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Abstract—We consider the distributed estimation of an unknown

vector signal in a resource constrained sensor network with a fu-

sion center. Due to power and bandwidth limitations, each sensor

compresses its data in order to minimize the amount of information

that needs to be communicated to the fusion center. In this context,

we study the linear decentralized estimation of the source vector,

where each sensor linearly encodes its observations and the fu-

sion center also applies a linear mapping to estimate the unknown

vector signal based on the received messages. We adopt the mean

squared error (MSE) as the performance criterion. When the chan-

nels between sensors and the fusion center are orthogonal, it has

been shown previously that the complexity of designing the optimal

encoding matrices is NP-hard in general. In this paper, we study the

optimal linear decentralized estimation when the multiple access

channel (MAC) is coherent. For the case when the source and ob-

servations are scalars, we derive the optimal power scheduling via

convex optimization and show that it admits a simple distributed

implementation. Simulations show that the proposed power sched-

uling improves the MSE performance by a large margin when com-

pared to the uniform power scheduling. We also show that under

a finite network power budget, the asymptotic MSE performance

(when the total number of sensors is large) critically depends on the

multiple access scheme. For the case when the source and observa-

tions are vectors, we study the optimal linear decentralized estima-

tion under both bandwidth and power constraints. We show that

when the MAC between sensors and the fusion center is noiseless,

the resulting problem has a closed-form solution (which is in sharp

contrast to the orthogonal MAC case), while in the noisy MAC case,

the problem can be efficiently solved by semidefinite programming

(SDP).

Index Terms—Convex optimization, distributed estimation,
energy efficiency, linear source-channel coding, multiple access
channel (MAC).
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I. INTRODUCTION

C
ONSIDER a distributed sensor network where observation
data is collected at different sensors and transmitted, pos-

sibly after compression and encoding, to a fusion center (see
Fig. 1). The fusion center (e.g., an unmanned aerial vehicle) ag-
gregates the data for a specific signal processing task, such as
target detection or parameter estimation. Local data compres-
sion is effectively achieved when each sensor sends to the fu-
sion center only a short summary of its data. Upon receiving the
sensor messages, the fusion center combines them according to
a fusion rule to generate the final estimate. In this framework, the
traditional centralized solution corresponds to the case where all
raw data is transmitted to the fusion center without data com-
pression or channel distortion. However, if communication is
costly, as is the case in some wireless sensor networks, there
can be a significant power-saving advantage if less information
is transmitted to the fusion center without degrading the overall
performance. We may thus pose the following question: Given
a fixed bandwidth and power budget, how should we encode the
local messages, transmit the signal, and define the final fusion
rule in order to maximize the overall system performance? In
this paper, we devote to studying the optimal linear encoding of
local observations under both power and bandwidth constraints.

There are at least two ways to model the finite bandwidth
constraint. The first one is to directly limit the number of bi-
nary bits that each sensor can send to the fusion center per ob-
servation period. This bandwidth measure is natural from the
digital communication point of view and was adopted widely
in previous studies on communication complexity [1], [2], dis-
tributed optimization [3], distributed control [4], [5], and dis-
tributed signal processing including detection [6], [7], estima-
tion [8]–[11], and tracking [12]. The second one is to limit the
number of real-valued messages that can be sent from each
sensor to the fusion center per observation period, which is di-
rectly proportional to the physical frequency bandwidth in the
system. The two measures of bandwidth constraint are funda-
mentally related to each other, while the second one is more
suited for analog transmission schemes such as amplify and for-
ward [13], [14]. In this paper, we adopt the second bandwidth
measure and consider the analog transmission of the real-valued
sensor messages.

Another important property of many wireless sensor net-
works is their stringent energy constraint. In such networks,
sensors have only small-size batteries whose replacement can
be costly if not impossible. Thus, sensor network operations
must be energy efficient in order to maximize network life-
time. Recently, many new results have appeared in the sensor
network literature with a focus on energy-efficient distributed
data fusion. From an information-theoretic perspective, [15],
[17]–[20] investigate the mean squared estimation error perfor-
mance versus transmit power for the quadratic CEO problem
with a coherent multiple access channel (MAC). Notably,
it is shown in [15] and [16] that if the sensor statistics are
Gaussian, a simple uncoded (analog-and-forwarding) scheme
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Fig. 1. Model of a wireless sensor network with a fusion center.

dramatically outperforms the separate source-channel coding
approach and leads to an optimal scaling behavior. The un-
coded communication scheme is further proved to preserve
the optimal scaling law in [19] for sensor networks with
node statistics satisfying a certain mean condition, while the
source-channel matching result is extended to more general
homogeneous signal fields in [20]. If the sensor measurements
are not continuous but in a finite alphabet, type-based trans-
mission schemes are proposed in [21]–[23]. The many-to-one
transport capacity and compressibility are investigated for
dense joint estimation sensor networks in [24]. When a full
coordination among sensors is unavailable and the underlying
communication links are not reliable, the distributed estimation
problem is investigated in [25], where an information-theoretic
achievable rate-distortion region is elegantly derived. The work
in [26] studies the in-network processing approaches based on a
hierarchical data-handling and communication architecture for
the estimation of field sources. In addition, by assuming only
local sensor information exchange, [27] proposes a distributed
algorithm for reaching network-wide consensus.

In this paper, we consider the joint estimation of a vector
source by a sensor network with a fusion center. Both band-
width and power constraints are imposed on the transmitted sig-
nals from local sensors. We limit our discussion to the class
of linear decentralized estimation schemes where the compres-
sion functions at local sensors and the fusion function at the
fusion center are all linear. As a result of the bandwidth con-
straint, each sensor transmits to the fusion center a fixed number
of real-valued messages per observation. The power constraint
limits the strength of the transmitted signals. Under a mean
squared error (MSE) criterion, we design the optimal linear de-
centralized estimation schemes based on the channel states and
the second-order statistics of the source/observation.

For the case of orthogonal channel usage between sensors and
the fusion center, the linear decentralized estimation problem
has been first studied in [10] with a general sensor observation
model. Neglecting the communication channel noise, the au-
thors of [10] proposed a Gauss-Seidel type iterative algorithm
to compute the linear message functions (whose convergence
to the global optimum is not guaranteed). The complexity of
linear decentralized estimation design has been recently studied
in [28]. It has been shown therein that surprisingly, in the or-
thogonal channel case, even for the linear sensor observation
model, the complexity of designing the optimal linear decen-
tralized estimation is NP-hard in general. Because of this, ef-
ficient Gauss-Seidel algorithms have been proposed in [29] to
determine the suboptimal designs by exploring the classic tools
of canonical component analysis.

We investigate the optimal design of linear decentralized
estimation without assuming orthogonal channel usage. As a

result, messages transmitted from different sensors may cause
interference to each other. We assume that there is perfect
synchronization between sensors and the fusion center so that
the transmitted messages from local sensors can be coherently
combined at the fusion center. With such an assumption, one
key design consideration at local sensors and the fusion center
is how to jointly process the sensed and received information in
a constructive way. In this paper, we first give a general problem
formulation of linear coherent decentralized estimation, and
then solve it for two cases: i) Source/observations are scalars;
and ii) source/observations are vectors. For the case of scalar
source/observations, we focus on the power allocation among
sensors. We give the optimal power scheduling via convex opti-
mization techniques and derive an elegant relationship between
the best achievable distortion and the total sensor transmit
power. When source/observations are vectors, we consider the
optimal design of encoding/decoding matrices in two scenarios:
i) By neglecting the channel noise, we show that the resulting
problem has a closed-form solution; and ii) When channel noise
is present, the optimal design of linear decentralized estimation
subject to transmit power and bandwidth constraints can be
efficiently solved with semidefinite programming (SDP) com-
bined with certain relaxation techniques. To solve the optimal
encoding matrices, we assume that the fusion center has full
knowledge of the sensor observation model and the channel
states between sensors and the fusion center. Each sensor can
then obtain their individual encoding functions based on their
local information and limited feedback from the fusion center.
We also study the asymptotic MSE performance when the
number of sensors is large. Under a finite total power budget,
we show that the best achievable MSE is bounded away from
zero for orthogonal MAC, but scales with when the MAC
is coherent, where is the total number of sensors.

Organization of the Paper: The rest of the paper is organized
as follows. In Section II, we give the general problem formula-
tion of linear decentralized estimation. The corresponding MSE
performance and power consumption are derived in terms of the
local sensor encoding matrices. In Section III, we study the case
when both source and observations are scalars, and give the cor-
responding optimal power scheduling. We also give the asymp-
totic analysis of the MSE performance with both coherent and
orthogonal MACs. Sections IV and V discuss the case when
both source and observations are vectors. In Section IV, we
study the optimal linear decentralized estimation under band-
width constraints without considering channel noises. A close-
form solution is obtained. In Section V, we consider the noisy
channel case, and study the general linear decentralized estima-
tion under both power and bandwidth constraints. Section VI
gives the summary and concludes the paper.

Notations: Throughout this paper we adopt the following no-
tations. A lower case letter denotes a scalar, a boldface/lower-
case letter denotes a vector, and a boldface/uppercase letter de-
notes a matrix. For a symmetric matrix , de-
notes its th eigenvalue assuming

. In addition, , and denote the trace, trans-
pose and pseudoinverse of respectively. The letter denotes
an identity matrix of size . For two matrices and , the
relation means that is positive semi-definite.

II. PROBLEM FORMULATION

Suppose there are sensors, each making observations on a
common unknown random vector signal .
We assume that has zero mean and covariance matrix .
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Fig. 2. Decentralized estimation scheme in a wireless sensor network with a
fusion center.

Sensor observations in general have a conditional distribution
based on : .

The sensors are coordinated by a fusion center to jointly es-
timate the random signal . For most wireless sensor networks,
sensors only have limited battery power and limited commu-
nication capability. Therefore, local data compression may be
needed at each sensor to reduce the communication require-
ment between sensors and the fusion center. We assume that
sensors are distributed and there is no inter-sensor communi-
cation. Each sensor compresses its observations to by a
mapping . The message are transmitted
to the fusion center through a multiple access channel (MAC).
The role of the fusion center is to generate the final estimate of

based on the received messages, where the estimate is denoted
by another mapping (see Fig. 2).

Throughout this work, we shall only focus on a linear
decentralized estimation where both observation models and
encoding/decoding mappings are linear. The linear coding
strategy is motivated by the fact that when a memoryless
Gaussian source is transmitted through an AWGN channel,
linear amplify-and-forward coding achieves the best power-dis-
tortion tradeoff. The optimality of linear coding has been
extended to the estimation of a Gaussian source over an AWGN
MAC [15], [16]. Another reason we limit ourselves to linear
sensor observation models and linear coding is for the ease of
analysis. With such assumptions, we can avoid unnecessary
technical complications but still be able capture the funda-
mental power-distortion tradeoff in distributed estimation.

Specifically, we assume the sensor observations
are the linear combination of corrupted by additive noises and
can be described as

(1)

where are observation matrices; Noise
are spatially uncorrelated among different sensors, and each
has zero mean and covariance matrix . Without loss of gen-
erality, we can assume that and . Other-

wise, we can introduce , ,

, and . Then we

obtain an equivalent model in which
, .

The linear design of the estimation scheme in which the mes-
sage functions and the fusion function are linear is mo-
tivated by the results derived in [14], [15], where it has been
proved that in the so-called Gaussian sensor network (in which

Fig. 3. Linear decentralized estimation with orthogonal MAC.

source, observations, and MAC noises are all Gaussian), linear
source-channel coding strategies can significantly outperform
the traditional separate source-channel coding.

Depending on the different multiple access schemes, we
investigate two cases for the MAC between sensors and fusion
center: orthogonal and coherent. For the case of orthogonal
MAC, we assume that sensors have their independent noninter-
fering channels to the fusion center. This can be realized, e.g.,
by orthogonal time/frequency/code division multiple access
(TDMA/FDMA/CDMA). As for the coherent MAC, we allow
all sensors transmit simultaneously by using, e.g., the same
time slot or frequency band. Assuming perfect synchronization
between sensors and the fusion center, we can ensure that
transmitted signals from all sensors can reach the fusion center
as a coherent sum.

In the linear mapping of vector observations, one immediate
question is about how many real messages to which each obser-
vation shall be compressed. This is determined by the degrees
of freedom of the channel from sensor to the fusion center.
Assume that for each observation time snapshot, sensor can
transmit real messages to the fusion center, which is poten-
tially decided by the channel bandwidth. With such an assump-
tion, the message functions can be presented as

where

Based on the received messages, the fusion center then gener-

ates an estimate to minimize the MSE , where

. We describe the remaining part of the
linear decentralized estimation for two MAC cases as follows.

• Orthogonal MAC. In this case, the sensors transmit their
observations to the fusion center via orthogonal chan-
nels (see Fig. 3). For channel , the received signal can be
written as

(2)

where are the channel matrix from sensor

to the fusion center, , and
is the additive channel noise with covariance matrix .
Without loss of generality, we can assume .

Otherwise we can absorb into the channel gain
matrix to obtain an identity channel noise covariance
matrix, which is the so-called noise whitening.
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It is easy to see that the linear MMSE estimator of based
on takes the form

and has an MSE matrix satisfying (see, e.g., [30, The-
orem 12.1])

(3)

We note that for the orthogonal MAC case, the bandwidth
constraint can be different over sensors.

• Coherent MAC. Another case is that all sensors transmit
simultaneously. The transmitted signals from all sensors
reach the fusion center as a coherent sum under the as-
sumption of perfect synchronization between sensors and
the fusion center.1 In this case, we assume that each sensor
transmits the same number of real messages, i.e.,
for all . The received signal at the fusion center can be
expressed as (see Fig. 4)

(4)

where are the channel matrix from sensor
to the fusion center, and is the additive channel
noise with covariance matrix . Again, without loss of
generality, we can assume .

Notice that , and we further introduce vector
notations

with . As such, we have

(5)

Given , the fusion center then gener-
ates an estimate . Specifically, the linear
MMSE estimator in terms of and is

,
which is linear and achieves an MSE matrix given as

(6)

1Note that for orthogonal MAC, we only need to assume pair-wise synchro-
nization between each sensor and the fusion center, and synchronization among
sensor nodes is not required.

Fig. 4. Linear decentralized estimation with coherent MAC.

Remark 1: For both orthogonal and coherent MAC, we have
assumed their noise covariance matrices to be unitary. Such an
assumption is based on the following system setup. Suppose for
the case of orthogonal MAC, the frequency bandwidth of the
channel from each sensor to the fusion center is , then for the
coherent MAC, all sensors use the same frequency band (also
with a frequency bandwidth ) to transmit their observations
simultaneously. The sampling rate at the channel output is the
same for both MAC, which is the source symbol rate. Thus, the
noise power in the coherent MAC is the same as that in each
subchannel of the orthogonal MAC.

We in addition assume in the rest of the paper that
and rank . This corresponds to the case when every
component of the source is observed by at least one sensor.

Remark 2: Note that when all sensor observations
are directly available to the fu-

sion center, a centralized estimator
achieves an MSE

(7)

which is the performance benchmark for all decentralized esti-
mators with nonideal channel models.

The bandwidth constraints lead to a dimensionality condition
on , i.e., . Suppose in addition, the transmit
power constraint at sensor is . We have the following con-
straint on :

(8)

Thus, to design the optimal linear decentralized estima-
tion scheme, we shall solve the optimal encoding matrices

subject to power and bandwidth constraints
such that is minimized. This leads to the following
optimization problem:

satisfies (3) or (6)

(9)
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TABLE I

SUMMARY OF PARAMETERS

To solve the optimization problem (9), we assume that the fu-
sion center has the knowledge of sensor observation models and
channel states between sensors to the fusion center:

. This assumption is reasonable in cases where
the network condition and the signal observation model change
slowly in a quasi-static manner. Thus, once

are acquired by the fusion center, they can be used
for a reasonably long period of time.

When the MAC is orthogonal, it has been shown in [28, The-
orem 1] that the complexity of designing the optimal linear en-
coding matrices is NP-hard (in ) when ,
even for the special case of and for all (i.e.,
channels are noiseless). In this paper, we will focus on the linear
decentralized estimation under coherent MAC. The main work
can be outlined as follows:

• Scalar case. We first consider a special case where source
and observations are all scalars. As such, the design of
linear encoding matrices is reduced to the selection of
linear scaling factors. We discuss the optimal power al-
location among sensors and derive the optimal tradeoff
between MSE and the total transmit power. Interestingly,
we show that turning off sensors is not necessary in the
coherent MAC, which is in sharp contrast to the orthog-
onal MAC case, where turning off sensors is proved to
conserve energy [31], [32]. In addition, we show that in
term of , the MSEs with the two multiple access schemes
have significantly different asymptotic behaviors.

• Vector case. In this case, we aim for designing the op-
timal coding matrices s to minimize the MSE subject
to both power and bandwidth constraints. We first ignore
the channel noise . The purpose of this study is to illus-
trate how the bandwidth constraint affects the achieved
MSE. Surprisingly, unlike the orthogonal channel case,
the optimal coding matrices for the coherent MAC have
analytical forms. Secondly we consider the noisy MAC
channel and impose power constraints on transmitted mes-
sages s. We formulate the optimization of s as an
SDP problem, and illustrate by numerical results how the
bandwidth and power constraints affect the achieved MSE.

For convenience, we summarize the parameters defined in
this section in Table I.

III. SCALAR CASE

In this section, we analyze the linear decentralized estimation
when source and observations are scalars. We first give the op-
timal power allocation for the case of coherent MAC, and then
compare its performance to the case of orthogonal MAC.

When source and observations are scalars (i.e., and
for all ), the observation model in (1) is reduced to

(10)

where both and are assumed to have zero mean and unitary
variance, but otherwise unknown. The noise is also assumed
to be spatially independent over . Following (7), the benchmark
MSE of estimating based on s satisfies

(11)

Suppose the corresponding analog forwarding encoder is
given by , where is the scaling factor to be
designed. The resulting average transmit power of sensor is

(12)

After the amplification, s are transmitted to the fusion center
with a coherent MAC. In light of (4), the received signal at the
fusion center is

(13)

where is the channel gain of sensor to the fusion center, and
is the channel noise. Similarly, is assumed to have zero mean

and unitary variance. The linear MMSE estimator of from
is , which has distortion satisfying

(14)

A. Uniform Power Scheduling

Suppose all sensors use the same transmit power, that is,
where is the total transmit power. Therefore, from (12)

we get . Let denote the achieved
distortion with uniform power scheduling. From (14),
satisfies

We see that when , monotonically decreases
with and
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where in the last inequality, we applied the Cauchy-Schwartz
inequality, and the equal sign holds if and only if there exists

such that

for all (15)

We summarize the above result in the following theorem.
Theorem 3: Let denote the MSE achieved by analog

forwarding where each of the sensors uses exactly the same
transmit power of . Then, for every finite

Moreover, even with infinite transmit power at every sensor,
is always strictly larger than unless condition (15)

holds.

B. Optimal Power Scheduling

Now we consider an optimal power allocation strategy
whereby transmit power is optimally scheduled among
sensors to achieve the best estimation performance. Let

denote the distortion achieved by assigning
to sensor . We study the following MMSE estimation

problem under a total power constraint:

(16)

We can write the above problem in terms of the coding factors
, and obtain the following problem:

(17)

It is easy to see that the above problem is not convex in
. However, we can transform it into an equivalent

convex form that is efficiently solvable, for which the detail is
given in the Appendix. We summarize the obtained result in the
following theorem.

Theorem 4: For the linear decentralized estimation of based
on the observation model in (10) and the MAC model in (13),
assuming a total transmit power constraint imposed on all
sensors, the best achievable distortion satisfies

(18)

The optimal power allocation achieving the above power-distor-
tion tradeoff is

(19)

where

Remark 5: Formula (19) is intuitively appealing as it indi-
cates that the optimal power scheduling admits a distributed im-
plementation. First, the fusion center broadcast the constant
and (which are both universal over ) to the local sensors.
Then, the local sensors use , , and two local parameters ,

to determine their individual transmit power. It is also in-
teresting to note that no sensors are turned off unless for trivial
cases where either or . This is different from the
optimal power scheduling for the orthogonal MAC, where sen-
sors with poor observation quality or small channel gains are
turned off to conserve energy [32].

Remark 6 (Asymptotic Analysis): It is interesting to analyze
the asymptotic behavior of when or when .

• When gets larger but is fixed, we have that ap-
proaches as

Therefore, .
This implies that with fixed number of sensors, when

, approaches the benchmark MSE with a gap
proportional to . In this case, does not go to

zero since its performance is limited by the finite number
of sensor observations.

• When is large but is fixed, assuming
are i.i.d. over , we obtain that

(20)

This implies that surprisingly, the MSE of the coherent
MAC decreases in the order of even though the total
transmit power is finite. Such an asymptotic behavior
however does not hold for the orthogonal MAC (see Sec-
tion III-C).

Theorem 4 implies that with optimal power scheduling over
a finite number of sensors, the analog forwarding achieves an
MSE converging to as the total transmit power .
This is in contrast to Theorem 3 that reveals that the uniform
power scheduling typically achieves an MSE that is strictly
larger than , even when (unless condition (15)
holds). In most inhomogeneous sensing environment, the
margin between and is significant. In Fig. 5, we
plot the curves of MSE versus the total transmit power
under both uniform and optimal power schedules where the
total number of sensors . Note that the power is taken
relative to the channel noise power. Since we assume that the
channel noise has unitary variance, we thus label the transmit
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Fig. 5. Uniform power scheduling versus optimal power scheduling when
P ! 1. Note that the power P is taken relative to the channel noise power.
Since we assume that the channel noise has unitary variance, we thus label the
transmit power in the unit of dB.

Fig. 6. Uniform power scheduling versus optimal power scheduling when
L ! 1.

power in the unit of dB. In the simulation, sensor observation
noise variances are taken from a Chi-squared distribution with
degree 1, and channel gains are taken as where

is uniformly taken from the real interval [1, 10], and is
a normalization constant to make . In the figure,
the simulated MSE is averaged over 1000 realizations of

, and is actually the expected MSE.
We can see that when increases, values converge to two
different limits that are and , respectively. As can
be seen, there is a large gap between and . Fig. 6
plots the curves comparing the achieved MSE when increases
with the total power being constant: . A significant
performance gain from the optimal power scheduling can
be observed from the gap between the two MSE curves. In
addition, the performance gain becomes more significant as the
total number of sensors increases.

C. Compared to Orthogonal MAC

In this section, we compare the MSE performance between
orthogonal MAC and coherent MAC. When multiple access be-

tween sensors and the fusion center is orthogonal and signals are
scalars, in light of (2), the received signals at the fusion center
can be represented as

where is the channel noise with zero mean and unitary vari-
ance.

From , we can estimate by a linear MMSE
estimator and achieve an MSE satisfying [3]

(21)

where in the second equality we used the fact that
[see (12)]. It is interesting to see that (18) and (21) are almost

identical except that in each term of the right-hand side (RHS)
sum, one is and the other is . This reveals that the coherent
MAC with optimal power scheduling has the same MSE per-
formance with the orthogonal MAC in which each sensor uses
the total transmit power . Such a fact leads to a significant
difference for the asymptotic performance (in terms of ) be-
tween these two access schemes. We shall also comment that
for the case of orthogonal MAC, although the designing the op-
timal linear decentralized estimation is NP-hard when observa-
tions are vectors [28], it can be reformulated into an equivalent
convex form for the scalar case, and the solution is given in [32].

Let be fixed but . For the orthogonal MAC with
uniform power allocation , under the assumption that

are i.i.d. over , it follows from (21) that

This implies that for orthogonal MAC, the achievable MSE is
finite even though is allowed to go to infinity. This is in sharp
contrast to the asymptotic performance of the coherent MAC
given in (20), which improves as . The optimal power sched-
uling of the orthogonal MAC for the case of scalar source and
observations is given in [32]. With optimal power scheduling,
there is performance gain but the asymptotic performance still
holds.

We see that for orthogonal MAC with a finite amount of total
transmit power , the overall MSE does not decrease to zero
even if approaches infinity. This is a consequence of using
orthogonal links from the sensors to the fusion center, which
leads to different channel noises (i.e., )
such that the corruption of channel noise cannot be eliminated
even when goes to infinity. However, in the coherent MAC,
only one channel noise (i.e., ) is generated per transmission.
Thus, as a result of the coherent combination, the signal to noise
ratio at the received message scales with due to the correla-
tion among transmitted messages, even though when the total
transmit power is finite.

The comparison of the achieved MSE for both orthogonal
and coherent MAC is plotted in Fig. 7, in which we take the
total power (relative to channel noise variance).
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Fig. 7. MSE performance comparison between orthogonal and coherent
MACs.

We see that with this finite total transmit power, the MSE of the
coherent MAC case does decrease to zero for both uniform and
optimal power scheduling when increases. In addition, both
MSE curves show an asymptotic behavior of . However, the
MSE for the orthogonal MAC behaves differently. As can be
seen from Fig. 7, for the uniform power scheduling, the MSE of
the orthogonal MAC goes to a finite level bounded below, while
for the optimal power scheduling, there is a power scheduling
gain. Such a gain is obtained by assigning most of the power to
sensors with good observation and channel qualities (see details
in [32]).

IV. VECTOR CASE: NOISELESS CHANNELS

Now we focus on the vector case. In this section, we study
the design of linear decentralized estimation by idealizing the
communication link from sensors to the fusion center, or equiv-
alently, assigning in (5). The main motivation here is
to treat the decentralized estimation from a linear compression
perspective, and observe how the bandwidth alone (which rep-
resents the number of linearly encoded messages) affects the
estimation performance.

With the assumption of noiseless coherent MAC, the received
signal has the form [see (5)]

We thus obtain that the linear MMSE estimator of is

, and the MSE
satisfies

(22)

where stands for the pseudoinverse of . Fixing the
bandwidth (to be ) introduces a dimensionality constraint on
each encoding matrix . We assume that channels from sensor

to the fusion center are nondegenerate, i.e., is invertible
for all . Since , solving is then equivalent to

solving . We therefore construct the following problem from
which we can solve the optimal :

(23)

This problem has been previously discussed in [10], [29] in
similar forms. In the following, we solve (23) using the property
of projection mapping and the Cauchy’s Interlacing Theorem

[33], by noticing that is a projection matrix. We
perform the singular value decomposition (SVD) of and ob-
tain

(24)

where and are unitary matrices and is diagonal.
Assume rank since , then has the
first diagonal entries nonzero. We can calculate that

(25)

We proceed by performing the SVD of .
Combining it with (25) we obtain

(26)

Thus, it follows from (22) and (26) that

(27)

Introduce a unitary matrix . Also let
denote the th smallest eigenvalues of a symmetric matrix .
Then it is easy to see from (27) that for any ,

(28)
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where denotes the upper

block of . Due to the Cauchy’s Interlacing
Theorem for eigenvalues of a subblock matrix [33, Corollary
III.1.5], we obtain that

for all (29)

noticing that has an SVD: .
Therefore, we obtain from (28) and (29) that

when

and , when . Therefore, the distortion

(30)

In the following, we choose the optimal such that the distor-
tion is minimized. This is equivalent to choosing appropriate

, , and for the SVD of . Notice that

rank given . Thus, it follows from
(30) that the optimal solutions are obtained when and
the equality holds in the last inequality of (30). First, according
to (27), the condition is equivalent to taking
in the following form

(31)

where is any positive diagonal matrix with size . Sec-
ondly, to make the equality hold in the last inequality of (30),
we need the equality in (29) to hold with . This requires

, which leads to since . In
addition, we see that can be any unitary matrix since it has
on impacts on .

As a summary, we establish the following theorem.
Theorem 7: For the linear decentralized estimation of a vector

signal when observations are given as in (1) and the MAC
between sensors and the fusion center is noiseless but subject to
a bandwidth constraint , the optimal encoding matrices

, where is given as follows.
• First we give , where is

the left eigenspace of , is any unitary matrix of size
, and is as given in (31).

• After obtaining , we can get from

.
The achieved MSE , as a function of , can be

represented as

Fig. 8. MSE versus bandwidth q (noiseless channel case).

where are eigenvalues of with a
decreasing order.

From the above theorem we can see that essentially, the
optimal should be full row-rank and can be obtained by
matching the right eigenspace of with the left eigenspace of

and choosing the left eigenspace of arbitrarily. Another
observation from Theorem 7 is that when the bandwidth
reaches , which is the number of components in the unknown
signal , the achieved MSE by optimally designed linear
decentralized estimation obtains the centralized benchmark.
Increasing the bandwidth further does not improve the MSE
performance. This demonstrates the relationship between
the channel bandwidth and MSE performance, i.e., from the
channel bandwidth point of view, coherent transmission is
enough for the best MSE performance.

A numerical plot of the MSE versus number of transmissions
(i.e., ) is given in Fig. 8, in which we take , ,
and assume that each sensor makes only one observation (i.e.,

) and each entry of has a complex Gaussian distri-
bution. The simulated MSE is averaged over 500 realizations of

. Note that the noiseless channel case that
we considered in Section III corresponds to an infinite transmit
power in this general setup. From the figure we see that once
the bandwidth reaches , the MSE reaches the bench-

mark (see (7)). Increasing further
does not help improve .

V. VECTOR CASE: NOISY CHANNELS

In this section we study the case of noisy coherent MAC. With
channel noise, signal power becomes relevant in determining the
fundamental performance of wireless links. Therefore, in addi-
tion to the bandwidth constraint , we add a transmit power con-
straint on the messages transmitted from each sensor. This
leads to the constraint on the encoding matrices given in (8).

Throughout this section we need a technical assumption that
there is no intersymbol interference between message transmis-
sions over each link, and the channel gain remains constant
during each observation period, which results in

(32)
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Based on the generic problem in (9), the optimal can be
obtained by solving the following problem:

(33)

Problem (33) is not convex over , due
to the nonconvex property of the first constraint. To obtain an
efficient solution, we will transform (33) into an SDP problem
with certain relaxation. At our first step, we will apply matrix
inversion lemma to transform the nonconvex constraint, and ob-
tain

Therefore

where we introduce a new positive semi-definite matrix
. For , denote the th diagonal block of as

. Then .
We will solve (33) in terms of the new variable . To ease the

technical analysis, we need the assumption on in (32). Under
such an assumption, the power constraints (8) can be recast as

Or equivalently, .
Notice that we can assume , since otherwise, the number

of coherent transmissions is larger than total number of sensor
observations, which is in general not necessary.2 Therefore,

is a fat matrix, the constraint is equivalent to
rank . Finally, in terms of , we can transform (33)
to the following problem:

rank

2In fact, if ` > q, we can see that the rank constraint rank(Q) = q is
not needed anymore. In that case, we can simply solve an optimal positive
semidefinite matrix Q 2 . From Q we can see that any B =
U [Q ] with U 2 and UU = I is a feasible solution. The
equationUU = I has infinite number of solutions when ` � q.

The first constraint on can be changed to

since at the optimal solution, the equality holds, which can be
proved by complementary slackness theorem [34]. Further ap-
plying the Schur’s complement [34], we see that this constraint
is equivalent to

(34)

Introducing a positive semidefinite matrix such that
, by Schur’s complement, we obtain that the

above constraint can be written in the form of two convex con-
straints:

Therefore, we eventually reach the following problem:

rank (35)

The objective function and constraints in (35) are convex ex-
cept for the last rank constraint, which is in general nonconvex
[34]. However, compared to the original problem in (33), (35)
can be much more efficiently solved by numerical approxima-
tions. In the following, we will remove the rank constraint and
solve (35) accordingly in a relaxed way. With such a relaxation,
the obtained solution is suboptimal. However, we will show
through numerical examples that in fact, the optimal has most
of its spectrum distributed over the first few eigenmodes. By
solving the relaxed SDP problem, we obtain a that may have
rank larger than .3 One natural way of obtaining the solution to
the original problem from such a is to perform the eigende-
composition:

where is the eigenvector of corresponds to .
Taking the largest principle eigencomponents of , we obtain
a solution for as follows:

3However, it can be observed from the numerical examples that the optimal
solution of Q has most of its spectrum distributed at the first q eigenvalues.
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Fig. 9. Eigenvalue distribution ofQ (L = 8, ` = 1).

Fig. 10. MSE versus bandwidth q with different power budgets (L = 8,
` = 1).

which is a matrix. From , we can obtain and eventually
get the encoding matrices , similar to what is presented in
Theorem 7.

SDP is a special class of convex optimization problem, and
therefore enjoys all the advantages of convexity. There are well-
developed numerical methods to solve a general convex opti-
mization problem, among which the most well-known one is the
interior point method. In the numerical example, we adopt an
optimization toolbox: Self-Dual-Minimization (SeDuMi) [35]
to solve the SDP formulated in (35) (after relaxing the last rank
constraint). SeDuMi is a software package that solves optimiza-
tion problems over symmetric cones using the primal-dual inte-
rior-point methods.

In the simulation, we choose each entry of to be complex
Gaussian with unit variance and , is the
same as the scalar case, i.e., are taken as where
is uniformly taken from the real interval [1, 10], and is a nor-
malization constant to make . For the transmit power
constraints, we take different power levels: , 0, 6 dB
for all . The simulated MSE is averaged over 500 realizations
of . Note that the noiseless
channel case that we considered in Section III corresponds to an
infinite transmit power in this general setup.

Fig. 11. MSE versus bandwidth q with different power budgets (L = 5,
` = 2).

In the first example, we take , , and for all

. A numerical plot of the eigenvalue distribution of solved

from the SDP is given in Fig. 9, in which the vertical axis rep-

resents the percentage of each eigenvalue against the total spec-

trum (sum of all eigenvalues) of . We see that although

the rank constraint of has been relaxed, the optimal solution

only has the first few eigenvalues of significant contribu-

tion. The achieved MSE is plotted in Fig. 10. Both Fig. 9 and

Fig. 10 imply that in the noisy channel case, increasing the band-

width ( value) above a certain threshold does not improve ,

where the threshold is jointly decided by the power constraint

and number of components in the source (i.e., ). Another ex-

ample of the achieved MSE for , , and is

given in Fig. 11.

VI. CONCLUSION

Motivated by the optimality of uncoded transmission of a

Gaussian source through an AWGN channel, we have consid-

ered the linear decentralized estimation of an unknown signal by

a sensor network with a fusion center. By assuming nonorthog-

onal channel usage and coherent combination of sensor mes-

sages at the fusion center, we have designed the optimal linear

decentralized estimation scheme subject to bandwidth and/or

power constraints, for the cases where source and observations

are scalars or vectors.

For the scalar case, we have considered the optimal power

allocation among sensors. We have derived the optimal power

scheduling that optimizes the achieved MSE under a total

power constraint. It is shown that the optimal transmit power

for each sensor can be determined in a distributed manner by

using local observation signal to noise ratio and individual

channel gain, provided that the fusion center broadcast two

appropriate constants ( and ; see Remark 5). Simulations

show that the proposed power scheduling strategy significantly

improves the mean squared error performance when compared

to the uniform power scheduling. We have also shown that

the MSE performance has significantly different asymptotic

behaviors when is large for orthogonal and coherent MACs.

For the vector case, we have studied the linear decentralized

estimation by designing the optimal encoding matrices. We have

shown that under a bandwidth constraint, the optimal encoding
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matrices have a closed-form solution when neglecting channel

noise. This is in contrast to the case of orthogonal channel usage,

where the complexity of designing the optimal linear decentral-

ized estimation is NP-hard in general [28]. By taking the channel

noise into consideration, we can efficiently solve the problem

through SDP under both bandwidth and power constraints.

Throughout this work, we have assumed that

remain constant over each observation period. This assumption

is reasonable when the network condition changes slowly

(e.g., in a quasi-static manner). In such a case, the fusion

center can first collect the values of (via

training sequences), and then solve for the optimal encoding

matrices. Concerning the feedback, for the scalar case, only

two universal parameters need to be broadcasted from the

fusion center to all sensors. Each sensor can then determine

its coding factor by using the local parameters. For the vector

case, our current scheme requires the feedback of . Thus,

a distributed implementation which does not require heavy

communication load for feedback is desirable. In addition, we

have assumed perfect synchronization between sensors and

the fusion center. The effect on the system performance due

to nonideal synchronization, nonideal fusion center feedback,

or partial knowledge of channel states and sensing models, is

worth further investigation.

APPENDIX

SOLVING THE OPTIMAL POWER SCHEDULING

Since (17) is not a convex problem, we will solve an alter-

native but equivalent problem to obtain the optimal power al-

location. Suppose the optimal solution of (16) takes the form

, then it should be a monotonically decreasing func-

tion of . Now we consider an alternative case of minimizing

the total power consumption while meeting a given MSE con-

straint. This gives the following problem:

(36)

Suppose the optimal solution of this problem is . It

is easy to see that and are inverses of each

other. Instead of solving (16), we propose to solve (36), since the

latter can be transformed into a convex problem. This is shown

in the sequel.

In terms of the coding factor s, we obtain that (36) is equiv-

alent to the following problem:

The above problem is not convex in terms of . We

introduce a slack variable and it becomes

(37)

This problem is convex over the decision variables

. In fact, it is a second-order cone pro-

gramming (SOCP) that is efficiently solvable by interior point

methods [34]. However, we show below that it can actually be

solved analytically.

The Lagrangian function for (37) is

where

From the Lagrangian function we can derive the following

Karush-Kuhn-Tucker (KKT) conditions [34]:

To solve the above system, we first obtain from the second

KKT condition that

(38)

Plugging (38) and into the first KKT condition

we get that is the root of the following equation (in ):

(39)
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Notice that the function on the left side is an increasing function

in . Next we solve for . From (39) we see that only for a

trivial case when (since we have assumed that the source

has a unitary variance). Thus we can assume . Again it

follows from the first KKT condition that .

We plug it altogether with (38) into the third KKT condition, and

obtain that

(40)

Thus it follows from (38) that the optimal power scheduling, in

terms of and , is

(41)

Interestingly, we can verify that

where (a) is due to (39), (40), and (b) follows from some direct

calculation. Therefore, . By (39), we obtain that at the

optimal solution, and satisfy

(42)

Therefore, the minimum amount of power (which is

the solution to (36) of achieving a given distortion ) satisfies

(42), and the optimal power allocation achieving such a min-

imum total power is given by (39)–(41).

Since and are inverses of each other

[where is the solution to (16) of achieving the min-

imum under the total power constraint ], we obtain that

is given by (42) as well. The corresponding optimal

power allocation (19) can be calculated from (41), using the

fact that and .
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