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Linear Classification of Low-Resolution EEG Patterns
Produced by Imagined Hand Movements

F. Babiloni, F. Cincotti, L. Lazzarini, J. Millán, J. Mouriño, M. Varsta,
J. Heikkonen, L. Bianchi, and M. G. Marciani

Abstract—Electroencephalograph (EEG)-based brain–computer inter-
faces (BCI’s) require on-line detection of mental states from spontaneous
EEG signals. In this framework, surface Laplacian (SL) transformation
of EEG signals has proved to improve the recognition scores of imagined
motor activity. The results we obtained in the first year of an European
project named adaptive brain interfaces (ABI) suggest that: 1) the detec-
tion of mental imagined activity can be obtained by using the signal space
projection (SSP) method as a classifier and 2) a particular type of elec-
trodes can be used in such a BCI device, reconciling the benefits of SL wave-
forms and the need for the use of few electrodes. Recognition of mental ac-
tivity was attempted on both raw and SL-transformed EEG data from five
healthy people performing two mental tasks, namely imagined right and
left hand movements.

Index Terms—Brain–computer interface(BCI), movement imagination,
signal space projection (SSP), surface Laplacian (SL), surface Laplacian
electrodes.

I. INTRODUCTION

In the framework of the design of an electroencephalograph
(EEG)-based brain–computer interface (BCI), Wolpaw and Mc-
Farland’s results [1] indicate that EEG patterns are better detected
with a surface Laplacian (SL) transformation of signals than with
raw potentials. SL-transformed EEG data has been largely used in
BCI research, although the accurate computation of SL—i.e., spline
methods—requires the use of many EEG electrodes (typically, 40–64),
which are available in the so-called high resolution EEG systems [2],
[3]. The necessity for a high number of electrodes, however, is in
contradiction with the requirements of portability and ease of use that
BCI devices must exhibit to allow their operation by laypersons. In
this respect, a practical BCI should record scalp potentials with less
than ten electrodes, either conventional (low-resolution EEG, with
approximate SL estimation) or advanced sensors that directly perform
spatial deblurring by hardware [4].

Currently, in the framework of a joint European project, we are de-
veloping an Adaptive Brain Interface (ABI) that uses a portable bat-
tery-driven system with up to eight electrodes for the detection of sev-
eral EEG patterns [5]. Two of the directions we have investigated in the
first year of this ABI project concern:
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i) the use of simple linear classifiers that exploit the reproducibility
of EEG patterns related to the imagination of movements;

ii) the effect of SL transformation of EEG data on classification
performance.

Other directions, such as the application of local neural networks
to cognitive tasks, are addressed in [5]. Here we only report results
obtained with a linear classifier based on theSignal Space Projection
(SSP)algorithm [6] applied to EEG data from a group of five healthy
people performing two motor-related mental tasks, namely imagined
right and left hand movements. We compare two elemental SSP classi-
fiers, one working with features obtained from SL-transformed data
and the second from raw potentials. In addition, we investigate the
performance of the SSP classifiers with respect to different frequency
bands (either the combined�–� bands or a broad band from 8 to 30
Hz).

II. M ETHODS

A. Signal Space Projection (SSP)

In the SSP method, an-dimensional space is defined so that a “mea-
sure” vectorM(t), whose components are features extracted from in-
coming data, is represented in that space by a point. Givenm vectors
of n-dimensional “patterns” (S1; S2; . . . ; Sm), them components of
the “activation” vector:

Â(t) = S
+
M(t)

weight the presence of each pattern inM(t). S+ is the pseudoin-
verse of the projection matrixS whose columns are the patterns
(S1; S2; � � � ; Sm).

B. Data Collection and Preprocessing

Five healthy subjects (three males and two females) participated vol-
untarily in experiments where they performed several mental tasks, in-
cluding imagination of the movement of the right middle finger (RI)
and the left middle finger (LI). The whole scalp was covered with 26
EEG electrodes placed onto standard locations according to the exten-
sion of the 10–20 international system. Sampling frequency was 400
Hz, and signal was bandpass filtered between 0.1–100 Hz before digi-
tization. In addition, we recorded ocular and muscular activity to detect
possible eye and hand movements.

At the beginning of a recording session, subjects remained in a
resting state—relax with eyes opened—for 60 s. The EEG activity of
this period is used as a baseline for subsequent analysis of the mental
tasks. Then, subjects started performing a given mental task immedi-
ately after the operator instructed them to do so, and they maintained
that task for more than 10 s. Every subject executed four times each
mental task during the recording session, with a resting period of 10 s
between each. After removal of 1-s segments contaminated with either
ocular artifacts or execution of actual movements, it remains about 40
seconds of EEG signals for every mental task for every subject.

The analytical SL transformation of EEG potentials is computed
with a spherical spline of order 2 [3] using raw signals from all 26
channels.

We compute spectrograms (time varying spectra) of either raw or
SL-transformed EEG data by estimating the Power Spectral Density
(PSD) of 2-s long epochs, each starting 1 s after the previous one. We

1063–6528/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 2, JUNE 2000 187

TABLE I
DETECTION SCORES FORRIGHT (RI) AND

LEFT (LI) M OVEMENT IMAGINATION TASKS USING THE NINE CHANNELS

SET-UP, BOTH FORSL-TRANSFORMED ANDRAW POTENTIALS

use the Welch periodogram algorithm [7] to estimate the PSD. Epochs
are divided into segments of 1 s, with a Hann window of the same length
applied to each segment, and 50% overlapping between the segments.
This gives a frequency resolution of 1 Hz. Finally, the power compo-
nents are referred to the corresponding values of the estimated PSD of
the baseline and transformed in decibels—i.e., we take the logarithm
of the division. The resulting values are the features in the present im-
plementation of the SSP method.

C. Estimation of the Patterns

As our objectives are to investigate the SSP method along two dif-
ferent dimensions, each having two possibilities, four different sets of
patterns are computed. The first dimension is the use of either raw po-
tentials or SL-transformed EEG data for the computation of the PSD
over the nine fronto–centro–parietal channels, namely F3, Fz, F4, C3,
Cz, C4, P3, Pz, and P4. The second dimension concerns the frequency
bands. The selected power components belong to either a narrowband
around� and� peaks (three components per peak) or to a broad one
(from 8–30 Hz). The� and� peaks are specific for each subject ac-
cording to the individual spectral estimate profile. The� and� peaks
range between 9–11 Hz and 17–20 Hz across subjects, respectively. In
the case of a narrow band, the patterns have 54 features (six power com-
ponents times nine channels), whereas they have 207 features (23� 9)
in the case of a broad band.

The pattern describing one of the mental tasks,SR or SL, is the
mean of the selected components of the PSD computed during the 40 s
the subject was imagining the corresponding single movement (right or
left). It is worth noting that, for every possible combination, individual
patternsSR andSL are obtained for every subject. This is a key point
of our approach that seeks to develop individual interfaces since not
two people are the same either physiologically or psychologically.

The measure vectorM(t) has the same kind of features as the pat-
terns, namely the selected components of the current PSD that is com-
puted every second.

D. Classification

Theith mental task is recognized when the maximum of activity of
the waveformsA(t) is located on its corresponding component,Ai(t).
Dealing with two mental tasks only, the SSP classifier detects an imag-
ined right movement if the activity related to theS–R pattern is greater
than that associated toSL (and vice versa for the imagined left move-
ment). This is probably the most elemental SSP-based classifier one

Fig. 1. Representation of patterns in the� band, estimated from spectral
SL-transformed data using a 26 channels setup, for the subject RA01.

can design. Indeed, the patterns are a simple mean and classification is
based on a linear projection. However, despite its simplicity, the results
achieved are quite promising.

III. RESULTS

Table I reports the recognition rates of imagined right (RI) and left
(LI) movements using the nine fronto-centro-parietal electrodes. Re-
sults are shown for each of the five subjects investigated, together with
the mean and standard deviation for the four possible SSP classifiers.

The SL-based SSP classifiers achieve the best results for almost all
the subjects in both frequency bands. In particular, for the RI mental
task the best mean scores are 92 and 84% for SL-transformed and raw
potentials, respectively. For the LI mental task the best mean scores are
82 and 69% for SL-transformed and raw potentials, respectively.

Concerning the influence of the frequency band in the performance
of the SSP classifiers, in most cases the use of the broad frequency band
outperforms the combined�–� bands.

IV. DISCUSSION

This study has shown that nine electrodes, placed over
fronto–centro–parietal areas, are sufficient to detect two mental
states related to imagined movements with the SSP technique. This
is a promising result that opens the possibility to deploy BCI outside
laboratory settings. In addition, the study has also demonstrated that
the use of SL-transformed data improves the recognition rates of such
mental states with respect to raw EEG potentials. Since an accurate
SL estimate from raw potentials needs many electrodes, it may be
argued that there is a contradiction with the previous requirement of
using as few electrodes as possible. Physical SL electrodes resolve
this tradeoff [8]. Such SL electrodes are evaluated elsewhere [4].
Briefly, there exists a strong correlation between signals gathered by
SL electrodes and software SL computed on Somatosensory Evoked
Potentials (SEP).

Our results indicate that recognition is easier if the patterns are ob-
tained from a broad frequency band rather than from only the com-
bined�–� bands. These results are in agreement with Pfurtscheller
and coworkers’ recent observation in which the optimal band selection
for the detection of motor-related mental tasks is the band from 8 to 30
Hz [9].



188 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 2, JUNE 2000

Fig. 1 illustrates one of the patterns computed by means of the SSP
method. In order to facilitate visual interpretation, the pattern has been
derived from all 26 electrodes. Also, for the sake of simplicity, only
the features related to the� peak are visualized. The figure shows the
distributions of the features in the subject RA01 for the imagined right
and left movements when using SL-transformed potentials.

The simplicity of the classifier we have utilized suggests that it is
still possible to increase the recognition rates if SSP is combined with
more powerful classifiers. In particular, SSP can be used either as a
preprocessor for an artificial neural network, or to classify data using
patterns obtained through Self Organizing Maps. This is subject to on-
going research.

Results obtained in this first year of the ABI project also indicate
that SL electrodes return waveforms correlated with the numerically
computed surface Laplacian. A new design of these electrodes, which
is easier to place and less noisy, is under study. In the context of a Brain
Computer Interface a few SL electrodes can improve the quality of the
acquired signals.
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A Virtual Reality Testbed for Brain–Computer Interface
Research

Jessica D. Bayliss and Dana H. Ballard

Abstract—Virtual reality promises to extend the realm of possible
brain–computer interface (BCI) prototypes. Most of the work using
electroencephalograph (EEG) signals in VR has focussed on brain–body
actuated control, where biological signals from the body as well as the
brain are used. We show that when subjects are allowed to move and act
normally in an immersive virtual environment, cognitive evoked potential
signals can still be obtained and used reliably. A single trial accuracy
average of 85% for recognizing the differences between evoked potentials
at red and yellow stop lights will be presented and future directions
discussed.

Index Terms—Brain–computer interface (BCI), P3, virtual reality (VR).

I. INTRODUCTION

Recent brain–computer interface (BCI) work has shown the feasi-
bility of online averaging and biofeedback methods in order to choose
characters or move a cursor on a computer screen with up to 95% ac-
curacy [1]–[4]. Previous research in virtual reality (VR) has looked at
brain–body actuated control [5] or steady state visual evoked poten-
tials [6]. VR promises to extend the realm of possible BCI prototypes
through allowing individuals to interact directly with an environment
rather than a computer monitor while still maintaining the environ-
mental control necessary in research. The safety of VR also makes it
an excellent candidate for BCI research on real-time tasks and VR can
serve as a motivational tool for people because it is often perceived as
an interesting environment.

BCI’s are most often used for augmentative communication by in-
dividuals with locked-in syndrome. The P3-evoked potential (EP) is a
positive waveform occurring approximately 300–450 ms after an infre-
quent task-relevant stimulus [7], [8]. It has been shown that even when
the P3 evoked potential (EP) component disappears after a brain stem
injury, it can be regained [9]. Thus, this particular EP is a widely avail-
able signal that does not heavily depend on the problems of a particular
patient.

II. M ATERIALS AND METHODS

A. The System

The VR environment is rendered on a SGI Onyx. For immersion,
subjects wear a binocular head-mounted display (HMD) containing a
camera-based eye tracker. While collecting EEG data, eye tracking data
is also collected and overlaid onto a videotape of the virtual scene.
This dual data collection enables a comparison of what an individual
is looking at with what the BCI is doing and can be used to find BCI
recognition errors that could not be found by looking at the EEG data
alone.

The heart of this system is the NeuroScan commercial package on a
Pentium PC. A dynamic linked library (DLL) provided by NeuroScan
enables locally written software to have access to all unprocessed data
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