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Abstract

Multiple diagnostic tests or biomarkers can be combined to improve diagnostic accuracy. The 

problem of finding the optimal linear combinations of biomarkers to maximise the area under the 

receiver operating characteristic curve has been extensively addressed in the literature. The 

purpose of this article is threefold: (1) to provide an extensive review of the existing methods for 

biomarker combination; (2) to propose a new combination method, namely, the nonparametric 

stepwise approach; (3) to use leave-one-pair-out cross-validation method, instead of re-substitution 

method, which is overoptimistic and hence might lead to wrong conclusion, to empirically 

evaluate and compare the performance of different linear combination methods in yielding the 

largest area under receiver operating characteristic curve. A data set of Duchenne muscular 

dystrophy was analysed to illustrate the applications of the discussed combination methods.
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1 Introduction

In diagnostic study, multiple tests are often performed on the same individual to provide 

clinicians as much information as possible as it is becoming increasingly clear that one 

single diagnostic test or biomarker is not sufficient to make accurate disease diagnosis or 

prognosis.1 It is therefore of critical importance to combine the information available in an 

optimal way to improve the diagnostic/prognostic accuracy.2

We consider the cases when the diagnostic outcome is binary, i.e., non-diseased and 

diseased. Let S1 and S2 denote the scores resulting from a diagnostic test or biomarker and 

F1 and F2 be the corresponding cumulative distribution functions for the non-diseased and 
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diseased subjects, respectively. Assume that the results of a diagnostic test are measured on a 

continuous scale and higher values indicate greater likelihood of having the disease. For a 

threshold value c, let F1(c) and 1 − F2(c) be the true classification rates for non-diseased and 

diseased category, also known as the specificity and sensitivity of the marker, respectively. 

For all possible c ∈ ℝ, a plot of {1 − F1(c), 1 − F2(c)} produces the receiver operating 

characteristic (ROC) curve of the marker,3 the most widely used graphical and statistical tool 

for assessing a diagnostic test’s ability to distinguish between two disease populations. The 

area under this curve (AUC), the most commonly used diagnostic accuracy measure, is then 

given by

One can show that the AUC is mathematically equivalent to the probability P(S1 < S2).4 

Note that the unbiased nonparametric Mann-Whitney U statistic of the AUC is given by

(1.1)

where n1 and n2 are the sample sizes for non-diseased and diseased subjects, respectively, 

and I(·) stands for the indicator function. Under the normality assumption , d 

= 1, 2, the AUC can be further expressed as

(1.2)

where Φ(·) is the standard normal distribution function, see Pepe5 for details. For a useless 

biomarker (e.g., when normally distributed S1 and S2 have the identical means), the AUC is 

0.5.

When several diagnostic tests and biomarkers are available, one can combine them in a 

linear fashion into a composite score that achieves better diagnostic/prognostic accuracy. An 

optimal linear combination of biomarkers is defined as the one for which the composite 

score would achieve the maximum AUC over all possible linear combinations. Many articles 

have addressed the problem of finding the optimal linear combination to maximise the AUC. 

For instance, Su and Liu6 extended Fisher’s discriminant function and derived an optimal 

linear combination that maximises the AUC when the markers in the non-diseased and 

diseased category follow multivariate normal distributions. Without assumptions on the 

distributions of the markers, Pepe and Thompson7 considered an empirical search of the 

optimal linear combination that maximises the Mann-Whitney statistic of AUC, although 

this approach is computationally formidable when the number of biomarkers is large.8 Liu et 

al.9 developed a semi-linear min-max combination approach which only involves searching 

for a single coefficient that maximises the Mann-Whitney U statistic of AUC and thus is 
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computationally efficient. However, as stated by the authors, when not all markers are 

measured on the same scale the feasibility of this combination method might be an issue. 

Recently, Jin and Lu10 proved that, if the data satisfy a logistic regression model, the 

coefficient from a fitted logistic regression with binary diagnostic outcomes is the optimal 

linear combination in the sense that it provides the highest sensitivity uniformly over the 

entire range of specificity and therefore yields the largest AUC among all possible linear 

combinations. All of the above-mentioned methods have pros and cons so that there is no 

clear winner. In this paper, we propose a nonparametric stepwise approach for the same 

purpose. This new approach is flexible and easy to implement, and performs better than 

other methods under certain scenarios. More details will be given in Section 4.

So far, the comparison of performance among the existing combination methods has been 

done6,7,9,10 using re-substitution method for AUC estimation which consists of the following 

steps: (1) linear combination coefficients were first estimated from a particular data set; (2) a 

composite score was then calculated by linearly combining multiple diagnostic tests using 

the estimated coefficients; (3) and finally the AUC was estimated based on the combined 

score. The investigators usually concluded the superiority of a certain linear combination 

method if the associated AUC is the largest. However, as pointed out by a few 

researchers,11–13 the estimated AUC using the composite score by re-substitution method 

usually is overoptimistic for estimating the diagnostic/prognostic accuracy on future 

observations. In other words, a linear combination rule might perform well in yielding the 

largest AUC on observed dataset used for obtaining the estimated combination coefficients; 

however, it might not be the optimal rule on different dataset, e.g., future observations. 

Therefore, using re-substitution method to estimate AUC for the purpose of comparing 

between combination methods might be misleading. This is a common phenomenon 

between training set and validation set in the discipline of machine learning.14 On the other 

hand, cross-validation method is considered as the simplest and most widely used method 

for estimating the prediction error.15–17 Recently, Huang et al.11 proposed several methods 

to adjust for the upward bias from estimating the AUC associated with the estimated 

coefficients by re-substitution. Among the investigated methods including bootstrap and 

sigmoid function smoothing, the leave-one-pair-out cross-validation (LOPO CV) approach is 

especially advocated because it produces nearly unbiased AUC estimate associated with the 

estimated combination coefficients. They also mentioned an approximated cross-validation 

to reduce the computing cost.

To our knowledge, no work has been done in evaluating and comparing the performance of 

linear combination methods, i.e., the methods by Su and Liu,6 logistic regression and Liu et 

al.,9 using LOPO CV estimate of AUC. Therefore, in this article, besides presenting an 

extensive review of the existing combination methods and proposing a new stepwise 

combination method, we are also concerned with comparing the performance of the 

combination methods using LOPO CV estimate of AUC instead of re-substitution method. 

More details will be given in Section 2.

The rest of our article is organised as follows. In Section 2, a LOPO CV approach to 

estimating the diagnostic/prognostic accuracy of a linear combination rule based on AUC for 

future observations was discussed. An overview of the historic developments of linear 
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combination methods was briefly given in Section 3. In Section 4, a new nonparametric 

stepwise approach was introduced. An extensive simulation study was presented in Section 5 

for comparing the performance of different linear combination methods in maximising the 

diagnostic/prognostic accuracy for future subjects based on AUC. In Section 6, existing 

approaches as well as the proposed approach were applied to a real data set of 125 females 

on Duchenne muscular dystrophy (DMD) from Carnegie Mellon University Statlib Datasets 

Archive to combine four markers to increase the diagnostic/prognostic accuracy of screening 

females as potential DMD carriers. A broader discussion on deriving linear combinations of 

diagnostic tests and biomarkers to improve the diagnostic/prognostic accuracy is presented 

in Section 7.

2 A LOPO CV approach to estimating AUC of linear combination rules

2.1 Notations and preliminary

Suppose we have p diagnostic tests or biomarkers available on each individual. The 

diagnostic category is denoted as D = d, where d = 1, 2, representing non-diseased and 

diseased subjects, respectively. Let

be the p–dimensional observed scores from a random sample of size n1 in the non-diseased 

category, and

be the p– dimensional observed scores from a random sample of size n2 in the diseased 

category. The data is often stacked together in a matrix form

where the first p columns form the matrix of observed scores concatenated from Xi and Yj 

by row and the last column indicates the diagnostic category. Here, we are not focusing on 

high dimensional data, restricting p ≪ min(n1, n2).

The problem of interest is to obtain a vector combination coefficient c such that the 

univariate composite scores S1i = Xic and S2j = Yjc for non-diseased and diseased category, 

respectively, have the largest overall discriminating ability of classifying subjects into their 

corresponding diagnostic category, in this case, yielding the largest AUC. Denote the 

estimated combination coefficient from the observed data [Xi]n1 × p and [Yj]n2 × p to be ĉ, the 

literature6,7,9,10 often show the optimality of their linear combination methods by presenting 

the estimated AUC associated with ĉ, , which can be simply estimated by 

re-substitution as follows,
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without any distributional assumption of Xi and Yj, or

where µ̂1, µ̂
2 are the sample means and Σ̂1, Σ̂2 are the sample variance-covariance matrices 

of observed Xi and Yj, respectively, given that Xi and Yj follow a multivariate normal 

distribution Np(µ1, Σ1) and Np(µ2, Σ2).

Unfortunately, these estimates of AUC for overall diagnostic/prognostic accuracy are 

overoptimistic, especially for small sample size problems; for example, see Huang et al.11 

and Efron.12 When the composite score is calculated based on estimated combination 

coefficients from a given dataset, it tends to discriminate subjects better than it should be if 

applying the same combination rule to another random dataset from the same populations. In 

an extreme case, one may argue that with certain nonlinear combinations, it is possible to 

achieve perfect discriminations (i.e., non-diseased and diseased are fully separated) on the 

given dataset. However, it is impossible to perform perfect discriminations on another 

independent dataset.

Note that our ultimate goal is to estimate the AUC of the composite score for future 

observations (Xind,Yind), independent of the observed data used for obtaining ĉ as follows,

This in fact serves as a better assessment of discriminatory or prognosis accuracy of certain 

combination rule for the purpose of improving diagnostic/prognostic accuracy on future 

observations. Hence, re-substitution procedure is not appropriate for such purpose.

2.2 An LOPO CV procedure solution

The cross-validation12,14,15 is the simplest and most widely used technique for assessing 

how the results of a statistical analysis would generalise to an independent data set and how 

accurately a predictive model will perform in practice. First developed by Quenouille16 in 

the form of “leave-one-out” procedure (Jackknife), it was used to estimate the bias of an 

estimator. Lachenbruch17 also discussed an almost unbiased method of obtaining confidence 

intervals for misclassification rate in discriminant analysis based on n1 − 1 and n2 

observations or n1 and n2 − 1 observations. Similarly for our context, Huang et al.11 

discussed a LOPO CV procedure to estimate the AUC associated with linear combination ĉ 
for future observations (Xind, Yind). The so-called LOPO CV estimate of AUC of the 

combination rule is as follows,
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(2.1)

where ĉ(−ij) is the linear combination coefficient calculated from the observed data 

[X(−i)](n1−1)×p and [Y(−j)](n2−1)×p, where [X(−i)](n1−1)×p is obtained by removing the ith row 

from [Xi]n1×p and [Y(−j)](n2−1)×p is obtained by removing the jth row from [Yj]n2×p. The 

authors pointed out that alternative 5-fold cross-validation and 10-fold cross-validation can 

be applied instead of LOPO CV to gain computational efficiency. Besides the cross-

validation methods, they also discussed several methods including bootstrap for estimation 

of AUC associated with the estimated coefficients. In conclusion, they recommended the use 

of LOPO CV for the AUC estimate associated with the combination rule for future 

observations as it has been shown to be nearly unbiased in their simulation studies.

In this article, our main concern is the point estimation of the AUC associated with ĉ for 

future observations. Therefore, we employ the LOPO CV method in evaluating and 

comparing the performance of different linear combination methods in improving 

diagnostic/prognostic accuracy based on AUC for future observations. Here, we only 

consider the LOPO CV approach for AUC nonparametric Mann-Whitney U statistic-based 

estimator as in equation (1.1). This is because if [X(−i)](n1−1)×p and [Y(−j)](n2−1)×p are 

already used for estimating linear combination coefficient ĉ(−ij), it is awkward to estimate 

the variance-covariance matrices Σ1 and Σ2 based on the only remaining pair of X(i) and Y(j), 

should we want to use parametric AUC estimator as in equation (1.2). Furthermore, the 

LOPO CV approach for nonparametric AUC estimator, which is nearly unbiased,11 fully 

serves the purpose of this article.

3 The existing approaches

3.1 Su and Liu’s approach

Again, assume that Xi and Yj follow a multivariate normal distribution Np(µ1, Σ1) and 

Np(µ2,Σ2) for the non-diseased and diseased subjects, respectively. Anderson and Bahadur18 

first discussed classification problems for two multivariate normal distributions with 

different covariance matrices. Realizing that the result can be extended to AUC, Su and Liu6 

derived the best linear combination that maximises the AUC with

Because the AUC is invariant to scalar transformation, apart from a constant coefficient,

(2.2)

Su and Liu6 proved that the AUC of this combination c is maximised among all possible 

linear combinations under the multivariate normality assumption. In practice, the mean 
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vector and variance-covariance matrix for each diagnostic category can be estimated from 

the data. The estimates can then be substituted into equation (2.2) for calculating the 

combination coefficient ĉ = (Σ1̂ + Σ̂2)−1 (µ̂2 − µ ̂
1). The estimated coefficient ĉ, together with 

the estimated means and variance-covariances can be re-substituted into equation (1.2) to 

estimate the AUC associated with the combination ĉ as follows,

(2.3)

It is already mentioned above that this estimate is overoptimistic for AUC of the 

combination rule on future observations. Furthermore, note that Su and Liu’s approach was 

developed under the assumption of normality. Hence, without normality assumption, 

especially when sample sizes n1 and n2 are not large enough, the asymptotic result for this 

combination approach may not hold, and thus the linear combination from this approach 

may not be optimal.

3.2 Pepe and Thompson’s approach

Pepe and Thompson7 considered maximising the AUC without normality assumptions on 

the distribution of Xi and Yj. For simplicity, they addressed the issue of finding optimal 

linear combinations with only p = 2, i.e., Xi = (Xi1, Xi2), i = 1, 2, … , n1, and Yj = (Yj1, Yj2), 

j = 1, 2, … , n2. Such setting avoids the potential computational difficulties, which we will 

revisit later. In this scenario, the vector combination coefficient is c = (c1, c2)′. Due to the 

fact that the AUC is invariant to scalar transformation, finding the combination coefficient c 

= (c1, c2)′ which maximises the AUC is equivalent to finding c = (1, α)′, where α ∈ (−∞, 

∞).

It is straightforward to show that the Mann-Whitney U statistic of the AUC associated with 

combination coefficient c = (1, α)′ is

(2.4)

As Pepe and Thompson7 pointed out, one might choose α such that U(α) is maximised. 

Since U(α) is not a continuous function of α, a search rather than a derivative-based method 

is needed for the maximisation procedure. It means that general-purpose optimization 
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algorithms such as conjugate-gradient or Newton-type methods are not appropriate for this 

maximisation.

To implement the maximisation by searching α, U(α) is evaluated for 201 equally spaced 

values of α ∈ [−1, 1]. For α < −1 and α > 1, 

, where , thus U(α) is 

evaluated for another 201 equally spaced values of . The optimal combination 

coefficient is ĉ = (1, α̂)′ or ĉ = (γ̂, 1)′ that maximises the U(α). See Pepe and Thompson7 

for details.

Eventually, when p > 2 markers are involved, we need to search p − 1 coefficients {α2, … , 

αP} using the same scheme such that

is maximised. The idea is straightforward at the first glance, however, when the number of 

markers is large, i.e., p ≥ 3, this approach is computationally formidable.8

3.3 Liu et al.’s approach (Min–Max)

To address the computational difficulty from Pepe and Thompson,7 Liu et al.9 proposed a 

nonparametric min-max combination approach that linearly combines only the minimum 

and maximum values of p markers to maximise the Mann-Whitney U statistic of AUC, i.e.,

(2.5)

where

and

The searching of α is exactly the same as in Pepe and Thompson.7 However, such a 

combination only involves searching for a single coefficient and thus is computationally 

efficient. They showed under certain circumstances, the proposed min-max combination 

may yield larger AUC than empirical search of combination coefficient by Pepe and 

Thompson.7
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Although this procedure is easy to implement, it comes with a few possible drawbacks. For 

instance, the authors commented that when the markers are measured with different units/

scales, the measurements need to be standardised first before proceeding combination using 

this min-max combination approach. Also, since this approach just uses the minimum and 

maximum values of p markers, it is not clear whether the information contained in the data 

is fully utilised. Another difficulty of interpretation of the estimated linear combination 

coefficient lies in the fact that the minimum and maximum of p markers may come from 

different markers for different subjects.

3.4 Logistic regression approach

Walker and Duncan19 proposed logistic regression as a way of modelling the probability of 

an event given several independent variables. Richards et al.20 presented a method for 

multiple test combinations that is based on a modified Bayes formula analogous to logistic 

regression. The logistic regression yields a linear combination of markers that intuitively 

discriminates non-diseased subjects from the diseased. Let Mp denote a vector of p– variate 

observed scores from either non-diseased or diseased category. The logistic regression 

approach produces an intercept β0 and a vector coefficient c, i.e.,

Of course, the vector coefficient ĉ is chosen to maximise the logistic likelihood function 

rather than to maximise the AUC when the method was proposed.

Recently, Jin and Lu10 proved that under the condition of generalised linear models, the 

coefficient from a fitted logistic regression with binary diagnostic outcomes is the optimal 

linear combination in the sense that it provides the highest sensitivity uniformly over the 

entire range of specificity and therefore yields the largest AUC among all possible linear 

combinations. The solution is quite appealing, although checking the assumptions 

underlying the generalised linear models, e.g., the correct specification of the link and 

variance functions, is not easy in reality.

Efron21 and Ruiz-Velasco22 pointed out the logistic regression is generally less efficient than 

the normal discriminant analysis when the normal assumption is met and thus is less 

efficient than Su and Liu’s method based on multivariate normality. On the other hand, Cox 

and Snell23 suggested the logistic regression will be more robust because estimation of the 

best linear combination needs no assumption of the joint distribution of the multiple 

biomarkers. What can be expected is that when the normality assumption is met, the logistic 

regression approach would not perform as well as Su and Liu’s method. It is interesting to 

explore the performance of linear combinations from the logistic regression approach with 

non-normal data.
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4 The proposed method

In this section, a new nonparametric approach for linearly combining markers to maximise 

the AUC will be discussed. This distribution-free stepwise approach aims to find the optimal 

combination empirically by maximising the Mann-Whitney statistic of the AUC at each step.

As in Section 3.2, the empirical estimate of AUC of the combination ĉ = (1, α)′ = (1, α2, 

… , αp)′ is

When the number of markers p ≥ 3, the empirical search for c is computationally 

inaccessible. The nonparametric min-max procedure by Liu et al.9 provides alternative 

solution, but it still comes with aforementioned drawbacks.

To overcome all the shortcomings of the current existing combination methods, we develop 

a distribution-free approach that combines all the markers in a stepwise fashion as follows.

1. Estimate the AUC for each of p markers based on the Mann-Whitney 

statistic.

2. Assign the order from 1 to p for each marker based on their estimated 

AUC from largest to smallest.

3. Combine the first two markers with first two largest AUC using empirical 

search for combination coefficients by Pepe and Thompson.7

4. Having derived the combined score obtained in step 3, combine it with the 

marker with the third largest estimated AUC.

5. Proceed in this fashion until the marker with smallest estimated AUC is 

included in the linear combination.

We also consider another stepwise combination approach proceeding from the marker with 

the smallest estimated AUC to the marker with the largest estimated AUC. The reason that 

we choose these two stepwise methods for investigation is rooted in order restricted 

inference,24 where it is argued that any other stepwise method selecting different proceeding 

orders would perform somewhere in between. The advantages of our stepwise approach are 

(1) it is distribution-free and therefore it is robust; (2) it is easy to implement and thus it 

offers a relief from the computational burden in the empirical search of combination 

coefficients in p − 1 dimensional spaces; (3) interpretation of estimated linear combination 

coefficient is relatively easy. Similar stepwise combination method has been proposed for 

the biomarkers with three ordinal diagnostic categories by Kang et al.25; however, no work 

has been done for biomarkers with binary disease status.
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5 Simulation studies

Simulations were conducted to compare the performance of different combination methods 

in improving the diagnostic/prognostic accuracy on future observations based on AUC. 

Overall, we compare the performance of five approaches, namely, Su and Liu’s method 

(SULIU), Liu et al.’s min-max approach (MIN-MAX), logistic regression approach 

(LOGISTIC), the stepwise method proceeding from marker with largest estimated AUC to 

marker with smallest estimated AUC (SW1) and the stepwise method proceeding from 

marker with smallest estimated AUC to marker with largest estimated AUC (SW2).

The performance of all the above approaches to obtaining the largest AUC was investigated 

through extensive simulation studies. Eight different settings of the joint distributions of four 

markers (p = 4) were considered. For each setting, observations were generated from the 

underlying distribution with different sample sizes. Each combination method was applied 

and the estimated combination coefficients ĉ were obtained. The AUC of the combination 

rule was estimated from both re-substitution (Re-SUB) and leave-one-pair-out cross-

validation (LOPO) for comparison purpose, although only the estimate from LOPO is 

considered to be unbiased and thus accurate. For each setting, 1000 Monte Carlo samples 

were generated to calculate the mean AUC of the combination rule and its standard error 

(SE). For each method, the empirical probability of yielding the largest AUC among 

different approaches in various simulation settings was also reported. The results are 

summarized in Tables 1–4.

5.1 Multivariate normal distributions with equal variance

Data from multivariate normal distributions with different mean vectors and equal variance 

matrices for non-diseased and diseased category were generated with the following 2 

settings

Under these 2 settings, the stepwise method proceeding from marker with largest estimated 

AUC to marker with smallest estimated AUC (SW1) produces the largest AUC estimated 

from re-substitution (Re-SUB) on average. However, AUC estimates from Re-SUB are 

biased. If we look at the AUC of the associated linear combination estimated by LOPO CV, 

SW2 performs much better in the sense that it produces a combination rule that would have 

larger discriminatory ability on future observations. This is reflected in Table 1 where SW2 

produces the largest mean AUCs by LOPO and is most likely to have the largest AUCs for 

each Monte Carlo sample among different combination methods, except under mean 

configuration B with sample sizes (50, 50) in which case SULIU surpasses SW2 marginally. 
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LOGISTIC produces slightly larger mean AUCs than SW1 by LOPO, but it is less likely to 

have the largest AUCs for each Monte Carlo sample. MIN-MAX, on the other hand, has 

certain chance to obtain the largest AUCs among different methods, although the chance 

diminishes as sample sizes are getting large, under both mean configurations A and B. Thus, 

in terms of the linear combinations on the future observations to improve AUC under 

multivariate normality with equal variance assumption, SW2 method outperforms other 

methods. When the sample sizes are large (≥50), SULIU based on asymptotic formula could 

be better.

5.2 Multivariate normal distributions with unequal variance

Now we consider multivariate normal distributions with different mean vectors and unequal 

variances matrices for non-diseased and diseased category. The mean settings A and B are 

the same as in Section 5.1, with variance matrices set as follows,

For these settings, it is interesting to observe that MIN-MAX is far more superior to other 

methods in yielding the largest AUC estimated from LOPO under mean configuration A, 

while SW2 and SULIU have better performance under mean configuration B, as reflected in 

Table 2. The results with mean configuration B are somewhat similar to what we have 

observed in Table 1. The big difference between Tables 1 and 2 under mean configuration A 

suggests MIN-MAX would filter out the best linear combination when non-diseased and 

diseased populations are not far apart and the variances of two populations are not the same, 

which are common situations in practice. Notice that SULIU always performs slightly better 

than LOGISTIC approach, possibly due to the fact that the normality of the data with 

unequal variances is utilised. SW1 is always inferior to SW2. We could also see that in 

general when sample sizes increase, the AUCs of the associated linear combination 

estimated by Re-SUB are getting closer to the ones estimated by LOPO. Our 

recommendation for linear combinations with unequal-variance multivariate normal data is 

to use MIN-MAX approach if two population means are relatively close or use SW2 and/or 

SULIU if two population means are far apart.

5.3 Multivariate log-normal distributions with unequal variance

In this section, we would like to investigate the performances of different combination 

methods, assuming that the p – dimensional markers follow multivariate log-normal 

distributions, that is, the log-transformed markers are multivariate normally distributed. Data 

were first generated from the multivariate normal settings in Section 5.2 and then 

exponentiated to get the multivariate lognormal observations.

From Table 3, it is clearly shown that MIN-MAX, under either mean configuration A or B, 

is dominant in obtaining the largest AUC for each Monte Carlo sample. It suggests that for 

highly skewed multivariate data, MIN-MAX would most likely produce a composite score 
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that has the best discriminatory ability on future observations. SW2 proceeding from marker 

with smallest estimated AUC to marker with largest estimated AUC is inferior to MIN-MAX 

but superior to the remaining methods. SULIU based on multivariate normality has the worst 

performance, which is expected.

5.4 Multivariate normal/chi-squared/exponential/gamma distributions via normal copula

We further investigate the performances of different combination methods with p – 

dimensional (p = 4) scores assuming that the first score follows a normal, the second follows 

a chi-squared, an exponential for the third and a gamma distribution for the last, respectively, 

and coupled together via a normal copula26,27 with exchangeable correlation ρ = 0.3 and 0.7 

in non-diseased and diseased category, respectively. The marginal distributions under 

configurations A and B for p markers for non-diseased and diseased subjects, respectively, 

was chosen as follows,

Under these 2 settings, the mean vectors were exactly the same as in Section 5.1. From Table 

4, we can see obviously MIN-MAX seldom works. SULIU approach only has small chance 

in obtaining the largest AUC for the combined marker. Our proposed SW2 outperforms the 

other methods in terms of the mean AUC of the combined marker estimated from LOPO for 

the future observations and the probability in yielding the largest AUC among all the 

methods investigated, when the sample sizes are small to moderate. When the sample sizes 

are getting large (≥50), LOGISTIC has the best performance with marginal configuration A, 

and SW1 has the best performance with marginal configuration B, among all the 

investigated approaches.

In summary, considering the overall performance of all the five methods for the four 

scenarios presented in Tables 1–4, the proposed SW2 approach generally performs well 

using the LOPO CV method for the scenarios with or without normality assumption, 

although there is no clear winner. The SULIU method was developed under multivariate 

normality and hence it works asymptotically when population means are far apart and 

sample sizes are large enough to guarantee the asymptotic normality. The MIN-MAX 

method, on the other hand, excels in different simulation scenarios involving highly skewed 

multivariate data and multivariate normal data with relatively close population means and 

unequal variance matrices, although it still suffers from the aforementioned drawbacks 

including the difficulties in interpretation of linear combination coefficient. The LOGISTIC 

approach has slight chance to produce the best linear combinations when the multivariate 

normality assumption is not satisfied. The proposed SW2 outperforms the other methods in 

simulation settings including equal-variance multivariate normal data, unequal-variance 

multivariate normal data with population means far apart and normal alike data, i.e., 

multivariate normal-copula data. The re-substitution method, on the other hand, obviously 
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favours the SW1 method. This discrepancy clearly indicates the necessity of advocating the 

use of LOPO CV method in evaluating linear combination methods.

6 Analysis of DMD data: An example

In this section, the proposed stepwise methods (SW1/SW2) as well as SULIU, LOGISTIC 

and MIN-MAX approaches are applied to a real data set of 125 females on DMD available 

from Carnegie Mellon University Statlib Datasets Archive at http://lib.stat.cmu.edu/datasets/

biomed.desc to combine four markers to increase the diagnostic accuracy of screening 

females as potential DMD carriers.

This data first discussed by Cox et al.28 was gathered as part of a program to develop an 

effective method for screening female DMD carriers. DMD is a recessive genetic disorder 

passed from a mother carrier to her children, which often results in muscle degeneration, 

difficulty walking, breathing and even death. It is the most severe of the human dystrophies 

and usually appears in male children before age 5. Progressive proximal muscle weakness of 

the legs and pelvis associated with a loss of muscle mass is observed first. This weakness 

spreads to the arms, neck, and other areas and eventually leads to paralysis. As there is no 

effective treatment at present, it is of paramount importance to diagnose potential DMD 

carriers. Carriers generally have no physical symptoms but they tend to have elevated levels 

of certain serum enzymes. Blood samples were taken on two sets of subjects, 87 non-

diseased and 38 carriers. Four different variables M1 − M4 were measured in each blood 

sample. For some of the subjects who had blood drawn at several different times, the average 

was taken. The data was then processed by a log transformation.

The empirical estimates of the AUC for these four measurements are 0.9012, 0.7494, 0.8161 

and 0.8626, respectively. The stepwise method proceeding from marker with largest 

estimated AUC to marker with smallest estimated AUC (SW1) provides the following 

combination

with an estimated AUC from LOPO to be 0.9448 for the combined marker. The stepwise 

method proceeding from marker with smallest estimated AUC to marker with largest 

estimated AUC (SW2) provides the following combination

with an estimated AUC to be 0.9422 for the combined marker. The SULIU approach 

provides the following combination

with an estimated AUC to be 0.9480; the LOGISTIC approach provides the combination
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with an estimated AUC to be 0.9457 and the MIN-MAX approach provides the combination

with an estimated AUC from LOPO to be 0.9140 for the combined marker. Each of the 

combinations provides a linearly combined score that yields a larger AUC than any of the 

original measurement. Since the data was pre-processed by a log transformation, it was more 

normally distributed. In this case, SULIU approach provides the best linear combination that 

has the largest discriminatory ability on future observations.

7 Discussions

In this article, we reviewed the historic developments for linear combination methods that 

maximise the most important diagnostic accuracy index for binary outcomes, namely, the 

area under the ROC curve (AUC), and proposed nonparametric stepwise methods for the 

same purpose. A potential problem of overestimating the AUC of the linear combination rule 

for future observations caused by re-substitution method in the past literature was discussed 

and addressed. Simulation studies were conducted to empirically compare the performances 

of different linear combination methods in yielding the largest AUC estimated from LOPO 

CV on future subjects.

Note that throughout the article, all the markers for each of the non-diseased and diseased 

subjects are completely observed and assumed to be accurate. Perkins et al.29,30 discussed 

ROC curve inference for biomarkers subject to limits of detection and measurement errors 

and proposed best linear combination of two biomarkers subject to limits of detection. 

Chang31 proposed to maximise an ROC-type measure via linear combination of markers 

when the gold standard is continuous rather than dichotomous. In fact, there are many types 

of optimal combination methods that maximise certain objective functions. In this article, we 

only focus on assessing linear combination methods designed to maximise the AUC.

As a referee pointed out, when the sample sizes are large enough p ≪ min(n1, n2), the re-

substitution method should be about the same as the LOPO CV method. The similar 

phenomenon was observed in Chen et al.32 with infinite training and independent testing 

data. However, in reality, the number of observations is usually not order of magnitude 

greater than the number of variables. So it is of critical importance to understand or at least 

know how to assess the performance of different linear combination methods with finite 

datasets.

The proposed approach is a stepwise approach which is distribution-free in nature and hence 

is robust with non-normal data. The computing effort and cost in obtaining the combination 

coefficient is significantly less than the empirical search in p − 1 dimensional spaces. Our 

simulations show the stepwise method proceeding from marker with smallest estimated 

AUC to marker with largest estimated AUC (SW2) is more likely to produce the optimal 
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linear combination that yields the largest AUC for future observations than the stepwise 

method proceeding from marker with largest estimated AUC to marker with smallest 

estimated AUC (SW1). This result, in conjunction with the estimated AUCs from re-

substitution, confirms the fact that the linear combinations which work best for the current 

dataset might not be optimal for the future observations. Hence the LOPO CV method 

should always be used to assess diagnostic/prognostic accuracy of the linear combination 

rule performed on future observations.

We argue the fact that SW2 method is consistently better than SW1 on future observations is 

caused by the over-fitting/over-training issue. With small sample sizes and large number of 

markers, SW1 tends to put too much weight on the seemingly best markers because of its 

empirical top-down search strategy, which is problematic. It is also arguable that all other 

stepwise methods choosing different proceeding orders are inferior to SW2. We have run 

additional simulations that compare between stepwise methods with random proceeding 

orders and SW1/SW2 methods. For the same simulation configurations as in Section 5, it 

appears that SW2 is most likely to produce the largest AUC for future observations. These 

results are available upon request.

For data that is highly skewed from multivariate normal, say, multivariate log-normal, MIN-

MAX approach by Liu et al.9 has superior performance in producing a composite score that 

has the largest estimated AUC. Also, with unequal-variance multivariate normal data, when 

two means for non-diseased and diseased populations are close to each other, MIN-MAX 

may be better than other methods. It is interesting to explore if adding some other order 

statistics, e.g., median, will improve the combinations additionally while maintaining its 

computational efficiency in the future research.

Last but not least, Su and Liu’s method6 has certain chance to produce the best linear 

combination that yields the largest AUC for normal data only. Without normality 

assumption, large sample sizes are needed to guarantee the asymptotic of the formula to 

hold. The logistic regression approach in general has little chance to produce the best linear 

combination that yields the largest AUC for either normal or non-normal data. All the 

aforementioned discussion does not suggest Su and Liu’s method6 and the logistic 

regression approach are useless. It is so simply because in reality we seldom have dataset 

that completely satisfy the assumption underlying Su and Liu’s method6 and the logistic 

regression approach. Therefore, we recommend using Su and Liu’s method6 and the logistic 

regression approach with caution in combining the diagnostic tests and biomarkers to 

improve the diagnostic/prognostic accuracy. Our simulation studies, although designed to 

cover a wide variety of parameter settings, only explored limited situations. A small-scale 

pilot simulation study can provide useful information on which linear combination method 

would outperform under certain scenarios.
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Appendix: Relevant R Code

#####################################################

## Mann-Whitney U stat for AUC: continuous data

#####################################################

nonp.auc <- function(u,v) {

n1 = length(u)

n2 = length(v)

return(sum(sapply(u,function(x) sum(x<v)))/n1/n2)}

#####################################################

## Su and Liu’s method

#####################################################

suliu <- function(new.1,new.2) {

a = var(new.1)+var(new.2)

b = colMeans(new.2) - colMeans(new.1)

est.coef = as.numeric(solve(a)%*%b)

check.sign = nonp.auc(new.1%*%est.coef,new.2%*%est.coef)

if(check.sign>=0.5) return(list(coef=est.coef,

    auc.combined=check.sign)) else return(list(coef=-est.coef,

      auc.combined=1-check.sign))

}

#####################################################

## logistic regression approach

#####################################################

logistic <- function(new.1,new.2) {

n1 = nrow(new.1)

n2 = nrow(new.2)

dat.lr <- data.frame(cbind(response = rep(c(0,1),times=c(n1,n2)),

    rbind(new.1,new.2)))
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obj.lr <- try(glm(response

~.,data=dat.lr,family=binomial(link="logit")),silent=T)

if (any(class(obj.lr)== "try-error")) return(list(coef=rep(0,ncol(new.1)),

    auc.combined=0.5)) else est.coef=as.numeric(obj.lr$coef[-1])

check.sign = nonp.auc(new.1%*%est.coef,new.2%*%est.coef)

if(check.sign>=0.5) return(list(coef=est.coef,

    auc.combined=check.sign)) else return(list(coef=-est.coef,

      auc.combined=1-check.sign))

}

#####################################################

####### data.1, data.2 must be of two-column

#####################################################

nonpar.combine2.auc <- function(alpha,rate,data.1,data.2) {

n1 = nrow(data.1)

n2 = nrow(data.2)

new.1 = data.1%*%c(alpha,rate)

new.2 = data.2%*%c(alpha,rate)

nonp.auc(new.1,new.2)

}

nonpar.combine2.coef <- function(new.1,new.2,evalnum=201) {

rate=seq(−1,1,length=evalnum)

alpha=rev(rate)[−1]

auc.rate_x = sapply(rate, nonpar.combine2.auc, alpha=1,data.1=new.1,data.

2=new.2)

auc.alpha_x = sapply(alpha, nonpar.combine2.auc,

rate=1,data.1=new.1,data.2=new.2)

auc.0 = c(auc.rate_x,auc.alpha_x)

amax.idx = which.max(auc.0)

if(amax.idx<=evalnum) return(c(alpha=1,rate=rate[amax.idx],

    auc.max=auc.0[amax.idx]))

if(amax.idx> evalnum) return(c(alpha=alpha[amax.idx-evalnum],rate=1,

    auc.max=auc.0[amax.idx]))

}

nonp.auc.check <- function(health,middle) {

auc.i=numeric(ncol(health))

for (i in 1:ncol(health)) {

new.1=health[,i]

new.2=middle[,i]

auc.i[i]=nonp.auc(new.1,new.2)}

auc.i

}

#####################################################

### Step-wise method

#####################################################
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step.coef <- function(new.1,new.2,design=’step-down’) {

n1 = nrow(new.1)

n2 = nrow(new.2)

VARnum = ncol(new.1)

combcoef = matrix(0,nrow=VARnum-1,ncol=2)

if (design==’step-down’) {

auc.order = sort(nonp.auc.check(health=new.1,middle=new.2),

    index.return=T,decreasing=T)$ix} else {

auc.order = sort(nonp.auc.check(health=new.1,middle=new.2),

    index.return=T,decreasing=F)$ix}

combmarker.1=new.1[,auc.order[1]]

combmarker.2=new.2[,auc.order[1]]

nal.coef = 1

for (i in 2:VARnum) {

combmarker.1 = cbind(combmarker.1,new.1[,auc.order[i]])

combmarker.2 = cbind(combmarker.2,new.2[,auc.order[i]])

temp.info = nonpar.combine2.coef(combmarker.1,combmarker.2)

combcoef[i-1,] = temp.info[1:2]

nal.coef = c(nal.coef*combcoef[i-1,1],combcoef[i-1,2])

combmarker.1 = combmarker.1%*%temp.info[1:2]

combmarker.2 = combmarker.2%*%temp.info[1:2]

}

nal.coef = nal.coef[sort(auc.order,index.return=T)$ix]

check.sign = nonp.auc(new.1%*%nal.coef,new.2%*%nal.coef)

if(check.sign<=0.5) nal.coef=-nal.coef

return(list(coef=as.numeric(nal.coef),

    auc.combined=as.numeric(temp.info[3]),

    check=(max(check.sign,1-check.sign)==temp.info[3])

))

}

#####################################################

######### Min-Max method

#####################################################

liu.coef <- function(data.1,data.2) {

max_min.1 = cbind(apply(data.1,1,max),apply(data.1,1,min))

max_min.2 = cbind(apply(data.2,1,max),apply(data.2,1,min))

est.coef = nonpar.combine2.coef(max_min.1,max_min.2)[1:2]

check.sign = nonp.auc(max_min.1%*%est.coef,max_min.2%*%est.coef)

if(check.sign>=0.5) return(list(coef=est.coef,

    auc.combined=check.sign)) else return(list(coef=-est.coef,

      auc.combined=1-check.sign))

}
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