION CAN
BE MADE AS CLOSE TO THF REST CHERYSHEV, OR MINIMAX.
APPROXIMATTON AS DESIRFD. TRF APPKOXIMATION IS CONSTRUCTED
ON A FINITE DATA SET FROM AKBITRAKY BASIS FUNCTIONS.
```



```
REFERENCE:
    ROY L. STREIE AND ALDERT U. NUTTALL, "LINEAR CHEBYSHEV
COMPLEX FUNCTION APPRUXLMATION," NUSC TECGNICAL REPDRI G403,
NAVAL UNNERMATER SYSTENS CFGTER, NEW LONDON, CT,O6320.
```



```
THIS APPROACH SULVFS AT MGSI M早P LINEAR EQUATIONS IN 2*N
UNKNOWNS IN TAE CHEBYSHEV NORM: THAT IS, THE MAXIMUM MAGNITUDG
RESIDUAL IS MINIMIZED, ALL EOUAIIONS ANU UNKNOWNS ARE REAL.
THE SOLUTION IS CUMPUTPD USING LTNEAR PROGRAMMING.
SINGLE PRECISION IS USED TO SOLVE THE SYSTEM OF EQUATIONS&
HOWEVER, DOUBLF. PNECISION IS USED TO SFT UP THE SYSTEM
ITSELF IN ORDER TO MINIMIZE POSSIQLE ROUNDPOFF ERROHS.
```



```
THE N COMPLEX COEFFICIENTS OF APPROXIMATION ARE GIVEN BX:
```

$\operatorname{coff}(K)+I+\operatorname{COFF}(N+K), K=1.2 \ldots \ldots$.
THE COEF ARRAY IS COMPITFU IN SUBROUTINE AC.A495.

USERS MUST SPECIFY THE FOLIGWING SIX WUMPERS:
THE NUMEER OF BASIS FUACTIDIS:
PARAMETER NE 3
THE NUMGER OF DATA PCLHTS:
PARAMETEP $=101$
THE NUMbER OF PHASES PFR UATA PUIUT: [P.GFE 2$]$
PARAMETEP PE6
MUST THE FIHAE CTEFFICIENSS BE REAL? (TREAL=I IFF YES)
PARAMETER IREAL=0
MLST IHE RESIDUALS BF MUNOPEGATLVE? 〔LSIDES天I IFF YES〕
PARAMETEP ISIOES=O
RELATIVE ERROR CRITERIC: GKELFRR=0.O IFF CHEBYSHEV SOLUPIONJ
DATA KELFRR/O.O/


```
USERS NEEC CHANGE NOTHIAG MORE IN THIS ROUTINE，BUT THEY MUST MAKE APFROPRIATE CHANGES IN THE FOLLOWING SUBRDUTINES CALLED BY THYS MAIN ROUTTNE：
```



```
PARAMETER MIP \(=M\) F P，MDIM \(=M I P+1, N 2=2 * N, N D I M=N 2+3\)
DIMENSION BDATA（NDIM，MDLM），FDATA（MDIM），COEF（NDIM）， INOEX（＊）
DCUZLE PRECISION COSDTA（NIP），SINDTA（MIP），ARG（MIP），ZRDATA（M）。 LIDATA（M），RESIUR（M），RESTOI（M），CHEBER，DZERO，PI
INTEGER OCODE，RANK
DATA 2ERO／O．O／
DATA OZERO／0．00／
DATA PI／3．141592653589793238DO／
SET THE UNIT ROUND－DFF ERRDR（FUR VAX 11／780）
DATA TOL／．596E：7／
```



```
INITIALIZE
＊＊＊＊＊＊＊＊＊＊
IF（MIP．GE．N）GO TO 50
PRINT 51，MIP，N
FORMATC／，\＃\＃\＃＊＊IN」TIALIZATION ERROR：M＊P MUST EXCEED N＊，
```



```
ノ。＊＊＊＊＊＂。
白 \(\# * * * *\) EXECUTION TERMINATED \({ }^{\circ}\)
GO TO 9999
CONTINUE
DO 89 I \(=1, N 2\)
\(\operatorname{COEF}(I)=\) ZERO
continue
DO \(91 \quad I=1, M\)
RESIDR（I）＝DZEKO
RESIDI（I）＝D2EkO
CONTINUE
```



```
DEFINE THE PROHLEM
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
determine the data points
CALL ZABSCS（ZRDATA，ZIDATA，M）
netermine the phases at all data points
IP 2 P
CALL 2PHASF（INDEX，AKG，＊，IP，MIPSUM，RESIDR，HFISIDI）
compute the necessary sinés and cosives
```

CALL 2TRIGD(AKG,COSDTA,STNDTA,MIPSUM,INDEX)

```
C
    SET UP THE OVER-DETERMTNFD SYSTEM OF REAL EQUATIONS
    CALL 2FNSET(BOATA,PDATA,COSDTA,SIINTA,INDEX,NDIM,N,M,
                ZRDATA, ZIDASA, (REAL)
    SET CONSTRAINT IF COFFFICiEnTS muSt be feal
    NSETEN2
    IE(IREAL.EQ.I)NSEIFN
    SET OPTION FOR ONE SIDED SOLUTION OF GVER-DETERMINED SYSTEM
    NSTDES=2
    IF(ISIDES.EQ.1)NSIDES=1
    GET INITIAL TIMING AND PAGING INFOPMATION (FOR THE VAX 11/780)
    CALI GETJPI(NCPUI,NPFSI)
```



```
    SOLVE THF OVER-DETERMINED SYSYTEM DF MIPSUM EQUATIONS
    IN NSET UNKINONNS. ALL EQUATIONS AND UNKNOWNS ARE REAL.
```



```
    CALL ACM495(MIPSUM,NSEP,MOIM,NCIN,EDATA,FDATA,TOL,RELERR,COEF,
    1
                RANK,RESMAX,ITER,OCODE,NSIDESJ
    COMPUTE THE RESIDUALS DIRECTLY FOR GREATER ACCURACY
    CALL ZRESID(RESIDR,RFSIDI,I,M,COEF,ZROATA,ZIDATA,CHEBER)
    GET FINAL TIMING AND PAGING INFORMATION (FOR VAX 11/780)
    GALL GETJPI(NGPU2,NPFS2)
```



```
    PRINT SUMMARY DATA
    *************######
    PRINT ELAPSED TIMING AND PAGING TNFORMATION (FOR VAX 11/780)
    DCPU=(NCPU2-NCPU1)/100.
    IDPE=isPFS2-NPFSI
    PkINT 110,DCPU
    110 FURMAI(/: CPU TIME IN SEC = 0.1F10.2)
    PrInT 114,IDPF
    114 FORHAT(' PAGE FAULTS = ',I10)
        PRINT 100,IEER
        FORMAT(" NIMBER OF ITERATSOIGS = ',IIO)
        PRINT 111,M
    111 FOPVAT(/!: NUMBER OF DATA DOINTS M = ',I10)
        PnI:vT 1d2,N
    112 FURNAI(% NUMBER OE SASIS FUIVCIIUNS N = 0,IIO)
        PRINT 115,P
    115 FORMAT(' EUMRER DF PHASES DER PUINT P = ',I|O
        IF (INEAL.EQ.1)PPINT 134
        FURMAT(/." the COEFFICIemtS Ahf REQUIRFD tO be real.*)
        PRINT 103,RESMAX
    103 FURIMAL(/, LO,NEK 3OUND FOR GEST CHEOYSHEV ERROR = (,1E16.8)
        PRINT 107,CHFOEK
    107 FGRMAI(' UPPEK OUUND FOF EEST COFOYSUEV ERPOR = ',1D16.8)
        SEC=RESMAX/COS(PI/(2.JO&P))
```

```
        PGINT 109,SEC
    109 FORMAT(' LONEN DOJND * SECAKT( FI/(2*P) ) = .1EIb.E)
C
    171 Furmat(/:' Calculaten mank = .IIO.'..)
    PRINT 118,NSFT
    118 FORMAT(/,53(***),1.53(***),1.' THE KABK SHOULD EOUAL '.110.*.'.
        1 1.'CHECK FUR PUSSTBLE ERKCRS I:G HRUGKAM ANUJOR PROBLEM.",
        2 /.53('*'),1.53('%'))
        Gu TO 181
    119 CONTINUE
        PRINT 117,RANK
    117 FORMAT(/,* CALCULATEN PA:JK = *,110,* .AS EXPECTED.')
    181 CONIINUE
c
C
    124 FORMAT(//,' ReLATIVE ERRON IN TAE MAXIMUN RESIDUAL INCURRED*.
        1 /,' BY THIS APPROXIMAEE SULUTION = 0,1E16.8,1)
C
    121 FORMAI(/:O THE FOLLOWING SOLUTION IS PRORAPLY NON-UNIQUE:',1)
    122 FURMAT(/." UNLQUE SULUTION:',/)
    123 FORMAI(/,' PREMATUKE TFRMINATICA DUE TO ROUND-OFF EHRORS.'.
        1 /,' BEST COMPuTED SuluTION:',/)
C
    PRINT 133
    133 FORMAT(15X,'REAL PART'. 7X,'IMAG PAKT')
C
C
C
C
    102 FURMAT(15,3K,2F16.B)
C
C #*********************
C
C
9999 Eivo
```

s
TYPE ZFUNCT.FUR

C	****\#\#\#\#************************************
c	
C	
c	**
c	
c	***
c	
c	ZFNE = LMAG PARI OP THE FUNCTIO, cCuTPl

S TYPE ZBASIS．FOR

C	＊＊＊\＃\＃＊＊
c	SURROUTINE zRASIS EVALIATES The td－th Couplex
C	SASIS FUNCTIOIV AT A SPECIFIED Data point．
c	
C	
C	
c	Io＝THE BASIS P！JCITIUN InDeX，nHeRE
c	$I H=1,2, \ldots$（IivPUT）
c	2FAR＝REAL Dart of tre tapth masis functing（cutput）
c	
C	ZR＝REAL PARiL UF TAF SPECIFIES SATA EOINI（IVPUT）
C	21＝IMag Pari of The speciecer hata painf（INPUT）
C	＊＊＊\＃\＃\＃\＃＊＊＊＊＊＊＊＊
C	
	SURKDUTINE 2QASISII日，2F，ND，2F＇II，2R，2I）
C	
C	
C	＊＊＊＊＊＊\＃\＃\＃\＃\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
C	RECIN USER CCiUE Fun SuFCIr ic phunlem
C	
C	
	2¢N」＝SIM（（İ－2．しつ）＊2R）
C	
C	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

```
C END USER CODF FOR SPECTFIC PROBLFM
```


s TYPE 2AESCS.FOR

```
#################################################
SUBROUTINE ZABSCS DEFINES THE DATA POINTS ON
WHICH THE APPROXIMATION IS CONSIRUCTRD.
###################;=|############################
```



```
    ZRDATA(I) = REAL PART OF THE [-TH DATA POING (OUTPUT)
    ZIDATA(I) = IMAG PART GF THE I-SH DATA POINT (OUTPUT)
    M = TGTAL NUMBFR OF DATA POINTS (INPUT)
```


SUBRDUTINE ZAESCS（2RDATA，ZIDATA，M）
DOUBLE PRECISIDN ZRDATA（1），ZIDATA（1）
 REGIN USER CODE FOR SPFCTEIC PROBGEM

DOUBLE PRECISION X，PI
DATA PI／3．14159255358979323800／
DO $10 \mathrm{I}=1, \mathrm{~m}$
X＝PI＊（T－1．DO）／（4．UD＊（M－1．U（1））
ZRDATA（I）$=x$ ．
ZIDATA（I）$=0.00$
10 CONTIAUE

END USER CODE FGR SPECTrIC PRUBLEq
＊＊＊＊＊＊＊＊＊＊＊＊＊\＃\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

事事事事事事事事事事事事事事事事事事事事
EfID OF SUGPOUTIUE ZABSOS

RETURN
END

TR 6403

```
C ####################################*******************
pOINT, AS WELL AS THE TUTAL NUMOEh OF PHASES.
NOTE that rie tUTAL NuNBER OF DHASES EOUALS THE
TOTAL NUMBFR OF EUl'ATICNS SULVED IY ACM495.
```



```
*** CaUTIUN *** THE TOTAL NUMbER QF PhASES MUST NEVER
*############### EXCEED THE PRCDUCT M*P. YOWEVER, THE
############### NUMJER OF PHASES MAY DE VARIED FROM DATA
################# POINT TG DATA POINT. SEE NUSC REPORT O043.
#**##################################################################
INDEX(I) = NUMBER OF PHASES AT THE I-TH OATA POINT (OUTPUT)
ARG : AGGREGATE ARRAY OF ALL PHASES AT ALL DATA
                POINTS IN LEXICOGRAPHICAL ORDER (OUTPUT)
M = NUMBER DF DATA POINTS (INPUT)
P = THE INTEGER PARAMETFR P OF MAIN ROUTINE (INPUT)
MIPSUM = TOTAL NUMEER OF PHASES IN THE ARRAY ARG (OUTPUT)
THE FOLLOWING TWO ARRAYS ARE ZFRN FILLED, UNLESS AN
INITIAL APPROXIMATION HAS EEEI PROVIDED IN THE MAIN
ROUTINE. USE ONLY IF NEENED, OR ELSE IGNORE THEM.
RESIDR(I)= REAL PART OF CUMPLEX RESIDUAL AT THE I-TH
                                    DATA PUIITT
                                    (INPUT)
RESIOI(I)= IMAG PART OF COMPLEX RESIDUAL AT THE I-TH
                                    dATA PUTAT
                                    (INPUT)
```



```
SUBROUTINE ZPHASE(INDEX,ARG,H,P,MIPSUM,RESIDR,RESIDI)
INTEGER P
DIMENSTON IWDEX(1)
DOUGLE PRECISION ARG(1),PESIDR(1),PESIDI(1)
```



```
BECIN USFK COUE. FUR SPFCTFTC rRURLEM
```



```
ThIS CCDE DEFINES ThF PhasEs
    PI*(J-1)/P,J=1,2,...,P,
AI EACH OF &HEL M UATA POIIGTS.
DUUBLE PRECISIOM Pr,X
DATA P1/3.141592653589793238DO/
C
```



```
DO 10 I=1,*
INDEX(I)=P
conitaue
c
c
DEFINE ALL zHE pHASES
```

```
C
C
C
    30 CONTINUE
    CONTINUE
    TOTAL NUMBER OF PHASES
    MIPSUM=MLOOP
    ######################################
    END USER CODE FOR SPECIFIC PROBLEM
    #######################################
    ###########################
    END OF SUBROUTINE ZPHASE
```



```
    RETURN
    END
* TYPE 2TRIGD.FOR
```



``` C SUBROUTINE ZTRIGD COMPUTES THE REQUIRED SINES AND COSINES
```


SUBROUTINE ZTRIGD(ARG,COSDTA,SINDTA,MIPSUM,INDEX)
C
DOUBLE PRECISION X,ARG(1), COSDTA(1),SINDTA(1) DIMENSION INDEX(1)
C
DO 10 I $=1, M I P S U M$
$X=A R G(I)$
COSDTA(I) $x \cos (X)$
SINDTA(I) \sin IN(X)
10 CONTINUE
C

```

```

C END OF SUBROUTINE ZTRIGD
C
C

```
```

RETURN
END

```
- TYPE 2FNSET.FOR

```

C
l
SUBROUTINE ZFNSET SETS UP THE TRANSPOSE OF THE COEFFICIENT
MATRIX OF THE REQUIRED OVER-DETERMINED SYSTEM nF EQUATIONS
IN THE ARRAY iNAMED DDATA. SPECIFICALLY,
TRAMSPOSE(HOATA)* A = FDATA
WHERE FDATA IS THE CONSGAIN VECIOR AND X IS THF UNKNOWN
SOLUTION VECTOR. IHE FDATA ARRAY IS ALSU FILLED BY THIS
SUBROUTINE. IF THE X VECTUR IS RFQIIRED TU BE REAL, THEN
ThE "LAST" mALF if EACH OF THE REQUIRED EQUATIONS ARE
IGNORED IN THE FINAL COMPUTATIO:NS, NENCE, THIS PART OF THE
BDATA ARRAY IS NOT COMPUTED IF ANC ONLY IF IREAL = 1.

```

```

 SUBROUTINE zFNSET(BuATA,FDATA,CuSCTA,SINDTA,INDEX,NDIM,N,M,
 zRMATA,ZIDA(TA,IEEAL)
 DIMENSION INDEX(1),BDATA(NDIM,1),rDATA(1)
 DOUBLE PREC\perpSION &R,Z1,ZRDAZ̈A(1),ZIDAIA(1),COSDTA(1),SINDTA(1),
 1
 LFINR,2FNI
 FILL IHE fDATA ARKAy
MLOUP=0
DO $10 \quad I=1,: 1$
ZR=ZRDATA(I)
ZI=LIDATA(I)
CALL ZFUNCT(2FNR,2FNI,ZR,LI)
LOOP=INDEX(I)
Du $20 \mathrm{~J}=1$, LONP
MLOOP = YLOUP +1
FUATA(MLOOP) =LFIVR\#CUSOTA(MLUOP) + ZFNL\#SINDIA (MLOOP)
CON.INUE
coniluue
FILI THE BDATA ARRAY
no $30 \mathrm{~K}=1 . \mathrm{v}$
Í=K
*LOUP=0
Du $40 I=1, N$
ZR= 2 RDATA(I)
ZI=ZIUATA(I)
CALL ZAASIS(IB, LF, WR, ZFVI, ZR,ZI)
LCOP=INDEX(I)
Du so $J=1$, LUOP
MLOUP=MLOOD +1
BUATA(K,MLOJP) $=2 F N R * C$ SSOTA (NILDP) +2 VVI*SIGDIA(MLOUP)
$こ$
C
so CONTIVUE
40 Cuncinue
30 CONIIive

```


8 TYPE ZRESID.FOR


\section*{RESIDI(I) \(=\) RESI}

C
2R=SQRT(RESR*RESR+RESI*RESI)
IF(ZR.GT.CHEBER)CHEAER=2R CONTINUE
C
C
****\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
END OF SUEROUTINE ZRFSID


RETURN
END

S TYPE ACM495.FOR

```

 FIRST M COLUMINS AND N ROWS OF A. tHESE VALUES ARE
 DESTROYED BY THIS SUBROUTINE.
 B = ONE DIMENSIONAL REAL ARRAY CF LENGTH MDIM.
ON ENTRY, B CUNTAINS THE RIGHT HAND SIDES OF THE
M EQUATIONS DF THE OVER-DETERMINEO SYSTEM IN ITS EIRST
M LOCATIONS. ON EXIT, B CONTAINS THE RESIDUALS FOR THE
EQUATIONS IN ITS FIRST M LOCATICNS. (SEE NSIDES.) THESE
RESIDUALS ARE NOT COMPUTED DIRFCTLY FROM THE DEFINITION.
TOL = A SMALL POSITIVE TOLERANCE. TYPICALLY THE UNIT
ROUND-OFF ERROR OF THE COMPUTER.
RELERR = A REAL VARIABLE WHICH ON ENTRY MUST EQUAL O.
IF A CHEaYSHEV SULUTION IS REQUIRED. IF RELERR
IS pOSITIVE, thIS SUBROUTINE CAlCUlATES AN
APPROXIMATE SOLUIION WITH RELERR AS AN UPPER
BOUND ON THE RELATIVE ERROR ON ITS LARGEST
RESIOUAL, ON EXIT, RELERR GIVES A SMALLER UPPER
BOUND FOR THIS RELATIVE ERROR. [SEE REF. I.J
X = ONE DIMENSIUNAL REAL ARRAY OF LENGTH NDIM.
ON EXIT, X CONTAINS A SOLUTION TO THE PROBLEM IN THE
FIRST N LOCAIIONS. THE CONTENIS OF X(N+I),···...X(NDIM)
ARE UNCHANGED.
RANK = AN InTEGER WHICH GIVES ON EXIT THE RANK OF THE
COEFEICIENT MATRIX. (WILL DEPEND ON TOL.)
RESMAX = ON EXIT, THE LARGEST MAGNITUDE RESIDUAL.
OCODE = O IF OPTIMAL SOLUTION IS PROBABLY NONUNIQUE. A DEFINITE
STATEMENT REQUIRES FURTHER COMPUTATION WHICH IS NOT
DEEMED TO BE COST EFFECTIVE.
= 1 IF UNIQUE OPTIMAL SOLUTION.
=2 IF CALCuLATIDNS TERMINATFO PREMATURELY DUE TO
ACCUMULATED ROUND-OFF ERRORS.
NSIDES = I IF ONE SIDED CHEBYSHEV SOLUTION IS COMPUTED.
IN THIS CASE THE RESIDUALS RETURNED FROM THIS
PROGRAM ARE ERRONEOUS AND MUST BE COMPUTED IN
THE CALLING ROUTINE. [SEE REF. 2.J
= 2 IF TNO SIDED CHEBYSHEV APPROXIMATION IS COMPUTED.
THIS IS THE STANDARD FORM. THE RESIDUALS RETURNED
FROM THIS PROGRAM ARE CORRECT IN THIS CASE. MORE
NUMERICAL ACCURACY IN THE RESIDUALS MAY RESULT
FROM DIRECT CALCULATION IN THE CALLING PROGRAM.

```

OIMENSION A(NDIM,MDIH),B(MDIM),X(GDIM)
INTEGER PROW, PCOL,RANK,RAINKI, OCODE
the fulloning number is machine dependent.
DATA BTG/d.EC3R/

INITIALIZATION
事事事事事事事事事事事事
IF (NSIDES.LE.1)SIDES=1。
IF(NSIDES.GE.Z̈)SIOES=2.
\(M P 1=M+1\)
\(N P 1=N+1\)
\(N P 2=N+2\)
\(N\) F3 \(=\mathrm{N}+3\)
NPIMREI
RANKEN
```

 RELTMP=RELERR
 RELERR=0.
 DO 10 J=1,M
 A(NP1,J)=1.
 A(NP2,J) =-B(J)
 A(NP3,J) =N+J
 CONTINUE
 A(NP1,MP1)=0.
 ITER=0
 OCODE=1
 DO 20 I=1,N
 X(I)=0.
 A(I,MPI)=I
 CONTINUE
 C
30
C
C
4 0
C
50
IO
DO 60 J=K,M
IF(B(J).EQ.O.)GO TO 60
DD=ABS(A(NP2.J))
IF(DD.LE.D)GO TO 60
PCOL=J
D=DD
CONTINUE
IF(K.GT.1)GO TO 70
C
TEST FOR ZERO RIGHT HAND SIUE
TE(D.GT.TGL)GO \&J 7U
RESMAX=0.
MODE=2
GO T0 380
C
7 0
getermine the vector fo ligave the rasis
D=TOL
OO \&0 I=1,NPIMK
nD=ABS(A(I,PCOL))
IE(OD.LE.OIGO TO \&O
PNOMEI
0=00

```
```

 80 CONTINUE
    ```
    IF(D.GT.TOL)GO TO 330
```

 IF(D.GT.TOL)GO TO 330
 C
C
90
90
100
100
GO TO 160
GO TO 160
C
C
120
120
130
130
C
C
c
c
40
40
150
150
100
100
C
C
C \#\#\#*****
C \#\#\#*****
L\&VEL 2
L\&VEL 2
\#\#***\#\#*
\#\#***\#\#*
LEV=2
LEV=2
C

```
C
```

```
    CHECK FOR LINEAR DEPENDENCE IN LEVEL I
```

 CHECK FOR LINEAR DEPENDENCE IN LEVEL I
 B(PCOL)=0.
 B(PCOL)=0.
 IF(MODE.EQ.1)GO TO 50
 IF(MODE.EQ.1)GO TO 50
 DO 100 J#K,M
 DO 100 J#K,M
 IF(B(J).EQ.0.)GO TO 100
 IF(B(J).EQ.0.)GO TO 100
 DO 90 IE1,NP1MK
 DO 90 IE1,NP1MK
 IF(ABS(A(I,J)).LE.TOL)GO TO 90
 IF(ABS(A(I,J)).LE.TOL)GO TO 90
 MODE=1
 MODE=1
 GO TO 50
 GO TO 50
 CONTINUE
 CONTINUE
 CONTINUE
 CONTINUE
 RANK=K-1
 RANK=K-1
 NPIMR=NP1-RANK
 NPIMR=NP1-RANK
 OCODE=0
 OCODE=0
 M(PCOL.EQ.K)GO-10 130
 M(PCOL.EQ.K)GO-10 130
 INTERCHANGE COLUMNS IN LEVEL 1
 INTERCHANGE COLUMNS IN LEVEL 1
 DO 120 Im1,NP3
 DO 120 Im1,NP3
 D=A(I,PCOL)
 D=A(I,PCOL)
 A(I,PCOL)=A(I,K)
 A(I,PCOL)=A(I,K)
 A(I,K)=D
 A(I,K)=D
 CONTINUE
 CONTINUE
 IF(PROW.EQ.NPIMK)GO TO 150
 IF(PROW.EQ.NPIMK)GO TO 150
 INTERCHANGE ROWS IN LEVEL 1
 INTERCHANGE ROWS IN LEVEL 1
 DO 140 J=1,MP1
 DO 140 J=1,MP1
 D=A(PROW,J)
 D=A(PROW,J)
 A(PROW,J)=A(NPIMK,J)
 A(PROW,J)=A(NPIMK,J)
 A(NP1MK,J)=0
 A(NP1MK,J)=0
 CONTINUE
 CONTINUE
 IF(K.LT.N)GO TO 30
 IF(K.LT.N)GO TO 30
 IF(RANK.EQ.M)GO TO 380
 IF(RANK.EQ.M)GO TO 380
 RANKP1=RANK+1
 RANKP1=RANK+1
 determine tie vectnr to ehtep the basis
 determine tie vectnr to ehtep the basis
 D=TOL
 D=TOL
 DO 170 JxRAaxPI,M
 DO 170 JxRAaxPI,M
 DD=ABS(A(ivP2,N))
 DD=ABS(A(ivP2,N))
 IF(DD.LE.D)GO TU 170
 IF(DD.LE.D)GO TU 170
 PCOLEJ
 PCOLEJ
 D=DD
 D=DD
 CONTINUE
 CONTINUE
 COMPARE CHESYSHEV ERRGR WITH TOL
    ```
    COMPARE CHESYSHEV ERRGR WITH TOL
```

TR 6403

```
IF(D.GT.TOL)GO TO 180 RESMAX=0. MODEE 3 GO TO 380
180 IF(A(NP2,PCOL).LT. \(=T O L\) )GO TO 200 A(NP1, PCOL) =SIDES-A(NP1,PCOL) DO 190 IENPIMR,NP3 IF(I.EQ.NPI)GO TO 190 A(I, PCOL) \(=-A(I, P C O L)\)
190 CONTINUE
C
C
C
C
200 DC 220 ISNPIMR,N IF(A(I,PCOL).LT.TOLJGO TO 220 DO \(210 \mathrm{~J}=1, \mathrm{M}\) A(NP1,J) \(=A(N P 1, J)+S I D E S * A(I, J)\) \(A(I, J)=A(I, J)\)
210 CONTINUE \(A(I, M P 1)=-A(I, M P 1)\)
220 CONTINUE PROWENP1 GO TO 330
230 IF(RANKP1.EQ.M)GO TO 380 IF(PCOL.EQ.M)GO TO 250
Interchange columns in levfl 2
DC 240 IENPIMR,NP3
\(D=A(I, P C O L)\)
\(A(I, P C O L)=A(I, M)\)
\(A(I, M)=D\)
240 CONTINUE
\(250 \mathrm{mMI}=\mathrm{M}=1\)
c
C \(* *\) ***
LEVEL 3
*******
LEV=3
C
C
C
\(260 \quad D=-\mathrm{TOL}\)
VAL=SIDES*A(NP2,M)
DO 280 JERAisKP1, MM1
IF(A(NP2,J). जど,O)GC TO 270
PCOLEJ
\(D=A(N P 2, J)\)
MGDE \(=0\)
GO 10280
270 DD=VAL-A (NP2,N)
IF(DD.GE.D)GO TO 280
MODESI
PCOLEJ
\(D=0 D\)
280 CONIINUE
IF(D.GE.-TOL)GOTO 380
```

```
        DD=-D/A(NP2,M)
        IF(DD.GE.RELTMP)GO TO 290
        RELERREDD
        MODE=4
        GO TO 380
    290 IF(MODE.EQ.O)GO TO 310
        DO 300 IENPIMR,NPI
        A(I,PCOL)=SIDES*A(I,M)-A(I,PCOL)
        300 CONTINUE
        A(NP2,PCOL)=0
        A(NP3,PCOL) =-A(NP3,PCOL)
C
    310 D=81G
        DO 320 I=NPIMR,NP1
        IF(A(I,PCOL).LE.TOL)GO TO 320
        DD=A(I,M)/A(I,PCOL)
        IF(DD.GE.D)GO TO 320
        PROW=I
        D=00
        320 CONTINUE
        IF(D.LT.BIG)GO TO 330
        OCODE=2
        GO TO 380
C
    330 PIVOT=A(PROW,PCOL)
        DO 340 JE1,M
        A(PROW,J)=A(PROw,J)/PIVOT
    340 CONTINUE
        DO 360 J=1.M
        IF(J.EQ.PCOL)GO TO 360
        D=A(PROW,J)
        DO 350 IENPIMR,NP2
        IF(I.EQ.PROW)GO TC 350
        A(I,J)=A(I,J)-D*A(I,PCDL)
        350 CONTINUE
        360 CONTINUE
        TPIVOT=-PIVCT
        DO 370 I=NP1MR,IVP2
        A(I,PCOL)=A(I,PCOL)/TPIVOT
        CONIINUE
        A(PROn,PCOL)=1./PIVOT
        D=A(PROM,MP1)
        A(PRON,MP1) =A (NP3, PCOL)
        A(NP3,PCOL) =D
        ITER=ITER+1
        GC TO (110,230,260),LEV
C
        380 DO 390 J=1,m
        B(J)=0.
    390 CONTINUE
        IF(MODE.EQ.2)GO TO 450
```

TR 6403

```
            DO 400 J=1.RANK
            K=A(NP3,J)
            X(K)=A(NP2,J)
        400 CONTINUE
            IF(MODE,EQ.3.OR.RANK.EQ.M)GO TO 450
            DO 410 IRNPIMR,NPI
            K=ABS(A(I,MP1))OFLOAT(N)
            B(K)=A(NP2,M)*SIGN(1, ,A(I,MP1))
        410 continue
            IF(RANKPI.EQ,M)GO TO 430
            DO 420 JmRANKPS,MM1
            K=ABS(A(NP3,N))=FLOAT(N)
            B(K)=(A(NP2,M)=A(NP2,J))*SIGN(1.,A(NP3,J))
    c
C TEST FOR NON-UNIQUE SOLUTION
c
        430 DO 440 I=NPIMR,NPI
            IF(ABS(A(I,M)).GT.TOL)GO TO 440
            OCODE=0
            GO TO 450
        440 CONTINUE
        450 IF(MODE.NE.2.AND.MODE.NE.3)RESMAXIA(NP2,M)
                IF(RANK.EQ.M)RESMAX=O.
                IF(MODE.EQ.4)RESYAXZRESHAX-O
C
C
C
C
                END OF SUBROUTINE ACM495
C
RETURN
```


INITIAL DISTRIBUTION LIST

Addressee
No. of Copies
1
ASN (RE\&S)(D. E. Mann)
2
OUSDR\&E (Res \& Adv Tech)(W. J. Perry)
1
1
Deputy USDR\&E (Res \& Adv Tech)(R. M. Davis)
Deputy USDR\&E (Res \& Adv Tech)(R. M. Davis) 1
Deputy USDR\&E (Dir Elec \& Phys Sc)(L. Wiseberg)
OASN, Spec Dep for Adv Concept,
Dep Assist Secretary (Res \& Adv Tech)(Dr. R. Hoglund) 2
ONR, ONR-100, -200, -212, -222 4
CNO, OP-090, -098 2
CNM, MAT-08T2, SP- 20 2
DEFENSE INTELLIGENCE AGENCY, DT-2C 1
NAV SURFACE WEAPONS CENTER, White Oak Laboratory 1
NAV SURFACE WEAPONS CENTER, Dahlgren,
Code CF42 (Joseph Halberstein) 1
NAV SURFACE WEAPONS CENTER, Silver Spring, Code 432-4 (Egbert H. Jackson) 1
DWTNSRDC ANNA 1
DWTNSRDC CARD 1
NRL, Code 5330 (Dr. Robert J. Adams), 5209 (Russell M. Brown) 7944F (Frederick Fine), USRD, AESD 6
NORDA, Code 110 (Dr. R. Goodman), Code 340 (S. W. Marshall) 2
USOC, Code 240, 241 2
NAVOCEANO, Code 02, 6200 2
NA VOCEANO, SAN DIEGO, Code 712 (J. Brown, F. J. Harris) 2
NAVELECSYSCOM, ELEX 03, 310, PME-117 3
NAVSEASYSCOM, SEA-003, -63R-1, -92R, -996 4
NASC, AIR-610 1
NAVAIRDEVCEN, Code 2052, 2041 (Herbert Heffner) 3
NOSC, Dr. George Bentien, John M. Horn, Library, Code 6565 4
NAVWPNSCEN, China Lake, Code 3556 (John A. Downs), 5013 (Gaylon E. Ryno) 3
DTNSRDC 1
NAVCOASTSYSLAB 1
CIVENGRLAB 1
NAVSURFWPNCEN 1
NUWES 1
NISC 1
NAVPGSCOL, Code 752AB (Dr. Richard W. Adler) 2
NAVTRAEQUIPCENT, Technical Library 1
INTER-SER VICE ANTENNA GROUP 1
APL/UW, SEATTLE 1
ARL/PENN STATE, STA:E COLLEGE (Dr. Geoffrey Wilson, Dr. William Thompson) 3
DTIC 1
DARPA 1
NOAA/ERL 1
NATIONAL RESEARCH COUNCIL 1
WOODS HOLE OCEANOGRAPHIC INSTITUTION 1

INITAL DISIRIBITION I.IST (Cont d)

Addressee Vo. of Copies
ENGINEERING SOCIETIES IIBRARY, UNITEDENGRINGOTR I
NATIONAL INSTITUTE OF HEALTH 1
ARL, UNIV OF TEXAS 1
MARINE PHYSICAL LAB, SCRIPPS 1
NASA Goddard Space Flight Center. Code 811 (Paul A. Lanz). 110 (Abe Kampinsky) 2
ONR, Eastern/Central Regional Office (Dr. F. W. Quelle) 1
Naval Ocean R\&D Activity (Dr. D. J. Ramsdale) I
U.S. Army Missile Command, Redstone Arsenal (Fran King) 1
Naval Air Test Center (James R. Searle) 1
Naval Ammunition Depot, Code 3083 (Joseph M. Smiddle) 1
National Security Agency, Code 3083 (A. A. Strejeck) 1
U.S. Army Electronic Command, AMSEL.WL-S (Gottried Vogt), NL-H7 (Felix Schwering), VL-G (Sol Perlman), CT-R (Boaz Gelernter) 4
U.S. Department of Commerce, OT/ITS, (Dr. M.T. Ma, Richard G. Fitzgerrel) 2
USA Satellite Comm. Agency (George T. Gobeaud) 1
Pacific Missile Test Center, Code 1171 (Cyril M. Kaloi) 1
USA Foreign Science \& Technology Center, AMXST-SR-Z (James P. Muro) 1
Federal Aviation Agency (Martin Natchipolsky) 1
Rome Air Development Center, Code OCTS (C. L. Pankiewicz) 1
U.S. Information Agency, Code IBS/ET (Julius Ross) 1
Syracuse University, Electrical \& Computer Eng. Dept. (Dr. David K. Cheng) 1
The Cleveland State University, Computer \& Information Science (Dr. Allan D. Waren) 1
Old Dominion University, Math Dept. (Prof. Harold Ladd, Jr.) 1
Westinghouse Oceanic Division, Annapolis (Dr. Bill Kesner) 1
Arthur D. Little, Inc., Cambridge (Dr. Gordon Raisbeck) 1
Gould Oceans Systems Division-761, Cleveland (Steven C. Thompson) 1
East Tennessee State Univ., Math. Dept. (Dr. James C. Pleasant) 1
University of Maryland, Dept. Physics and Astronomy (Prof. Douglas Currie) 1
University of Victoria, Computer Science Dept., Canada (Dr. Ian Barrodale)1
URI, Kingston, Math. Dept. (Dr. J. T. Lewis), Dept. of Eng. (Dr. D. W. Tufts) 2University of Pennsylvania, Moore School of Electrical Engineering(Dr. Bernard Steinberg)1
General Motors Corporation, Sea Operations Dept. Goleta (Dr. Daniel Suchman) 1
Dr. R. C. Hansen, Box 215, Tarzana, CA I
Southern Illinois University, Math. Dept. (Dr. David W. Kammler) 1
Brooks Air Force Base, School of Aerospace Medicine, TX (Stewart J. Allen) 1
National Bureau of Standards (Dr. R. C. Baird) 1
Harry Diamond Laboratories, Branch 150 (Whilden G. Heinard) 1
Transportation Systems Center, Cambridge (Dr. Rudy Kalafus) 1

[^0]: *The restriction of ã to real values is discussed at the end of this section.

[^1]: *In thin case, ne oberse that $a_{1}-\sqrt{2} a_{2}+a_{1} \neq 0$.

[^2]: *For an N-element array and $-t \mathrm{~dB}$ peak sidelobes, we have $\left.u_{0}=2 / \pi\right)$ arc $\cos \left(1 / 2_{0}\right)$ where $2 z_{0}=\left[r+\sqrt{r^{2}-1}\right]^{1} M+\left\{r-\sqrt{r^{2}-1}\right]^{1} M, r=10^{t / 20}$, and $M=N-1$.

