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Abstract

The aim of this paper is to develop a theory of linear codes over finite chain
rings from a geometric viewpoint. Generalizing a well-known result for lin-
ear codes over fields, we prove that there exists a one-to-one correspondence
between so-called fat linear codes over chain rings and multisets of points in pro-
jective Hjelmslev geometries, in the sense that semilinearly isomorphic codes
correspond to equivalent multisets and vice versa. Using a selected class of
multisets we show that certain MacDonald codes are linearly representable
over nontrivial chain rings.

1 Introduction

In the past decade, a substantial research has been done on linear codes over finite
rings. Traditionally authors used to focus their research on codes over integer residue
rings, especially Z4. Nowadays quite a few papers are concerned with linear codes
over other classes of rings (cf. e. g. [2, 7, 11, 12, 16, 17, 21, 24, 42, 43, 44, 50]).
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The aim of this paper is to develop the fundamentals of the theory of linear codes
over the class of finite chain rings. There are several reasons for choosing this class
of rings. First of all, it contains rings, whose properties lie closest to the properties
of finite fields. Hence a theory of linear codes over finite chain rings is expected to
resemble the theory of linear codes over finite fields. Secondly, the class of finite
chain rings contains important representatives like integer residue rings of prime
power order and Galois rings. Codes over such rings appeared in various contexts
in recent coding theory research. In third place, nontrivial linear codes over finite
chain rings can be considered as multisets of points in finite projective Hjelmslev
geometries thus extending the familiar interpretation of linear codes over finite fields
as multisets of points in classical projective geometries PG(k, q) [10]. However, there
are some differences between linear codes over finite fields and linear codes over finite
chain rings. For instance, as a consequence of the existence of noncommutative finite
chain rings, one is forced to distinguish between left and right linear codes, between
the left and right orthogonal of a given code etc.

In Sect. 2 we give some basic results on finite modules over chain rings. In Sect. 3,
we define the notion of a linear code over a finite chain ring R, along with some
basic concepts like orthogonal code, code automorphism etc. We introduce regular
partitions of Rn and prove MacWilliams-type identities for the spectra of linear codes
w. r. t. such partitions. Section 4 contains a brief introduction to projective Hjelmslev
geometries. In Sect. 5, we prove that there is a one-to-one correspondence between
equivalence classes of so-called fat left linear codes over a chain ring and equivalence
classes of multisets of points in right projective Hjelmslev geometries over the same
ring. In Sect. 6, we investigate codes which belong to a selected class of multisets.
We obtain chain ring analogues of the Simplex and Hamming codes and—as q-ary
images with respect to a generalized Gray map—codes with the same parameters as
the MacDonald codes.

An outline of some of the results of this paper appeared in [20].

2 Basic Facts on Finite Modules over Chain Rings

A ring1 is called a left (right) chain ring if its lattice of left (right) ideals forms a
chain. The following result describes some properties of finite left chain rings (see
e. g. [8, 38, 40]).

Theorem 2.1. For a finite ring R with radical N 6= 0 the following conditions are
equivalent:

(i) R is a left chain ring;

(ii) the principal left ideals of R form a chain;

1By the term ‘ring’ we always mean an associative ring with identity 1 6= 0; ring homomorphisms
are assumed to preserve the identity.
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(iii) R is a local ring, and N = Rθ for any θ ∈ N \N2;

(iv) R is a right chain ring.

Moreover, if R satisfies the above conditions, then every proper left (right) ideal of R
has the form N i = Rθi = θiR for some positive integer i.

In the sequel, we shall use the term chain ring to denote a finite left (and thus
right) chain ring. We shall always assume that for a chain ring R the letters N, θ have
the same meaning as in Th. 2.1. In addition we denote by q = pr the cardinality of
the finite field R/N (thus R/N ∼= Fq) and by m the index of nilpotency of N . Since
for 0 ≤ i ≤ m − 1 the module N i/N i+1 is a vector space of dimension 1 over R/N ,
we have |N i/N i+1| = q for 0 ≤ i ≤ m− 1, and in particular |R| = qm.

The structure of chain rings can be very complicated, but the following two special
cases are worth to note: (i) If R has characteristic p then R ∼= Fq[X; σ]/(Xm) for some
σ ∈ AutFq, i. e. R is a truncated skew polynomial ring, and (ii) if R has (maximal)
characteristic pm then R ∼= GR(qm, pm) is a Galois ring; cf. [25, 38, 45]. Thus the
smallest noncommutative chain ring has cardinality 16. It may be represented as
R = F4⊕F4 with operations (a, b)+(c, d) = (a+c, b+d), (a, b)·(c, d) = (ac, ad+bc2).2

The upper Loewy series of a left R-module RM is the chain

M = θ0M ⊇ θ1M ⊇ · · · ⊇ θm−1M ⊇ θmM = 0 (1)

of submodules θiM = N iM ≤ RM . Every quotient θi−1M/θiM (i ≥ 1) is a vector
space over the field R/N ∼= Fq. Similarly, the lower Loewy series of RM is the chain

M = M [θm] ⊇ · · · ⊇M [θ2] ⊇M [θ] ⊇M [1] = 0 (2)

of submodules M [θi] = {x ∈ M | θix = 0}. Again every quotient M [θi]/M [θi−1]
is a vector space over R/N ∼= Fq. We say that θi is the period of x ∈ M if i is
the smallest nonnegative integer such that θix = 0, and we write M∗ =

{
x ∈ M |

x has period θm}. Similarly, the height of x is the largest integer i ≤ m such that
x ∈ θiM . If x has height i we write θi ‖ x.

For i ∈ N let µi = dimR/N (θi−1M/θiM). Multiplication by θ (i. e. the map
M →M , x→ θx) induces additive isomorphisms

θi−1M/
(
M [θ] + θiM

) ∼= θiM/θi+1M. (3)

Thus we have logq|M | = µ1 + µ2 + · · ·+ µm with µi ≥ µi+1, i. e. µ = (µ1, µ2, . . . ) is
a partition of logq|M | (into at most m parts) which we abbreviate as µ ` logq|M |.
In the sequel we shall write µ = (µ1, . . . , µr) if µi = 0 for i > r and sometimes
µ = 1s12s23s3 · · · if exactly sj parts of µ are equal to j.

2This example is due to Kleinfeld [26].
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The following theorem generalizes the structure theorem for finite Z/pmZ-modules
or equivalently, finite Abelian p-groups of exponent not exceeding pm, to the case of
an arbitrary finite chain ring R.3

Theorem 2.2. Every finite module RM over a chain ring R is a direct sum of cyclic
R-modules. The partition λ = (λ1, . . . , λr) ` logq|M | satisfying

RM ∼= R/Nλ1 ⊕ · · · ⊕R/Nλr (4)

is uniquely determined by RM . More precisely, λ = µ′ is conjugate to the partition
µ = (µ1, µ2, . . . ) ` logq|M | defined by µi = dim θi−1M/θiM .

Definition 2.1. The partitions λ, µ defined in Th. 2.2 are called the shape resp.
conjugate shape of RM . The integer λ′1 = µ1 = dimR/N (M/θM) = dimR/N M [θ] is
called the rank of RM and denoted by rkM .

Theorem 2.2 implies that any finite module RM and its dual Hom(RM, RR)R have
the same shape.

A sequence x1, . . . , xr of elements of RM is said to be independent (resp., linearly
independent) if a1x1 + · · ·+ arxr = 0 with aj ∈ R implies ajxj = 0 (resp., aj = 0) for
every j. A basis of RM is an independent set of generators which does not contain 0.
By Th. 2.2 the cardinality of any basis of RM is equal to k = rkM , and the periods
of its elements are θλ1 , . . . , θλk in some order. Note that RM is a free module if and
only if RM has shape mk.

Recall that a module RM is projective (resp., injective) if RM is a direct summand
of a free module (resp., a direct summand of every module containing RM).

Theorem 2.3. For a finite module RM over a chain ring R the following properties
are equivalent:

(i) RM is free;

(ii) RM is projective;

(iii) RM is injective;

(iv) There exists i ∈ {1, 2, . . . ,m− 1} such that M [θi] = θm−iM .

Proof. Since R is local, (i) and (ii) are equivalent. The equivalence of (ii) and (iii)
is due to the fact that R is a quasi-Frobenius ring; cf. [9, §58]. Clearly (i) implies
M [θi] = θm−iM for 0 ≤ i ≤ m and thus in particular (iv). Conversely, suppose that
(iv) holds. The R-module M [θi] has conjugate shape (λ′1, . . . , λ

′
i) while θm−iM has

conjugate shape (λ′m−i+1, . . . , λ
′
m). Since both modules are equal and m − i ≥ 1, we

have λ′s = λ′m−i+s ≤ λ′s+1 for 1 ≤ s ≤ i− 1 and hence λ′1 = λ′2 = · · · = λ′i = λ′m.

3The proof in [35, Ch. 15, § 2] is easily adapted to the present situation. Theorem 2.2 holds,
more generally, for matrix rings over finite chain rings—one only has to replace RR by its unique
indecomposable direct summand; cf. [1, 15, 28].
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For partitions λ, µ with µ ≤ λ define

αλ(µ; x) =
∏
j≥1

xµ
′
j+1(λ′j−µ′j) ·

[
λ′j − µ′j+1

µ′j − µ′j+1

]
x

(5)

where
[
n
k

]
x

=
∏k

s=1
xn−s+1−1
xs−1

denotes a Gaussian polynomial.

Theorem 2.4. Let R be a finite chain ring with residue field of order q, and let RM
be a finite R-module of shape λ. For every partition µ satisfying µ ⊆ λ the module

RM has exactly αλ(µ; q) submodules of shape µ. In particular, the number of free
rank 1 submodules of RM equals

qλ
′
1−1+λ′2−1+···+λ′m−1−1 ·

[
λ′m
1

]
q

. (6)

Proof. The theorem is well-known in the special case R = Zpm, cf. e. g. [6]. The
general case follows from the results in [36, Ch. II] which remain valid for arbitrary
(even noncommutative) chain rings.

Theorem 2.5. Let RH be a free module of rank n over the chain ring R, and let

RM be a submodule of RH of shape λ and rank λ′1 = k.

(i) For every basis x1, . . . , xk of M there exists a basis y1, . . . , yn of H such that
xj ∈ Ryj for 1 ≤ j ≤ k.

(ii) The quotient module H/M has shape (m− λn,m− λn−1, . . . ,m− λ1) and con-
jugate shape (n−λ′m, n−λ′m−1, . . . , n−λ′1). In particular, M is free if and only
if H/M is free if and only if rk(H/M) = n− k.

(iii) If M∗ 6= ∅ (e. g. λ1 = m) then M is the sum of its free rank 1 submodules.

(iv) Dually, if (H/M)∗ 6= ∅ (e. g. k < n) then M is the intersection of the free rank
n− 1 submodules of RH containing M .

Proof. Let {x1, . . . , xk} be a basis of M . We may assume the ordering is such that
xj has period θλj . Since H[θi] = θm−iH (0 ≤ i ≤ m), there exist y1, . . . , yk ∈ H∗

such that xj = θm−λjyj (1 ≤ j ≤ k). The sequence y1, . . . , yk is linearly independent.
By Th. 2.3, it can be extended to a (free) basis y1, . . . , yn of H proving (i). The
isomorphism H/M ∼=

⊕n
j=1R/N

m−λj then gives (ii). If z ∈ M∗ and xj /∈ M∗ then
z + xj ∈ M∗ and xj = (z + xj) − z, whence (iii) holds. Finally, if z /∈ M but
z ∈ Ry1 + · · · + Ryn−1 we have z = r1y1 + · · · + rn−1yn−1 with rj not divisible by
θm−λj , say. Let y′j = yj + θλjyn, y′t = yt if t 6= j. The free rank n − 1 module
H ′ = Ry′1 + · · ·+ ry′n−1 contains M since θm−λjy′j = θm−λjyj = xj . But z = r1y

′
1 +

· · ·+ rn−1y
′
n−1 − rjθλjyn /∈M , proving (iv).
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Recall that a mapping φ : RM → RM
′ is semilinear if there exists a ring homo-

morphism σ : R → R such that φ(x + y) = φ(x) + φ(y) and φ(rx) = σ(r)φ(x) for
x, y ∈M , r ∈ R. If φ is an isomorphism (i. e. The set of all semilinear isomorphisms
(i. e. bijective semilinear mappings) φ : RM → RM is denoted by ΓL(RM).

By Th. 2.3 the injective envelope of a finite module RM (cf. [9, §17]) can be
characterized as a minimal free module RH containing RM . To be precise, we require
the existence of an R-linear embedding (injective map) ι : RM → RH such that no
proper free submodule of RH contains ι(M). The minimality of RH is equivalent to
rkH = rkM .

Theorem 2.6. Let RM be a finite module with M∗ 6= ∅ and RH a minimal free
module containg RM .

(i) Any semilinear embedding of RM into a free module RF can be extended to a
semilinear embedding of RH into RF .

(ii) If φ : RM → RM
′ is a semilinear isomorphism and RH

′ a minimal free module

containing RM
′, then there exists a semilinear isomorphism φ̃ : RH → RH

′

which extends φ.

Proof. Given an R-semilinear map φ : RM → RF with associated ring homomorphism
σ, define a new operation of R on F by rx := σ(r)x, and denote the resulting module
by RF

σ. Then φ : RM → RF
σ is linear. Since M∗ 6= ∅ and φ is an embedding, we

have σ ∈ AutR. Hence RF
σ is free, and (i) reduces to a well-known property of the

injective envelope of an R-module. Assertion (ii) follows from (i).

3 Linear Codes over Finite Chain Rings

In this section, we introduce the basic notions of the theory of linear codes over finite
chain rings. With respect to component-wise addition and left/right multiplication,
the set Rn all n-tuples over R has the structure of an (R,R)-bimodule.

Definition 3.1. A code C of length n over R is a nonempty subset of Rn. The
vectors of C are called codewords. The code C is left (resp., right) linear if it is an
R-submodule of RR

n (resp., of Rn
R). A linear code is one which is either left or right

linear.

In places where this sounds ambiguous we make it precise by writing e. g. C ≤ RR
n

if C is left linear. We formulate our results with a bias towards left modules, omitting
obvious right module counterparts.

By Th. 2.1 the periods of x = (x1, . . . , xn) ∈ Rn in RR
n and Rn

R coincide, whence
the sets C[θi] in the lower Loewy series (2) of a linear code C are defined unambiguously
even for bicodes, i. e. bimodules C ≤ RR

n
R. The same holds a forteriori for the shape

of C.
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For two vectors u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vn) ∈ Rn we define their
inner product u · v by

u · v := u1v1 + u2v2 + · · ·+ unvn. (7)

Sending each v ∈ Rn to the R-linear mapping Φr(v) : RR
n → RR, u→ u · v defines

an R-isomorphism Rn
R
∼= Hom(RR

n, RR)R.
For a code C ⊆ RR

n we define

C⊥ = {y ∈ Rn | x · y = 0 for every x ∈ C}
⊥C = {y ∈ Rn | y · x = 0 for every x ∈ C}.

(8)

The linear code C⊥ ≤ Rn
R (resp., ⊥C ≤ RR

n) is called the right (resp., left) orthogonal
code of C.

Theorem 3.1. Let C, C′ ≤ RR
n be left linear codes over R. Further, let C be of shape

λ = (λ1, . . . , λn) and rank λ′1 = k. Then

(i) C⊥ has shape (m− λn,m− λn−1, . . . ,m− λ1) and conjugate shape (n− λ′m, n−
λ′m−1, . . . , n− λ′1). In particular, C is free as an R-module if and only if C⊥ is
free if and only if rk(C⊥) = n− k.

(ii) ⊥(C⊥) = C;

(iii) the map Φr induces an isomorphism Rn
R/C⊥ ∼= Hom(RC, RR)R;

(iv) (C ∩ C′)⊥ = C⊥ + C′⊥, (C + C′)⊥ = C⊥ ∩ C′⊥.

Proof. We prove (iii) first. Restricting Φr(y) to the code C induces an isomorphism
from Rn

R/C⊥ onto a submodule W of Hom(RC, RR)R. Since RR is injective, every

φ ∈ Hom(RC, RR) can be extended to φ̃ ∈ Hom(RR
n, RR), whence φ̃ = Φr(y) for

some y ∈ Rn. This implies W = Hom(RC, RR) proving (iii).
Since Hom(RC, RR)R has shape equal to that of RC, assertion (i) follows from

the isomorphism in (iii) and Th. 2.5.(ii). Assertions (ii) and (iv) hold for any quasi-
Frobenius ring; cf. [9, §58], [18].

Theorem 3.1 shows in particular that C 7→ C⊥ defines an antiisomorphism between
the lattices of left resp., right linear codes of length n over R.

Definition 3.2 (cf. [34]). A family S = (Si | i ∈ I) of nonempty subsets of Rn is
called a regular partition of Rn if the following conditions are satisfied:

(i) Rn =
⋃
i∈I Sj;

(ii) Si ∩ Sj = ∅ for all pairs i 6= j;
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(iii) for any two elements i, j ∈ I and any α ∈ R there exist constants λαij, ρ
α
ij such

that for each x ∈ Si there are exactly λαij elements y ∈ Sj with x · y = α, and
for each y ∈ Sj exactly ραij elements x ∈ Si with x · y = α.

If x ∈ Si we say that x has S-type i. We call a permutation φ ∈ Sym(Rn) an
S-automorphism of Rn if x− y ∈ Si implies φ(x)− φ(y) ∈ Si (i ∈ I).

Regular partitions of Rn can be obtained as the set of orbits from certain sub-
groups G of ΓL(RR

n). Note that for every φ ∈ ΓL(RR
n) there exist a uniquely

determined ring automorphism σ ∈ AutR and an invertible matrix A ∈ GL(n,R)
such that

φ(x) = σ(x) · A (x ∈ Rn). (9)

In Sections 5 and 6 the following special case will be important: The orbits of the
group of all left semimonomial transformations of Rn, i. e. all maps φ ∈ ΓL(RR

n)
whose associated matrix A in (9) is monomial, form a regular partition. They
are in one-to-one correspondence with the elements of the set I of m + 1-tuples
w = (w0, w1, . . . , wm) of nonnegative integers satisfying

∑m
i=0wi = n. For x =

(x1, . . . , xn) ∈ Rn and 0 ≤ i ≤ m let

ai(x) = |{j | 1 ≤ j ≤ n and θi ‖ xj}| (10)

and define

Sw =
{
x ∈ Rn | ai(x) = wi for 0 ≤ i ≤ m

} (
w ∈ I

)
. (11)

For brevity we omit the letter ‘S’ when referring to the special regular partition
S = (Sw)w∈I defined in (11). Thus the sequence

(
a0(x), . . . , am(x)

)
is simply the

type of the word x, and a (code) automorphism of Rn is a permutation φ ∈ Sym(Rn)
satisfying ai(x− y) = ai

(
φ(x)− φ(y)

)
for x,y ∈ Rn, 0 ≤ i ≤ m.

Definition 3.3. Two codes C1, C2 ⊆ Rn are said to be isomorphic (resp., semilin-
early isomorphic) if there exists a code automorphism (resp., semilinear code auto-
morphism) φ of Rn with φ(C1) = C2.

Thus two linear codes C1, C2 ≤ RR
n are semilinearly isomorphic if and only if

there exists a left semimonomial transformation φ of Rn with φ(C1) = C2.
In the sense of [50] the type of x is essentially the symmetrized weight composition

of x with respect to the full group of units of R. A result in [48] implies that every
semilinear permutation φ : C → C of a linear code C ≤ RR

n which preserves the type
of codewords x ∈ C extends to a left semimonomial transformation of Rn. Extensions
of this result to general weight functions on finite rings—with particular emphasis on
the case of commutative chain rings—have been investigated in [51].
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Given a code C ⊆ Rn and a regular partition S = (Si | i ∈ I) of Rn we define
integers Ai (i ∈ I) by Ai = |C ∩Si|. The family (Ai)i∈I is called the S-spectrum of C.
We write (B

(s)
i )i∈I for the S-spectra of the codes

C⊥(s) = {y ∈ Rn | x · y ∈ Ns for every x ∈ C} (0 ≤ s ≤ m)

and abbreviate B
(m)
i = |C⊥ ∩ Si| as Bi.

The S-spectra of a linear code C ≤ RR
n and its dual codes C⊥(s) are related by

identities which are similar to the MacWilliams identities (cf. [19] or [37]). In order
to formulate this result, we define functions ωs : R→ R, 0 ≤ s ≤ m, by

ωs(x) =


1 if x ∈ Ns,

−1/(q − 1) if x ∈ Ns−1 \Ns,

0 if x /∈ Ns−1.

(12)

These functions satisfy the following “orthogonality relations” for ideals A of R:

1

|A| ·
∑
x∈A

ωs(x) =

{
1 if A ≤ Ns,

0 if A � Ns.
(13)

Theorem 3.2 (MacWilliams identities). Let S = (Si | i ∈ I) be a regular parti-
tion of Rn, and let C ≤ RR

n be a linear code. The S-spectrum of the orthogonal codes
C⊥(s) is obtained from the S-spectrum of C by

B
(s)
j =

1

|C| ·
∑
i∈I

Ai ·
(∑
α∈R

λαij · ωs(α)
)
. (14)

Proof. Using (13) we have∑
x∈C

ωs(x · y) =

{
|C| if y ∈ C⊥(s),
0 if y ∈ Rn \ C⊥(s),

(15)

since the set {x · y | x ∈ C} is a left ideal of R which is contained in Ns if and only
if y ∈ C⊥(s). Thus

B
(s)
j = |C⊥(s) ∩ Sj|

=
1

|C| ·
∑
y∈Sj

∑
x∈C

ωs(x · y)

=
1

|C| ·
∑
i∈I

∑
x∈C∩Si

∑
y∈Sj

ωs(x · y)

=
1

|C| ·
∑
i∈I
|C ∩ Si| ·

(∑
α∈R

λαij · ωs(α)
)

=
1

|C| ·
∑
i∈I

Ai ·
(∑
α∈R

λαij · ωs(α)
)
.

(16)



the electronic journal of combinatorics 7 (2000), #R11 10

Regular partitions of Rn are Fourier-invariant partitions (F-partitions) of the abelian
group (Rn,+) in the sense of [13, 14]. The link is provided by an additive character
ψ : R → C satisfying Nm−1 * kerψ. The pairing Rn × Rn → C, (x,y) 7→ ψ(x · y)
can be used to define a suitable Fourier transform F : CRn → CRn.

For the special case R = Fq of Th. 3.2 see [34]. MacWilliams identities for F-
partitions are proved in [14]. Other types of MacWilliams identities for codes over
finite rings can be found e. g. in [23, 27, 41, 50].

4 The projective Hjelmslev geometries PHG(Rk
R)

In this section, we introduce the projective Hjelmslev geometries PHG(Rk
R) and give

some results on their basic structure. For a rigorous approach to projective Hjelmslev
spaces the reader is referred to [29, 30, 31, 47]. Consider a finite free right module
HR where R is a chain ring. The elements of P = P(HR) = {xR | x ∈ H∗} are
called points of HR, those of L = L(HR) =

{
xR + yR | x, y linearly independent

}
are called lines of HR. The incidence relation I ⊆ P × L is defined in a natural way
by set-theoretical inclusion. As usual we identify lines with subsets of P.4 Note that
any two different points are joined by at least one line.

Definition 4.1. The incidence structure Π = (P,L, I) together with the neighbour

relation _̂, defined by

(N1) the points X, Y are neighbours (notation X_̂Y ) if and only if there exist
different lines s, t ∈ L with X, Y ∈ s ∩ t;
(N2) the lines s, t ∈ L are neighbours if and only if for every point X ∈ s there is

a point Y ∈ t with X_̂Y and, conversely, for every Y ∈ t there is an X ∈ s with

Y _̂X;

is called a projective Hjelmslev space and denoted by PHG(HR).5

The relation _̂ induces an equivalence relation on P as well as on L. The class

[X] of all points which are neighbours to the point X = xR consists of all free rank
1 submodules contained in xR + Hθ. Similarly, the class [s] of all lines which are
neighbours to s = xR + yR, consists of all free rank 2 submodules contained in
xR+ yR+Hθ.

The point set T ⊆ P is called a Hjelmslev subspace of Π if for every two points
X, Y ∈ T , there exists a line s ⊆ T with X, Y ∈ s. We write X_̂T if there exists a

point Y ∈ T with X_̂Y . Every Hjelmslev subspace is a projective Hjelmslev space

4A line s ∈ L is uniquely determined by {X ∈ P | XIs}.
5If R is noncommutative, PHG(HR) and PHG(RH) are in general not isomorphic. Working with

right instead of left modules will be justified in Section 5.
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and consists of the points contained in some free submodule of HR.6 For every X ⊆ P
we define the closure X as the intersection of all Hjelmslev subspaces containing X .
The set X ⊆ P is said to be independent if for any X ∈ X we have X 6_̂X \ {X},
and a basis of Π if X is independent and X = P. The dimension of Π is defined as
dim Π = |B| − 1 where B is any basis of Π. Equivalently, dim Π = rk(HR)− 1.

An isomorphism between two projective Hjelmslev spaces Π = PHG(HR) and
Π′ = PHG(H ′R) is a bijection β : P → P ′ which satisfies β(L) = L′. The spaces Π
and Π′ are isomorphic if and only if rk(HR) = rk(H ′R). Every semilinear isomorphism
φ : HR → H ′R induces such an isomorphism since it maps xR ∈ P onto φ(xR) =
φ(x)R ∈ P ′. The following theorems can be found in [30, 32]:

Theorem 4.1. If rk(HR) = rk(H ′R) ≥ 3 then for any isomorphism β : Π→ Π′ there
exists a semilinear isomorphism φ : HR → H ′R inducing β.

Theorem 4.2. Let {P1, P2, . . . , Pk+1} ⊆ P and {Q1, Q2, . . . , Qk+1} ⊆ P ′ be subsets
(“frames”) such that any k of the points in each of the sets form a basis of Π resp., Π′.
Then there exists exactly one isomorphism β : Π→ Π′ with β(Pi) = Qi, 1 ≤ i ≤ k+1.

Projective Hjelmslev spaces can be defined axiomatically as incidence structures
π = (P,L, I) with a neighbour relation _̂ on P and on L which satisfy certain
conditions. Without going into details we mention the following

Theorem 4.3 ([30, 33]). For every projective Hjelmslev space Π of dimension at
least 3, having on each line at least 5 points no two of which are neighbours, there
exists a free module HR over a chain ring R such that PHG(HR) is isomorphic to Π.

Remark 4.1. The incidence structure (P,L, I) and Def. 4.1 make sense for an arbi-
trary finite module MR which is not a priori a submodule of some finite free module.
We can embed MR into a finite free module HR of rank rk(HR) ≥ rk(MR) and view
(P,L, I) as a substructure of the geometry PHG(HR). By Th. 2.5.(iii) a submodule
MR ≤ HR is determined by its set of points, and if rk(HR) > rk(MR) then M is
closed by Th. 2.5.(iv). According to Theorems 2.3, 2.6 and 4.1 two finite modules

RM and RM
′ of rank at least 3 are semilinearly isomorphic if and only if they are

isomorphic as substructures of PHG(HR) and PHG(H ′R), respectively, assuming of
course that rk(HR) = rk(H ′R). Thus both viewpoints are essentially equivalent.

For simplicity we take HR = Rk
R in the sequel. The incidence structure PHG(Rk

R)
is called the (right) k − 1-dimensional projective Hjelmslev geometry over R.

We shall need the following refinement of the neighbour relation:

Definition 4.2. Let ∆1, ∆2 be Hjelmslev subspaces of PHG(Rk
R) and 0 ≤ i ≤ m. We

say that ∆1 is an i-neighbour to ∆2, and write ∆1_̂ i∆2 in this case, if ∆1 ⊆ ∆2+Rkθi.

6Needless to say, we identify Hjelmslev subspaces of PHG(HR) with the corresponding free
submodules of HR.
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Denoting by π(i) : Rk → Rk/Rkθi the natural projection, we have ∆1_̂ i∆2 if

and only if π(i)(∆1) ⊆ π(i)(∆2). The relation _̂ i induces an equivalence relation on

Hjelmslev subspaces of equal dimension. The i-neighbour class of ∆ is [∆]i = {∆′ |
dim ∆′ = dim ∆ and ∆′_̂ i∆}.

For points X = xR, Y = yR we have X_̂ iY but X 6_̂ i+1Y if and only if

|X ∩ Y | = qi if and only if xR+ yR has shape (m,m− i). The neighbour class [X]i
coincides with the set of all free rank 1 submodules of xR + Rkθi. Similarly, for a
line s = xR + yR the neighbour class [s]i coincides with the set of all free rank 2
submodules of xR + yR + Rkθi. Furthermore, lines s and t are i-neighbours if and
only if for every X ∈ s there is a point Y ∈ t with X_̂ iY and, conversely, for every

Y ∈ t there is an X ∈ s with Y _̂ iX. Clearly _̂1 coincides on points and on lines

with the neighbour relation _̂ introduced at the beginning of this section.

Let P(i) (resp. L(i)) be the set of all i-neighbour classes of points (resp. of lines)
in (P,L, I).

Theorem 4.4. The incidence structure Π(i) = (P(i),L(i), I(i)) with I(i) defined by

[X]i I
(i) [s]i ⇐⇒ ∃X ′ ∈ [X]i, ∃s′ ∈ [s]i : X ′ I s′ (17)

is isomorphic to PHG
(
(Rk/θiRk)R/N i

)
for all i ∈ {1, . . . ,m}. In particular, Π(1) is

isomorphic to the projective geometry PG(k − 1, q).

Proof. The image under π(i) of every free submodule of Rk
R is a free module over R/N i

of the same rank. Hence, if we define [X]iI
′[s]i by π(i)(X) ⊆ π(i)(s) then (P(i),L(i), I ′)

is isomorphic to PHG
(
(Rk/θiRk)R/N i

)
. Let X = xR ∈ P, s = yR + zR ∈ L with

π(i)(X) ⊆ π(i)(s), i. e. xR ⊆ yR + zR + Rkθi. Since xR is free and hence a direct
summand of yR + zR + Rkθi, it is contained in some free rank 2 submodule of
yR+ zR+Rkθi. This gives I ′ = I(i) as desired.

5 Multisets in Projective Hjelmslev Geometries

and Linear Codes over Chain Rings

Let Π = PHG(HR) = (P,L, I) be a finite dimensional projective Hjelmslev geometry
over the chain ring R.

Definition 5.1. A multiset in Π is a mapping k : T → N0 where T ⊆ P.7

Often we tacitly assume T = P, defining k(P ) = 0 for P ∈ P \ T .

7A multiset k : T → N0 is called a set if k(P ) ∈ {0, 1} for any P ∈ T .
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The mapping k is extended to the power set of P by

k(Q) =
∑
P∈Q

k(P ) for Q ⊆ P . (18)

The integer k(P ) is called the multiplicity of the point P . The integer k(P) =∑
P∈T k(P ) is called the cardinality or length of the multiset k and is denoted by

|k|. The support of k is defined as Supp k = {P ∈ T |k(P ) > 0} and the hull of k as
the module

〈k〉 =
∑

xR∈Supp k

xR ≤ HR. (19)

The shape of k is the shape of its hull 〈k〉R.

Definition 5.2. Two multisets k in Π and k′ in Π′ are said to be equivalent if there
exists a bijective R-semilinear mapping ψ : 〈k〉 → 〈k′〉 such that k(P ) = k′

(
ψ(P )

)
for

every point P = xR ≤ 〈k〉.

If dim Π ≤ dim Π′, say, then in view of Remark 4.1 the multisets k, k′ are equivalent
if and only if there exists an embedding β : Π → Π′ such that k and k′β coincide on
the points of Π.

Definition 5.3. A linear code C ≤ RR
n is said to be fat if for every i ∈ {1, . . . , n}

there exists a codeword c = (c1, c2, . . . , cn) ∈ C with ci ∈ R∗.

Thus C ≤ RR
n is fat if and only if the restriction to C of every projection map

Φr(ej) : RR
n → RR, x 7→ x · ej = xj is onto.

Let C ≤ RR
n be a fat linear code. We intend to associate with C a certain multiset

of points in a projective Hjelmslev geometry over R which generalizes the familiar
correspondence between full-length linear [n, k]-codes over Fq and multisets of points
in PG(k−1, q) of cardinality n obtained as columns of a generator matrix of the [n, k]-
code. Since the dual Hom(RC, RR)R of RC need not be a free R-module, some extra
work is necessary. Let S = (c1, . . . , ck) be a sequence of (not necessarily independent)
generators for RC and G ∈ Mk,n(R) be the k×n-matrix with rows c1, . . . , ck. Denote
the columns of G by g1, . . . ,gn, i. e. gj =

(
Φr(ej)(c1), . . . ,Φr(ej)(ck)

)
. Note that gj

has period θm since Φ(ej) is onto and c1, . . . , ck generate RC, and thus defines a point
in the projective (right) Hjelmslev geometry (P,L, I) = PHG(Rk

R). We define the
multiset kS induced by the generating sequence S of C as

kS :

{
P → N0

P 7→ |{j | P = gjR}|.
(20)

We say that the multiset kS and the code C =
∑

c∈S Rc are associated. By definition
of kS we have |kS| = n. The following theorem is a generalization of a similar result
by Dodunekov and Simonis [10] about linear codes over finite fields.
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Theorem 5.1. For every multiset k of length n in PHG(Rk
R) there exists a fat linear

code C ≤ RR
n and a generating sequence S = (c1, · · · , ck) of RC which induces k.

Two multisets k1 in PHG(Rk1
R ) and k2 in PHG(Rk2

R ) associated with fat (left) linear
codes C1 and C2 over R, respectively, are equivalent if and only if the codes C1 and C2

are semilinearly isomorphic.

Proof. To prove the first assertion, choose a list (g1, . . . ,gn) of vectors gj ∈ Rk such
that for every point P of PHG(Rk

R)

k(P ) = |{j | 1 ≤ j ≤ n and P = gjR}|. (21)

Define C ≤ RR
n to be the code generated by the rows of the k×n-matrix G ∈ Mk,n(R)

with columns g1, . . . ,gn. Every column of G contains at least one entry r ∈ R∗.
Hence the code C is fat. Clearly, the sequence S = (c1, . . . , ck) of rows of G induces
k in the sense of (20), i. e. kS = k.

To prove the second assertion, assume first that two semilinearly isomorphic codes
C1, C2 ≤ RR

n are associated with multisets k1 in PHG(Rk1
R ) and k2 in PHG(Rk2

R ),
respectively. Let G1 ∈ Mk1,n(R) and G2 ∈ Mk2,n(R) be matrices whose sequences S1

and S2 of rows generate C1 (resp., C2) and induce k1 (resp., k2), i. e. kSi = ki for i = 1, 2.
Let φ : Rn → Rn be a semilinear code automorphism of RR

n with φ(C1) = C2. The
sequence S ′2 = φ(S1) also generates C2. Let G′2 ∈ Mk1,n(R) be the matrix associated
with S ′2 and k′2 the multiset in PHG(Rk1

R ) induced by S ′2. There exist U ∈ Mk1,k2(R),
V ∈ Mk2,k1(R) with G′2 = UG2, G2 = VG′2. Let ψU : Rk2

R → Rk1
R , g → Ug and

ψV : Rk1
R → Rk2

R , g → Vg be the corresponding R-linear mappings. Then k2 = k′2ψU

and k′2 = k2ψV. From G′2 = UVG′2, G2 = VUG2 we conclude that ψUψV fixes k′2 and
ψVψU fixes k2, whence the restrictions of ψU and ψV to 〈k2〉 and 〈k′2〉, respectively,
are mutually inverse R-isomorphisms. Thus k2 and k′2 are equivalent. Moreover, there
exists a monomial matrix M and a ring automorphism σ such that φ(x) = σ(x)M
for x ∈ Rn. This shows G′2 = σ(G1)M. The columns of G′2 and σ(G1) represent the
multisets k′2 and k1σ

−1, respectively. Since M is monomial we have k′2 = k1σ
−1 and

thus k1 = k′2σ proving the equivalence of k1 and k2.
Conversely, suppose that k1 and k2 are equivalent and associated with C1 and C2.

Let G1,G2 have the same meaning as above, and let ψ : 〈k1〉 → 〈k2〉 be a bijective
semilinear mapping with k1 = k2ψ. Let H1 ≤ Rk1

R and H2 ≤ Rk2
R be minimal free

R-modules containing 〈k1〉 and 〈k2〉, respectively. By Th. 2.6 ψ can be extended to a

bijective semilinear mapping ψ̃ : H1 → H2. Since H1 and H2 are direct summands of
Rk1
R and Rk2

R , respectively, we can extend ψ̃ to a mapping from Rk1
R into Rk2

R and ψ̃−1 to
a mapping from Rk2

R into Rk1
R , i. e. there exist matrices U ∈ Mk1,k2(R), V ∈ Mk2,k1(R)

and a ring automorphism σ of R such that ψ(g) = σ(Vg) for every g ∈ 〈k1〉 and
ψ−1(h) = Uσ−1(h) for every h ∈ 〈k2〉. The matrix G′1 = VG1 ∈ Mk2,n(R) generates
C1 since UG′1 = G1, and for every point P of PHG(Rk1

R ) it contains exactly k1(P ) =
k2

(
ψ(P )

)
columns h ∈ Rk2 with σ(h)R = ψ(P ). Thus the columns of σ(G′1) and G2

represent the same points of PHG(Rk2
R ) when counted with their multiplicities. This
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clearly implies the existence of a monomial matrix M with G2 = σ(G′1)M which in
turn yields that C1 and C2 are semilinearly isomorphic.

Remark 5.1. If one defines PHG(Rk
R) as a point-line incidence structure as we did

in Section 4, the restriction to fat linear codes in Th. 5.1 is a natural consequence.
Non-fat linear codes, however, do appear in some situations, for example in the
classification of Z4-linear codes of constant Lee or Euclidean weight [49]. It is possible
to circumvent the restriction to fat linear codes by viewing PHG(Rk

R) as a projective
lattice geometry [4] having additional non-free points. Theorem 5.1 can be proved in
this more general setting.

Definition 5.4. Let k : P → N0 be a multiset in Π = PHG(Rk
R). A hyperplane ∆

in Π is said to have the k-type (a0, a1, . . . , am), where ai =
∑

P : P _̂ i∆, P 6_̂ i+1∆
k(P ),

for i = 0, 1, . . . ,m.

We shall often say ‘type’ instead of ‘k-type’, if there is no doubt about the multiset
k we are referring to. By duality (Th. 3.1) every hyperplane ∆ in PHG(Rk

R) can be
considered as the set of points, whose homogeneous coordinates (x1, . . . , xk) satisfy
a linear equation

r1x1 + r2x2 + . . .+ rkxk = 0,

where at least one of the ri’s is a unit in R. Let C be a fat linear code associated with k,
and let GS be a k×n-matrix whose sequence S of rows generates C and satisfies kS = k.
All codewords of C which belong to the cyclic submodule R(r1, . . . , rk)GS ≤ RC
are called codewords associated with the hyperplane ∆ (relative to the choice of the
generating sequence S). For different generating sequences S, S ′ of C with kS = kS′

the matrices GS and GS′ can differ only by the ordering and scaling of their columns.
Thus as far as the number and type (10) of codewords associated with a hyperplane is
concerned, we may safely omit from now on any reference to the generating sequence.
There is a connection between the type of a hyperplane in Π and the number of
codewords of a given type in C associated with that hyperplane.

Theorem 5.2. Let k be a multiset in PHG(Rk
R) and C a fat linear code over R

associated with k. For each hyperplane ∆ of k-type

(0, . . . , 0, aj, aj+1, . . . , am) with aj 6= 0 (0 ≤ j ≤ m)

there exist exactly qm−s − qm−s−1 codewords in C of type

(0, . . . , 0︸ ︷︷ ︸
s

, aj , . . . , am+j−s−1,
m∑

i=m+j−s
ai) (j ≤ s ≤ m− 1) (22)

which are associated with ∆.
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Proof. Fix a generating sequence S of C and let G = GS be as above. Let ∆ =
(Rr)⊥ with r = (r1, . . . , rk) ∈ RR

k. The codeword c = (r1 . . . rk)G has exactly
the same type (0, . . . , 0, aj, aj+1, . . . , am) as the hyperplane ∆. Since c has period
θm−j , we have |Rc| = qm−j . The words in Rc with type as in (22) are exactly those
which generate the cyclic submodule Rc[θm−s] ≤ Rc of order qm−s. Their number is
therefore qm−s − qm−s−1 as asserted.

Theorem 5.3. A multiset k in PHG(Rk
R) and its associated code have the same

shape. In particular, |〈k〉| = |C|.

Proof. Choose a k × n-matrix G whose sequence S of rows generate RC and whose
columns g1, . . . ,gn represent the points P as in (21). Since S generates RC, the
linear map Hom(RC, RR)R → 〈k〉R which sends the restriction Φr(ej)|C to gj is an
isomorphism. Thus 〈k〉R, Hom(RC, RR)R and RC all have the same shape; cf. the
remark following Def. 2.1.

6 Linear Codes from Selected Multisets in PHG(Rk
R)

In this section we discuss some classes of linear codes over chain rings which arise
from certain multisets of points in projective Hjelmslev geometries.

6.1 Simplex and Hamming Codes over Chain Rings

In [3] Blake introduced a generalization of the class of Hamming codes to the ring
of integers modulo q = pr, where p is prime. Below we suggest another definition,
which reflects the geometric nature of the usual Hamming codes.

Consider the Hjelmslev geometry Π = (P,L, I) = PHG(Rk
R). The linear code

C associated with the multiset k defined by k(P ) = 1 for all P ∈ P, is called the
k-dimensional simplex code over R and is denoted by Sim(k,R). By Th. 2.4 the code
Sim(k,R) has length q(k−1)(m−1)

[
k
1

]
q
, and by Th. 5.3 it has shape mk, in particular

|Sim(k,R)| = qkm. All hyperplanes ∆ in Π have the same k-type (a0, a1, . . . , am),
where

a0 = q(k−1)(m−1)

([
k

1

]
q

−
[
k − 1

1

]
q

)
= q(k−1)m,

aj = q(k−2)(m−1)

[
k − 1

1

]
q

(
qm−j − qm−j−1

)
, j = 1, . . . ,m− 1,

am = q(k−2)(m−1)

[
k − 1

1

]
q

.

(23)
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These numbers are obtained e. g. by observing that
∑

s≥j as is the number of free

rank 1 submodules contained in ∆ + θjRk which has shape mk−1(m− j)1. Thus

∑
s≥j

as = αmk−1(m−j)1(m1; q) =

{
q(k−1)(m−1)

[
k
1

]
q

if j = 0,

q(k−1)(m−1)
[
k−1

1

]
q
· q1−j if 1 ≤ j ≤ m.8

The dual code Sim(k,R)⊥ is called the k-th order Hamming code over R and is de-
noted by Ham(k,R). It is free of rank q(k−1)(m−1)

[
k
1

]
q
−k, in particular |Ham(k,R)| =

q
mq(k−1)(m−1)[k1]q−mk. For example, Ham(k,Z4) has parameters (n,M,wLee) =

(
22k−1−

2k−1, 222k−2k−2k, 3
)
.

6.2 The Linearity of the MacDonald Codes

Let us fix a Hjelmslev subspace Σ of Π with rk Σ = u, 1 ≤ u ≤ k − 1. Let C be
associated with k : P → N0 defined by

k(P ) =

{
1 if P _̂ iΣ,

0 otherwise,
(24)

where i ≥ 1 is fixed. Since k is the set of points of the R-module Σ+Rkθi of conjugate
shape km−iui, we have by Th. 2.4 and Th. 5.3

k(P) = q(k−1)(m−i)+(u−1)(i−1) ·
[
u

1

]
q

, |C| = qk(m−i)+ui. (25)

Consider the mapping ψ : R→ Fmq (cf. [22, Section 3]) defined by the matrix

G = G(m) =

[
1 1 . . . 1
a1 a2 . . . aqm−1

]
, (26)

where a1, a2, . . . , aqm−1 are the elements of Fm−1
q taken in some order. By [17, Th. 1.1]

or [24, Prop. 11],

wHam

(
ψ(x)− ψ(y)

)
=


0 if x = y,

qm−1 if x− y ∈ Nm−1 \ {0},
qm−1 − qm−2 if x− y /∈ Nm−1.

Thus the q-ary image ψ(C) is a (possibly nonlinear) distance invariant code with
parameters N = qm−1k(P ) = q(k−u)(m−i)+u(m−1)

[
u
1

]
q
, M = |C| = q(k−u)(m−i)+um.

The hyperplanes of Π can be divided into i+ 1 disjoint nonempty classes, which
we denote by (Aj), 0 ≤ j ≤ i:

8Note that αλ(m1; q) is already determined by λ′m and |λ| =
∑
λi.
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(Aj) hyperplanes ∆ with Σ_̂ j∆, and Σ 6_̂j+1∆, 0 ≤ j < i;

(Ai) hyperplanes ∆ with Σ_̂ i∆.

Denote by λ(t) (resp., µ(t)) the shape (resp., conjugate shape) of the module (∆ +
Rkθt) ∩ (Σ +Rkθi), 0 ≤ t ≤ m. The nonzero Hamming weights of ψ(C) are

t−2∑
s=0

as(q
m−1 − qm−2) + at−1q

m−1 =

= αλ(0)(m1, q)(qm−1 − qm−2)− αλ(t)(m1, q)qm−1 + αλ(t−1)(m1, q)qm−2,

where (a0, . . . , am) is one of the possible k-types of hyperplanes of Π and j+1 ≤ t ≤ m
if ∆ is of class (Aj), 0 ≤ j ≤ i. If ∆ is of class (Ai) then

µ(t) =

{
km−iui = µ(0) if 0 ≤ t ≤ i,

km−t(k − 1)t−iui if i ≤ t ≤ m.
(27)

Hence αλ(t)(m1, q) = αλ(t−1)(m1, q)/q if i+ 1 ≤ t ≤ m, and ∆ produces codewords of
single nonzero weight

αλ(0)(m1, q)(qm−1 − qm−2) = q(k−u)(m−i)+u(m−1)−1(qu − 1). (28)

If ∆ is of class (Aj), 0 ≤ j ≤ i− 1, then

µ(t) =


km−iui if 0 ≤ t ≤ j,

km−iui−t+j(u− 1)t−j if j ≤ t ≤ i,

km−t(k − 1)t−iuj(u− 1)i−j if i ≤ t ≤ m.

(29)

Equation (29) is derived e. g. using the formula |U ∩ V | = |U ||V |/|U + V | with
U = ∆ + Rkθt, V = Σ + Rkθi, and observing that ∆ + Σ has shape mk−1(m − j)1.
Hence we have αλ(t)(m1, q) = αλ(t−1)(m1, q)/q if j + 2 ≤ t ≤ m, and thus ∆ produces
nonzero codewords of weights (28) and

αλ(0)(m1, q)(qm−1 − qm−2)− αλ(j+1)(m1, q)qm−1 + αλ(j)(m1, q)qm−2 =

=
(
αλ(0)(m1, q)− αλ(j+1)(m1, q)

)
qm−1

= q(k−u)(m−i)+u(m−1)+u−1.

(30)

Let K = (k− u)(m− i) + um, U = (k− u)(m− i) + u(m− 1) (whence K − U = u).
The code ψ(C) is a two-weight code over a q-ary alphabet of length N , minimum
distance D, and with weights W1 and W2, where

N =
qK − qU
q − 1

, |ψ(C)| = qK , D = W1 = qK−1 − qU−1, W2 = qK−1. (31)
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Now we assume that R is one of the chain rings Fq[X; σ]/(Xm) of characteristic p.
By Th. 5 from [22], the code ψ(C) is linear over Fq, and it has the parameters (31)
of a MacDonald code. Since MacDonald codes are uniquely determined by their
parameters (cf. [10, 46]), we get that ψ(C) is semilinearly isomorphic to a MacDonald
code. Choosing k, u, i appropriately, we can get all MacDonald codes with parameters
U ≥ K(1− 1/m). Hence we have the following theorem (cf. [22] for the special case
m = 2):

Theorem 6.1. A q-ary MacDonald code whose parameters K,U satisfy the condition
U ≥ K(1−1/m) is linearly representable over any of the chain rings Fq[X; σ]/(Xm).
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