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Abstract. The purpose of this paper is to point out a correspondence between 
certain types of linear ciphers and projective planes. With the aid of this corre- 
spondence we are then able to answer a number of questions posed in [3]. 
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1. Introduction 

In a recent paper [3], Massey et al. study nonexpanding, key-minimal, robustly 
perfect block ciphers. They define the concepts of linearity, bilinearity, and multi- 
plication for these ciphers but then raise questions about whether or not these three 
concepts are different. The purpose of this paper  is to point out that these three 
types of ciphers correspond to special types of projective planes; specifically transla- 
tion, semifield, and desarguesian planes, respectively. Recognition of this corre- 
spondence enables us to answer the questions, posed in [3], concerning the existence 
of the different types of ciphers and the relationships between them. 

2. Linear Block Ciphers 

Following the terminology and notation in [3], a block cipher with finite plaintext 
set S=, finite key set S=, and (finite) ciphertext set Sy is defined to be a function f of 
the direct product of S~ and S~ onto Sy: 

f:S~, x S=~Sy. 

Throughout  most of this paper, wc are concerned with a special class of block 
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ciphers which the authors of I-3] call nonexpanding, key-minimal, robustly perfect 
ciphers; abbreviated to N E K M R P  ciphers. For  a precise definition of these terms, 
the reader is referred to [3]. As far as an understanding of this paper is concerned, 
it is however adequate to note that an N E K M R P  cipher is combinatorily charac- 
terized by the following two properties: 

(1) The sets S~, Sy, and S~ all have the same cardinality. 
(2) Given any plaintext, ciphertext pair (x, y), there is a (necessarily unique) key 

z such that f (x ,  z) = y. 

A cipher is said to be linear if S:, and Sy are vector spaces over some field, and 
for each key z the enciphering mapping 

fz: S. "* S,; f~(x) = f (x ,  z) 

is a linear transformation of S. onto S r To be a little more precise, let F be a finite 
field, and denote by F" the vector space of all n-tuples over F. Then a linear cipher 
may be defined as a cipher f such that S~ = F m, Sy = F", and for each key z e Sz 

f ( ax  1 + fix2, z) = o~f(xl, z) + ~f(x2, z) 

for all ~, fl ~ F and x~, x2 ~ F". Thus, for a linear cipher, the enciphering transforma- 
tion determined by the key z may be written in the form 

y = xM~, 

where M~ is the m × n-matrix which represents f~ with respect to the standard bases 
for F m and F". 

This definition of a linear cipher is not entirely satisfactory because, irrespective 
of the key, the plaintext word which is the all zero m-tuple is always enciphered to 
the all zero n-tupte ciphertext word. To counter this, it is usual to exclude the all 
zero tuples and consider the ptaintext set of a linear cipher to be F m - {0} and the 
ciphertext set to be F" - {0}. With this definition of a linear cipher, an N E K M R P  
linear cipher may be characterized as a linear cipher which satisfies the property: 

If lFI = q, then ISx[ = ISy[ = IS~[ = q" - 1. Furthermore, for any x e F" - {0} and 
any distinct i , j  E S~, xMi # xM~. This last property can be restated as: 

(3) MiMf  -1 fixes no vector o fF"  - {0}. 

Following the definition given in [3], a cipher with key set F k, or the restricted 
set F k - {0}, is said to be bilinear if it is linear and if in addition the enciphering 
mapping f satisfies the condition 

f ( x ,  az I + flz2) = af(x, z l )  + ~f(x, z2) 

for all a, f l e  F, x ~ F m, and z 1, z 2 s F k. An N E K M R P  bilinear cipher may be 
characterized as a linear cipher for which both property (3) and the following 
property hold: 

(4) The set {M, Iz s Sz} of n x n nonsingular matrices which represent the en- 
ciphering transformations, together with the all zero n x n matrix, forms a 
vector space under matrix addition and scalar multiplication by elements in F. 
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Observe that, if F is a prime field, this last property is equivalent to closure of 
the set of matrices which represent the enciphering transformations under matrix 
addition. 

Note further that if IFI = q, then the elements of F" can be identified with the 
elements of GF(q"). If the enciphering rule y = f (x ,  z) corresponds to the equation 
y = xz  in GF(q"), then the cipher is called a multiplication cipher. 

3. Spreads 

Having briefly reviewed the concepts of linear and bilinear ciphers, we now discuss 
spreads of finite-dimensional vector spaces over finite fields. Spreads correspond to 
a class of finite projective planes known as translation planes and it is this corre- 
spondence, and the relationship between spreads and N E K M R P  linear ciphers, 
which enables us to answer some of the questions posed by Massey et al. in [3]. 

We begin first with the concept of a spread. If V is a vector space of dimension 
2n over a field F (with IF[ = q), then a spread of V is a set of q" + 1 n-dimensional 
subspaces Wt, W 2 . . . .  , V¢~,+~ of V such that W~ n Wj = {0} for i # j. In order to 
understand the relationship of spreads to linear block ciphers we need to represent 
them in terms of linear transformations. 

If W is a vector space of dimension n over F, and if V = W @ W, then V has 
dimension 2n. We can now define W 1 = {(x, 0)Ix ~ W}, W 2 = {(0, Y)IY ~ W}, and, 
for i = 3, 4 . . . . .  q" + I, W~ = {(x, xTi)lx ~ W and T~ is a nonsingular linear trans- 
formation of W}. It is then straightforward to show that: 

(5) The set of subspaces Wl, W2, . . . ,  Wq,+l forms a spread of V if and only if, for 
all i # L the transformation TiT1-1 does not fix any nonzero vector of W. 

Moreover, every spread may be represented in this way. Thus we can identify a 
spread of V = W ®  W with a set T = {T 3, T 4 . . . . .  T~.+I} of q" - 1 nonsingular 
linear transformations of W. Furthermore, from (3) and (5), it is clear that we can 
also regard T as the set S, of keys of an N E K M R P  linear cipher with ptaintext and 
ciphertext sets both equal to W - {0}. 

If we let P(T) denote the translation plane associated with the set of transforma- 
tions T, and let C(T) denote the corresponding block cipher, then algebraic proper- 
ties of T will be reflected in properties of P(T)  and C(T). For  translation planes, 
these properties are well known and are discussed in [1] and [2]; whilst, for linear 
block ciphers, they are discussed in [3]. The correspondence between the planes 
and ciphers is given in the following table: 

Block cipher  Projective plane 

Linear Translation plane 
Bilinear Semifield plane 
Multiplication Desarguesian plane 

For  the purpose of this paper the precise meanings of semifield plane and 
desarguesian plane are not important. All that is relevant is that there exist (many) 
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examples of translation planes which are neither semifield nor desarguesian planes, 
and that there are (many) semifield planes which are not desarguesian. (Examples 
can be found in 1-t] or 1"2].) Thus we can answer two of the questions posed in 1,3] 
and assert: 

(a) An N E K M R P  linear cipher need not be bilinear. 
(b) An N E K M R P  bilinear cipher need not be a multiplication cipher. 

In addition to the two questions answered by (a) and (b), the authors of 1,3] also 
ask whether an NEKMRP bilinear cipher obtained using a specific construction 
involving shift registers (construction t in [3]) is always a multiplication cipher. To 
answer this question, we begin by considering the concept of a multiplicative spread, 
that is, a spread for which the set T of transformations representing it is closed 
under multiplication (i.e., the product Ti Tj belongs to T for all Ti, T i ~ T). Multiptica- 
tive spreads correspond to a class of translation planes called nearfield planes which, 
in general, are different from semifield and desarguesian planes. However, it is well 
known that a spread which is both multiplicative and additive always represents a 
desarguesian plane (i.e., a multiplication cipher). This result can be used to show 
that: 

(c) Construction I in [3] always yields a m.ultiptication cipher. 

This answers the third question posed in 1,3]. 
Finally, we must emphasize that the intention of this paper is only to point out 

the correspondence between linear ciphers, spreads, and translation planes, and to 
indicate that recognition of this correspondence allows us to answer a number of 
questions concerning linear ciphers. This correspondence and its relevance to 
cryptography will be discussed in greater detail in a subsequent paper. 
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