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Abstract

In this paper we show that Ullman and Basri’s linear
combination (LC) representation, which was originally pro-
posed for alignment-based object recognition, can be used
for outlier detection in motion tracking with an affine cam-
era. For this task LC can be realized either on image frames
or feature trajectories, and therefore two methods are de-
veloped which we call linear combination of frames and
linear combination of trajectories. For robust estimation
of the linear combination coefficients, the support vector
regression (SVR) algorithm is used and compared with the
RANSAC method. SVR based on quadratic programming
optimization can efficiently deal with more than 50 percent
outliers and delivers more consistent results than RANSAC
in our experiments. The linear combination representation
can use SVR in a straightforward manner while previous
factorization-based or subspace separation methods can-
not. Experimental results are presented using real video
sequences to demonstrate the effectiveness of our LC + SVR
approaches, including a quantitative comparison of SVR
and RANSAC.

1. Introduction

Robust tracking of feature points in image sequences is
of great importance for tasks such as video sequence align-
ment [2], structure from motion [17], and motion segmen-
tation [18]. In order to obtain good results in motion-based
vision tasks, feature trajectory outliers have to be detected
and removed.

For tracked features there are typically two types of er-
rors [22]: (1) Location errors, where the location of a 2D
feature is distorted and usually assumed to exhibit Gaus-
sian behavior. (2) False matches, where there is a mismatch
of 2D features, i.e., two corresponding features originating
from different scene points in any part of a trajectory. The
first kind of error can be addressed by the rank constraint

[17] as long as the location error is not too big [22], but the
second kind of error usually cannot be accomodated by an
estimation method. Even a small number of false matches
can completely spoil the estimation process, and the final
result will be useless [22]. This is also demonstrated in our
experiments.

Torr [18] proposed some methods for outlier removal and
motion analysis based on the affine fundamental matrix and
affine trifocal tensor. Recently some other methods were
developed that remove outliers in a video sequence [9] [1]
[16] based on factorization methods [17] [3]. One of these
approaches measured subspace distance based on a rank-
4 property, but five observations were used instead of four
by claiming that location errors and outliers inflate the rank
[9]. Subspace separation [16] was used to deal with multiple
motions by increasing the rank with the number of motions
specified by the user. Another approach [1] incorporated an
iterative weighting mechanism from robust statistics into a
factorization method [3], which only works when the per-
centage of outliers is low because the M-estimator they used
has a low break point. Other recent work dealt with missing
features [17] [10] [6] [8]. All these approaches are based on
the factorization method or subspace separation, and need
to factorize a big matrix [1] or impose restrictive limitations
[9] [16].

In this paper we show that for outlier detection of point
feature trajectories, a different formulation can be employed
that results in several improvements over existing methods.
The linear combination (LC) of images representation pro-
posed by Ullman and Basri [19] for alignment-based object
recognition will be used to detect outliers. The LC rela-
tion also holds using 4 motion trajectories [21]. Based on
these ideas, we develop two methods, one is frame-based
and the other is trajectory-based. The approach uses linear
regression without the need to factorize a large matrix [1]
or impose restrictive limitations [9] [16]. Furthermore, only
4 parameters are involved for each regression. The linear
combination representation can directly take advantage of
support vector regression (SVR) [20], which can deal with

0-7695-2372-2/05/$20.00 (c) 2005 IEEE



a high percentage of outliers using slack variables.
Major contributions of this paper are: (1) showing that

linear combination representations [19] [21] can be used ef-
fectively for outlier detection and removal in motion track-
ing, (2) designing two algorithms to eliminate outliers for
image sequences, (3) using support vector regression with
automatic threshold selection to cope with a high percent-
age of outliers and to deliver more consistent results than
RANSAC, and (4) taking a simpler approach (only 4 pa-
rameters to estimate) without factorizing a large matrix as
in [1], imposing restrictive limitations as in subspace sepa-
ration [9], or involving 16 parameters as in the affine trifocal
tensor [18].

The paper is organized as follows. In Section 2 the lin-
ear combination representations are described. SVR is pre-
sented and some key issues are discussed in Section 3. Two
methods are developed in Section 4, each using either SVR
or RANSAC for robust regression. In Section 5, a perfor-
mance measure is proposed to evaluate outlier detection re-
sults. All proposed methods are evaluated experimentally
in Section 6.

2. Linear Combination Representations

Suppose P feature points have been tracked over F
frames in an image sequence, producing a sequence of
image coordinates for each trajectory {(xfp, yfp) | f =
1, . . . , F, p = 1, . . . , P}. Let matrix Wx contain F × P
x coordinates, xfp, with one row per frame and one column
per feature trajectory. Similarly, use Wy for the y coordi-
nates, yfp:

Wx =




x11 · · · x1P

...
...

xF1 · · · xFP


 , Wy =




y11 · · · y1P

...
...

yF1 · · · yFP




(1)
A measurement matrix, W , is built by combining Wx and

Wy [17] into W =
[

Wx

Wy

]
.

Ullman and Basri [19] first showed that an image from
an affine camera can be represented as a linear combina-
tion of three model images, and then used this property for
alignment-based object recognition. Weinshall and Tomasi
[21] observed that under arbitrary affine camera motion the
image trajectories of a scene point are linear combinations
of the trajectories of three reference points, and they used
this property for invariant shape modeling from image se-
quences.

In terms of the measurement matrix, Ullman and Basri’s
linear combination result can be represented by

xip = axxjp + bxxkp + cxxlp + dx (2)

yip = ayyjp + byykp + cyylp + dy (3)

where xip, xjp, xkp, and xlp are the x coordinates of any
point p in four frames, i, j, k, and l, and [ax bx cx dx]T are
the corresponding linear combination coefficients. When
there is no translation in the sequence, dx = 0. Similarly
for the y coordinates in Eq. (3). Note that the coefficients
for the x and y coordinates are not necessarily the same. We
call this approach linear combination of frames.

In contrast, Weinshall and Tomasi’s result can be rep-
resented with respect to the columns in the measurement
matrix W :

x·i = atxx·j + btxx·k + ctxx·l + dtx (4)

y·i = atyy·j + btyy·k + ctyy·l + dty (5)

where x·i, x·j , x·k, and x·l are the x coordinates of four tra-
jectories, i, j, k, and l, and [atx btx ctx dtx]T are the linear
combination coefficients. Similarly for the y coordinates in
Eq. (5). The coefficients for the x and y coordinates may
or may not be the same, but this does not matter for out-
lier detection. We call this approach linear combination of
trajectories.

Machline et al. [12] discussed the distinction between
the row space and column space of the measurement matrix

based on subspace analysis. They called
[

Wx

Wy

]
the “trajec-

tory matrix” and [Wx|Wy ] the “flow-field matrix”. The un-
derlying basis of the linear combination representations and
subspace analysis is the same rank-4 constraint for general
affine motion or rank-3 when translation is removed. But
the linear combination formulation can use SVR techniques
directly, while any subspace or factorization-based method
cannot.

3. Support Vector Regression

Linear support vector regression (SVR) can be used to
estimate the linear combination coefficients in Eqs. (2)-(5).
Here we simply describe the basic theory of SVR and then
show an example to illustrate some important issues.

3.1. Basic Theory

Consider the problem of approximating the set of data
D = {(x1, y1), . . . , (xl, yl)}, x ∈ Rn, y ∈ R, with a linear
function,

f(x) = 〈w, x〉 + b. (6)

The optimal regression function [20] is given by

min
w,ξ

1
2 ‖ w ‖2 + C

∑l
i=1(ξ

+
i + ξ−i )

yi − 〈w, xi〉 − b ≤ ε + ξ+
i

subject to 〈w, xi〉 + b − yi ≤ ε + ξ−i (7)

ξ+
i , ξ−i ≤ 0



(a)

(b)

Figure 1. SVR on real 2D data with ε = 0.02 in
(a) and ε = 0.09 in (b). Note that the support
vectors (marked by circles) are not the true
outliers in either case.

where constant C > 0 determines the trade-off between the
flatness of f and data deviations, and ξ+

i , ξ−i are slack vari-
ables to cope with otherwise infeasible constraints on the
optimization problem of (7). The ε-insensitive loss function
is

Lε(x, y) =
{

0 if |f(x) − y| < ε
|f(x) − y| − ε otherwise

(8)

The primal problem of (7) can be solved more easily in
its dual formulation [20] resulting in the final solution given
by

w =
l∑

i=1

(αi − α∗
i )xi (9)

where αi, α
∗
i are Lagrange multipliers. The value of b in

Eq. (6) can be determined by plugging Eq. (9) into Eq. (6)
[5]. See [20] for more details.

3.2. A Toy Example

To illustrate the SVR idea, we use a toy example that
contains 30 points in 2D with 10 in a line and the remaining

20 being outliers distributed on both sides of the line. Hence
the data contains 67% outliers. Using the SVR algorithm
implemented by Gunn [5] (which provides a user interface)
and a linear kernel with ε = 0.02, the result is shown in Fig.
1(a). Observe that the line was correctly estimated despite
the high percentage of outliers.

On the other hand, observe that SVR returns 27 support
vectors (90% of the input data) and 7 of them are very close
to the boundaries (two dashed lines), but there are actually
20 outliers in the original data. So we can not simply clas-
sify the support vectors (SVs) as the outliers. Increasing
the ε value might “drag” the 7 closest support vectors inside
the dashed boundaries, and then only the outliers in the data
would be returned as support vectors. However, when we
increase ε gradually up to 0.09, there are still 26 SVs re-
turned which are still not the true outliers, as show in Fig.
1(b). And even worse, the slope of the line has changed
significantly. This demonstrates that using a large ε is not a
good idea because it may degrade the model structure.

Based on this experiment, we observe: (1) the SVR tech-
nique can potentially deal with data containing a high per-
centage of outliers, (2) classifying support vectors as out-
liers is not workable, (3) using a large value for ε is not a
good idea for SVR, and (4) using small ε is preferable, es-
pecially when a large number of outliers are present.

As a result of these observations, we used a small fixed
value, ε = 0.01, for SVR in all our experiments. We used the
knee point of the residuals (see Section 3.3) to automatically
choose a threshold to separate outliers from inliers.

SVR was used in [23] for two-view affine matching.
They iteratively changed ε from big to small, and classified
the SVs as outliers. As shown in the experiment in Figure 1,
this approach not only misclassifies many outliers but using
big ε may change the underlying structure. Furthermore,
changing ε iteratively is computationally expensive because
SVR optimization is executed for each ε.

In our linear combination representation, i.e., Eqs. (2)-
(5), there is only one output variable for each regression, so
standard SVR code can be used. We used SV M light [11]
in our experiments.

3.3. Automatic Threshold Determination

After using SVR, we measure the regression residual for
each input data value and sort them in descending order.
Typically, we get a curve of the sorted residuals as shown in
Fig. 2, which was obtained in our experiments (see Section
6). The residual will be big for outliers and small for inliers.
The knee point in the curve, which is marked by a circle in
Fig. 2, is the point at which the second derivative attains a
maximum. The knee point is used as a threshold only when
it is bigger than the pre-set ε value for SVR.
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Figure 2. The SVR residual curve (sorted in
descending order) and the computed knee
point (marked with a circle).

3.4. SVR vs. RANSAC

The SVR method [20] employs all input points simulta-
neously. The ε-insensitive loss function proposed by Vapnik
[20] is an approximation to Huber’s loss function (used in
M-estimators) to obtain a sparse set of support vectors [5].
It is well known that the M-estimator has a low break point
in robust regression. SVR, on the other hand, can intro-
duce slack variables to cope with otherwise infeasible con-
straints, i.e., dealing with outliers to some extent but not
exactly. It is the using of slack variables (in quadratic pro-
gramming) that gives SVR the potential to deal with a high
percentage of outliers. Theoretical properties of the break
point of SVR are not yet known.

As part of our evaluation of SVR for outlier detection we
will compare its performance to one of the standard meth-
ods for robust regression, RANSAC, for RANdom SAm-
ple Consensus [4], which uses a small number of randomly
selected points to estimate the underlying model and uses
the remaining points for verification. The process iterates
many times, and the model with the largest support from
the input points is selected as the model. The break point of
RANSAC is about 50%.

To our knowledge, there is no previous comparison be-
tween SVR and RANSAC either conceptually or experi-
mentally. We will compare them in our linear combination
approaches experimentally.

4. Two Approaches

As shown in Section 2, the linear combination relation is
satisfied for either four frames or four trajectories in a mea-
surement matrix W without false matches. One can also
factorize W for structure and motion estimation [17]. In

practice, however, there are outliers in W that affect the so-
lution [1] [9]. Our goal is to detect outliers in W based on
the linear combination representation.

For image sequences captured by an affine camera, two
methods for outlier detection based on two different lin-
ear combination representations are presented. The first
processes image frames and the second operates on point
trajectories. We call them linear combination of frames
(FLC) and linear combination of trajectories (TLC), respec-
tively. For robust regression, SVR will be compared with
RANSAC.

4.1. Linear Combination of Frames

To use FLC for an image sequence requires dividing the
sequence into different groups, each with four images. One
way is to take four consecutive frames as a group, and se-
quentially use the FLC method for each consecutive group
of four frames. In this case, however, there may exist little
or no movement between the four images and so the co-
efficients [ax bx cx dx]T and [ay by cy dy]T can not
be well estimated. In contrast, a large temporal separation
between the four frames can make the computation more
robust because the linear equations for the four frames are
nearly independent of each other. Based on these consid-
erations, we divide the image sequence into four sections
with no overlap, and each section has about the same length.
Then, we sequentially extract one frame from each section
to constitute a group until all frames are used. Assuming
each section has s frames, we get s four-frame groups and
therefore s FLC computations.

For each four-frame group, SVR or RANSAC (see p.
103 in [7] for algorithm details) is used to estimate the
linear combination coefficients [ax bx cx dx]T and
[ay by cy dy]T , and classify the corresponding trajecto-
ries as inliers or outliers.

Dealing with the x and y coordinates separately in Eqs.
(2) and (3), we get inlier sets Ix and Iy , and outlier sets Ox

and Oy . Then the true inliers are in the set I = Ix ∩Iy . The
outliers are in the set O = (Ix ∪Ox)− I , that is, the points
that do not satisfy the linear combination relation in either
their x or y coordinate.

The FLC scheme is applied sequentially to the s groups.
That is, FLC is carried out one-by-one to the sequence of
four-frame groups. Only the inliers in the current group can
be used in the next group. Hence the number of inliers de-
creases monotonically. Conversely, the number of outliers
increases after each group is processed.

In summary, the FLC algorithm for outlier removal con-
sists of the following steps: (1) Divide the given image se-
quence into 4 non-overlapping sections, each of about the
same length. (2) Sequentially choose one frame from each
section to construct a group of 4 frames. (3) Use SVR or



RANSAC to estimate the linear combination coefficients
for the selected 4 frames and determine the inliers and out-
liers based on the 4 frames. (4) Mark the inliers and go to
Step 2 using the next group of 4 frames until all frames are
processed. (5) Report the inliers and outliers in the whole
sequence.

4.2. Linear Combination of Trajectories

In addition to working on image frames, the linear com-
bination relation also holds for point trajectories, i.e., Eqs.
(4) and (5). Here we show how to remove outliers using a
linear combination of point trajectories. Before presenting
the algorithm, three properties are shown.
Property 1. If four inlier trajectories, i, j, k, and l, satisfy
the linear combination relation of Eqs. (4) and (5), then
any four elements xni, xnj , xnk, xnl and yni, ynj , ynk, ynl

in frame n also satisfy Eqs. (4) and (5) respectively with the
same coefficients.
Proof. Each trajectory is a column vector in W , so the rela-
tion between four vectors of the form X4 = a1X1+a2X2+
a3X3 + a41, is also satisfied by each element of the four
vectors corresponding to the same frame number. 1 is a
vector of 1s.
Property 2. Given four inlier trajectories, i, j, k, and l, if
four corresponding elements in any single frame satisfy the
linear combination relation of Eqs. (4) and (5), then these
four trajectories also satisfy Eqs. (4) and (5) with the same
coefficients.
Proof. Consider each trajectory as a column vector Xh, h =
1, 2, 3, 4. Then the relation of the corresponding element,
xn4 = a1xn1 +a2xn2 +a3xn3 +a4, is also satisfied by the
four vectors, X4 = a1X1 + a2X2 + a3X3 + a41, where
xnh is the nth element of vector Xh.
Property 3. Given three inlier trajectories, i, j, and k, an
unknown trajectory, l, and a set of linear combination co-
efficients [at bt ct dt]T , if any corresponding elements of
the four trajectories do not satisfy the relation in Eqs. (4)
and (5), then trajectory l is an outlier.
Proof. This is a corollary of Property 1 because if trajectory
l is an inlier, all elements will satisfy the linear combination
relation with the same coefficients.

Properties 1 and 3 are used for RANSAC regression in
order to verify whether a trajectory is an inlier or outlier, and
Property 2 is used to compute the LC coefficients from four
trajectories. For SVR, all data are used in four trajectories.

Since the TLC scheme characterizes only four trajecto-
ries at a time, a two-step procedure is developed to process
all trajectories. The first step selects four trajectories as a
basis, and the second step uses the basis to verify all the
remaining trajectories:
Step 1. Select a Basis

Randomly select four trajectories and compute the linear

combination coefficients. Note that the coefficients for the x
and y coordinates are computed separately. The LC relation
is checked for each element of the four trajectories. The
residual for each element is calculated, and the maximum is
recorded for the selected four trajectories.

This process is repeated many times, and the group of
four trajectories with the smallest residual is selected as the
basis. To improve stability, we divide all points in the first
frame into 4 quadrants and randomly select one point from
each quadrant.
Step 2. Verify Remaining Trajectories

After the basis is chosen, it is used to check the other
trajectories. Randomly replace one trajectory in the basis
with a new trajectory, and re-compute the linear combina-
tion coefficients. Using the new coefficients, re-estimate the
residual for each element. If the maximum residual is small,
the new trajectory is an inlier; otherwise, it is an outlier. The
threshold is automatically determined by the knee point as
shown in Fig. 2.

All remaining trajectories are verified in the same way in
order to detect all outliers.

4.3. Characteristics of the Two Methods

In FLC, an image sequence is divided into four sections,
and different four-frame groups are constructed. In this
way, it is not expected to detect all outliers at once. In-
stead, the trajectories are analyzed in different groups and
the number of inlier trajectories decreases gradually after
each group computation. This is of benefit when there exist
a large number of outliers.

The FLC scheme works on 4 frames, and each time there
are only 4 parameters to estimate (note that Eqs. (2) and (3)
deal with the x and y coordinates independently), which is
one benefit of the FLC representation. On the contrary, the
affine trifocal tensor [18] uses 3 frames, but there are 16 pa-
rameters to estimate together with 9 constraints. It is well-
known that the more parameters there are to estimate, the
more susceptible random sampling type methods [18] such
as least median of squares (LMedS) [22] and RANSAC [4]
are to instability. In two-view affine geometry, there are 6
parameters to estimate, which is also larger than the 4 in our
case. In affine point transfer [14], correspondence between
two images must be established before the corresponding
point in a third image can be computed by transfer, which is
different from FLC. Finally, FLC is easy to understand and
very simple to implement.

In TLC, a two-step procedure was presented. The first
step finds four trajectories that satisfy the LC relation well.
In the case of a high percentage of outliers, this step sim-
plifies the problem and is still capable of finding four good
trajectories. This step does not find all inliers, but only four.
Then we use these four trajectories to verify other trajec-



tories based on the LC relation. This two-step approach
simplifies the problem of outlier detection by incrementally
testing each trajectory.

Trajectories are also considered in [9] [16], but their for-
mulation of subspace separation can not use SVR, which
can deal with a large number of outliers.

Finally, the linear combination representation is a uni-
fied framework that can be used with either image frames
or point trajectories in a similar manner.

5. Quantitative Performance Evaluation

In previous work inlier feature trajectories have been dis-
played for visual inspection or used as input to some other
process (e.g., the factorization method for structure and mo-
tion) to evaluate the results of outlier removal. Instead, we
will use a quantitative performance measure.

Consider the outlier detection problem as a classification
problem. With a database of feature matches labelled as in-
liers and outliers, we will measure the classification perfor-
mance quantitatively by computing false positive and false
negative rates. False positives (FP) specify when inliers are
incorrectly classified as outliers. False negatives (FN) mea-
sure when outliers are incorrectly classified as inliers.

6. Experiments

We tested our linear combination methods for outlier de-
tection on several video sequences. Because of space lim-
its, only two sequences are reported here. For each se-
quence, feature points were detected and tracked using the
KLT tracker [15]. The FLC and TLC algorithms were each
applied to the measurement matrix W .

The first sequence contains a hotel and has frames of size
480 × 512. We used the first 48 frames, though any length
can be used. Unlike the subspace separation approach [9],
which requires a sparse sampling of images, we used all 48
consecutive images containing both in-plane and in-depth
rotations. Image coordinates were normalized between 0
and 1. The first frame with tracked points (red dots, which
can be seen in the electronic version) are shown in Fig. 4(a)
and the trajectories are shown in 4(b). 150 features were de-
tected and tracked over all 48 frames, containing 12 outliers
(visually labelled as ground truth). The inliers and outliers
determined by FLC + RANSAC are shown in Fig. 4(c) and
(d), respectively. The results of TLC + RANSAC are shown
in Fig. 4(e) and (f). The results of FLC + SVR are shown in
Fig. 4(g) and (h), and the results of TLC + SVR are in Fig.
4(i) and (j).

The FLC + RANSAC approach detected 15 outliers and
TLC + RANSAC found 14 outliers. Both FLC + SVR and
TLC + SVR returned the same 12 outliers as the ground

Table 1. Performance evaluation of the ap-
proaches. F+R stands for FLC+RANSAC, T+R
for TLC+RANSAC, F+S for FLC+SVR, and T+S
for TLC+SVR.

Seq. Measure F + R T + R F + S T + S

FP 2.2% 1.5% 0 0
Hotel FN 0 0 0 0

FP 2.1% 0.7% 0.7% 0.7%
Ball FN 0 0 0 0

0 5 10 15 20 25 30 35 40 45 50
−14

−12

−10

−8

−6

−4

−2

0

frame number

ca
m

er
a 

ro
ll 

(d
eg

re
es

)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frame number

ca
m

er
a 

pi
tc

h 
(d

eg
re

es
)

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

30

35

40

frame number

ca
m

er
a 

ya
w

 (
de

gr
ee

s)

0 5 10 15 20 25 30 35 40 45 50
−14

−12

−10

−8

−6

−4

−2

0

frame number

ca
m

er
a 

ro
ll 

(d
eg

re
es

)

0 5 10 15 20 25 30 35 40 45 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

frame number

ca
m

er
a 

pi
tc

h 
(d

eg
re

es
)

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

frame number

ca
m

er
a 

ya
w

 (
de

gr
ee

s)

Figure 3. Camera motion (roll, pitch, and yaw
in the 3 columns, respectively) estimation for
the hotel sequence computed using the fac-
torization method.

truth. The FP and FN rates are given in Table 1. Observe
that each approach detected all true outliers, but SVR gave
better results (0 FP and 0 FN) than RANSAC in both the
frame-based and trajectory-based versions.

To further verify the correctness of the inliers, we used
the factorization method [17] to compute the motion with
and without outlier removal. The first row in Fig. 3 used
all trajectories and the resulting motion is noticeably noisy.
The smooth motion curves computed using the inliers de-
tected by FLC + SVR are shown in the second row of Fig.
3. The results of TLC + SVR and LC + RANSAC were
almost identical and are not shown here. Notice that the
pitch values in particular are very different without outlier
removal. This figure also demonstrates that outlier removal
is essential for motion estimation.

The second experiment used a ping-pong ball sequence
with frames of size 480× 512. There is a large in-depth ro-
tation in the sequence. 150 features were tracked in the first
12 frames, containing 8 outliers (ground truth). The first
image with tracked points (red dots) is shown in Fig. 5(a)
and the trajectories are shown in 5(b). The FLC + RANSAC
method detected 11 outliers shown in Fig. 5(d) and inliers in



(c). The TLC + RANSAC method returned 9 outliers shown
in Fig. 5(f). The FLC + SVR and TLC + SVR methods de-
tected 9 outliers shown in Fig. 5(h) and 5(j), respectively.
The FP and FN rates for each method are given in Table 1.
The FP of SVR is only 0.7% for either FLC or TLC, while
the FN of RANSAC is 2.1% in FLC and 0.7% in TLC. In
this experiment, SVR consistently gave equal or better re-
sults than RANSAC.

In both sequences, the number of outliers is small. We
will investigate in the future the potential of SVR for se-
quences with a large number of outliers.

To use RANSAC, the smallest number of points required
is 4. The threshold used to classify a point was set by trial
and error. The fitting error was defined as the maximum
residual of the linear combination.

Finally, the LC methods can be extended for outlier cor-
rection as in [8] [6], which we have not investigated yet.

7. Concluding Remarks

A new representation for detecting and eliminating out-
lier trajectories of point features in image sequences assum-
ing an affine camera model has been described. Two meth-
ods were developed based on the linear combination idea.
One is frame-based and the other is trajectory-based. For
robust estimation, support vector regression was used and
compared with RANSAC. Both our FLC and TLC methods
detected and removed outliers completely in real video se-
quences and SVR gave slightly better results than RANSAC
in terms of false positive rates. Our LC + SVR approach is
very simple (only 4 parameters to estimate) and robust (us-
ing slack variables) without factorizing a large matrix as in
[1], imposing limitations as in subspace separation [9], or
involving 16 parameters as using the affine trifocal tensor
[18].
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Figure 4. The first frame (a) and the KLT
tracked trajectories (b) of the hotel sequence.
Inliers (c) and outliers (d) computed by
FLC+RANSAC. Inliers (e) and outliers (f) by
TLC+RANSAC. Inliers (g) and outliers (h)
by FLC+SVR. Inliers (i) and outliers (j) by
TLC+SVR.
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Figure 5. The first frame (a) and the KLT
tracked trajectories (b) of the ping-pong ball
sequence. Inliers (c) and outliers (d) com-
puted by FLC+RANSAC. Inliers (e) and out-
liers (f) by TLC+RANSAC. Inliers (g) and out-
liers (h) by FLC+SVR. Inliers (i) and outliers (j)
by TLC+SVR.
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