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ABSTRACT 
 
Morphological image processing filters preserve shapes 

related to the structuring element shape of the operator.  
The basic morphological operators are minimum (erosion) 
and maximum (dilation) operations performed on the pixels 
within a structuring element.  Although these operators 
(and the compound operators formed from them) are able 
to smooth noise, they also introduce a statistical and 
deterministic bias, which is unacceptable in some applica-
tions.  However, since every morphological operator has a 
complementary operator that is equally and oppositely 
biased, we propose averaging the complementary 
operators to alleviate the bias.  Of the three filters formed 
by averaging the standard morphological operators, two 
are the previously-defined midrange filter and 
pseudomedian filter, while one is a new filter, which we call 
the LOCO filter.  Under most conditions, the LOCO filter is 
the best of these at reducing impulses and noise. 

  
 
 

1.  INTRODUCTION 
 

The techniques of mathematical morphology provide 
shape-based methods for image processing.  The basic 
morphological operators have been shown to be effective 
at reducing various types of noise while preserving shapes 
compatible with the structuring element of the operator.  
However, the basic morphological operators introduce a 
statistical and deterministic bias to signals that they 
process [1-3].  For many applications, such as 
segmentation, this bias is not a problem.  However, in 
applications where preservation of intensity levels is 
important, such as quantitative infrared thermography, 
biased morphological operators may not be used to 
process images. 

Since morphological operators are defined in 
complementary pairs that are equally and oppositely 
biased, one potential solution to the biasing problem is to 

average the complementary operators.  We show in this 
paper that of the three filters formed by taking the 
averages of complementary morphological operators, two 
of them are equivalent to the previously-defined midrange 
and pseudomedian filters [4-6], while one is an entirely new 
filter.  This new filter, which we call the LOCO filter, is the 
best of the three at reducing most types of noise, 
especially impulse noise. 

 
2.  MORPHOLOGICAL FILTERS  

 
The two basic morphological operators are dilation and 

erosion.  Let f(x) denote an n-dimensional function (the 
image) and N denote a compact k-dimensional set (the 
structuring element) with k = n.  Also, let Ñ denote the 180° 
rotation of N, and let the translation of the set N by a point 
z be denoted by a subscript:  Nz.  The morphological 
erosion of f by N is defined by the following equation: 

 

 ( f Θ Ñ  ) (x) = )}({inf y
xy

f
N∈

 (1) 

 
Morphological dilation is defined by: 
 

 ( f ⊕ Ñ  ) (x) = )}({sup y
xy

f
N∈

 (2) 

 
For discrete images and structuring elements, the 

infimum (inf) and supremum (sup) are equivalent to the 
minimum and maximum, respectively.  Because these 
operators output extreme order statistics, it is obvious that 
they introduce statistical and deterministic bias to the 
functions. 

Morphological opening is a compound operator 
consisting of erosion followed by dilation; similarly, 
morphological closing is dilation followed by erosion.  
Opening is defined by: 

 
 Open{f(x); N} = [ ( f Θ Ñ  ) ⊕ N ] (x). (3) 



 

Closing is defined by: 
 
 Close{f(x); N} = [ ( f ⊕ Ñ  ) Θ N ] (x). (4) 

 
The doubly compound morphological operators open-

close (OC) and close-open (CO) are defined as opening 
followed by closing and as closing followed by opening, 
respectively: 

 
 OC {f(x); N} = Close{Open{f(x); N}; N} (5) 
 
 CO {f(x); N} = Open{Close{f(x); N}; N} (6) 

 
Maragos and Schafer [2, 3] have demonstrated the 

deterministic bias introduced by the morphological 
operators by proving the following inequalities: 

 
(f Θ Ñ) = Open{f; N} = f = Close{f; N} = (f Η Ñ) (7) 
 

 OC (f; N) = med∞ (f; W) = CO (f; N), (8) 

 

where med∞ (f; W) denotes the median root signal (that is, 
a signal invariant to further median filtering) achieved by 
repeatedly median filtering f(x) with window W = N Η Ñ.  
Stevenson and Arce [1] illustrate these properties 
statistically by deriving the distribution function of the 
output of the CO operator, which is biased toward higher 
values than the input distribution.  The output distribution 
of OC is analogous to CO, but biased toward smaller 
values.  The other morphological operators have more 
severely biased distributions, as would be expected from 
(7) and (8). 

 
3.  LINEAR COMBINATIONS OF 

MORPHOLOGICAL FILTERS  
 
One potential solution to the bias problems of the basic 

morphological operators is to form new filters that take the 
average the complementary operators.  The three filters 
formed by this method are the midrange, pseudomedian, 
and LOCO filters.  They are described in more detail below. 

 
3.1.  Midrange Filter 

Morphological erosion simply returns the minimum 
value within its structuring element, while morphological 
dilation returns the maximum value.  The average of the 
erosion and dilation is therefore the midpoint of the range 
of values in the structuring element.  This is the midrange 
filter [6, 7], a well-known estimator in the theory of order 
statistics.  It is the minimum variance unbiased estimator of 
the median of a uniform noise distribution [7]. 

The response of the midrange filter is typically not desir-
able for image processing, because it destroys edges.  Its 
performance is good for constant signals in the presence 
of uniformly distributed noise; however, for other noise 

distributions and for images with edges, other filters 
perform better. 

 
3.2.  Pseudomedian Filter 

The pseudomedian filter was first developed by Pratt, 
Cooper, and Kabir [4] in 1985 to mimic the response of the 
median filter.  In one dimension, their definition for the 
pseudomedian filter of window width 5 (PMED5) was 

 
PMED

5
 {a, b, c, d, e} =

1
2 max {min{a,b,c}, min{b,c,d}, min{c,d,e}}

+ 1
2 min {max{a,b,c}, max{b,c,d}, max{c,d,e}}. (9)

 
 
Pratt [5] later called the two halves of this definition the 

"maximin" and "minimax" functions.  Schulze and Pearce 
[8] defined a two-dimensional pseudomedian filter 
analogous to the 1-D definition (9). 

Morphological opening consists of erosion followed by 
dilation.  Erosion finds the minimum over a particular struc-
turing element, and the dilation that follows this erosion 
finds the maximum of the previously-computed minima in 
the structuring element.  Opening is thus exactly the same 
as the "maximin" portion of the pseudomedian definition 
(9).  Similarly, morphological closing is dilation followed by 
erosion, so it finds the minimum of the maxima and is the 
"minimax" portion of (9).  Therefore, a new definition of the 
pseudomedian filter (PMED) that is completely equivalent 
to the previous definitions is  

 
 P M E D   { f ( x ) ;   N }   = 

1 
2   O p e n   { f ( x ) ;   N }   +   1 

2   C l o s e   { f ( x ) ;   N } , ( 1 0 )
 

 
where f(x) is the (n-dimensional) signal to be filtered and N 
is the structuring element of the morphological operators. 

The response of the pseudomedian filter is indeed 
similar to that of the median filter, with two very important 
exceptions.  First, the pseudomedian filter does not 
completely remove isolated impulses, either high-valued or 
low-valued, but reduces their amplitude to one-half the 
original values.  This can be verified by noting that 
opening preserves negative impulses but removes positive 
impulses, whereas closing preserves positive impulses and 
removes negative impulses.  Second, while the output of 
the median filter is restricted to values that appear in the 
original signal, the pseudomedian filter output may take on 
values that do not appear in the original signal because it 
takes the average of two values.  This is important when 
working with signals that are quantized.  The output of the 
pseudomedian filter may have to be rounded or truncated 
to restrict it to the same levels.  Other differences between 



 

the pseudomedian and median filters, notably the effect of 
the structuring element shape, are described in [8].  The 1-
D finite-length root signal set of the pseudomedian filter is 
shown to be identical to that of the median filter in [9]. 

 
 
 
 
 
 

 
 

Fig. 1.  Noisy original image. 
 
 

 
 

Fig. 2.  Midrange-filtered image (N = 3x3 square). 
 
 

 
 

Fig. 3.  Pseudomedian-filtered image (N = 3x3 square). 
 

3.3.  LOCO Filter 
Open-closing and close-opening have been shown to 

have many desirable properties [1-3]; for example, either 
operation reduces a 1-D signal to a median filter root signal 
in one pass.  Open-closing (OC) is simply opening 
followed by closing, while close-opening (CO) is closing 
followed by opening.  Unlike opening and closing, OC and 
CO are able to remove both positive and negative 
impulses.  After considering the midrange filter as the  
 

 
 

Fig. 4.  LOCO-filtered image (N = 3x3 square). 
 
 

 
 

Fig. 5.  Median-filtered image (5x5 square window) 
 
 

 
 

Fig. 6.  Image after Close-Opening (N = 3x3 square). 
 



 

average of erosion and dilation and the pseudomedian 
filter as the average of opening and closing, it is logical to 
form a filter from the average of OC and CO.  We call this 
filter the LOCO filter, for Linear combination of OC and CO. 

 
LOCO { f(x ); N} =

1
2 OC { f(x ); N } + 12 CO { f(x ); N} (11)

 
 
Since both OC and CO remove positive and negative 

impulses, the LOCO filter is much less susceptible to 
impulse noise than the pseudomedian filter.  In this 
characteristic, the LOCO filter resembles the median filter 
even more than the pseudomedian filter does.  The LOCO 
filter is also not restricted to values in the original signal.  
Although the OC and CO individually yield a root signal in 
one pass, since these roots need not be identical (and 
usually are not), the LOCO filter does not always yield a 
root signal in one pass.  The LOCO filter, like the 
pseudomedian filter, preserves edges and is not 
susceptible to fast-fluctuating periodic signals to which 
the median filter is susceptible. 

 
4.  EXAMPLES  

 
Examples of an image filtered by linear combinations of 

morphological operators are given in the figures.  Fig. 1 is 
the noisy original image, with white Gaussian noise (SNR ˜  
19 dB) on the left side, negative impulse noise (10% of 
pixels) at the lower central and right parts, and positive 
impulse noise (10%) in the upper right portion.  Fig. 2 
shows the results of 3x3 midrange filtering (N = 3x3 
square).  Fig. 3 is the result of 5x5 pseudomedian filtering 
(N = 3x3 square), and Fig. 4 is the result of LOCO filtering 
with N = 3x3 square.  For comparison, the result of 5x5 
square median filtering is shown in Fig. 5 and the result of 
the CO operator (N = 3x3 square) is shown in Fig. 6. 

These figures illustrate the differences among the 
various linear combinations of morphological operators.  
The midrange filter is neither good at removing impulse 
noise nor at preserving edges.  The pseudomedian filter 
preserves edges but does not reduce impulse noise or 
Gaussian noise very well.  The LOCO filter is the best of 
the three at reducing impulse and Gaussian noise, 
although it is still somewhat susceptible to nearby 
impulses.  The median filter (Fig. 5), in contrast, does an 
excellent job of removing impulse noise and has reduced 
the Gaussian noise quite well.  However, it also distorts the 
object shapes in the image somewhat, particularly at sharp 
corners.  This effect is not observed in Figs. 3 and 4 
because the morphological structuring element is square.  
Finally, the result of CO in Fig. 6 shows the bias toward 
high (bright) values of this operator for both the positive 
impulse noise and Gaussian noise. 

 

5.  CONCLUSIONS  
 
In this paper, we have shown how linear combinations 

of morphological operators may be formed to alleviate the 
bias introduced by the individual morphological operators.  
Two of the filters formed by averaging complementary 
operators, the midrange and pseudomedian filters, were 
previously defined in non-morphological terms, but the 
LOCO filter is a new filter.  The examples given in the paper 
along with the known properties of the constituent 
operators (OC and CO) illustrate the potential superiority 
of the LOCO filter over the midrange and pseudomedian 
filters for many image processing applications. 

Linear combinations of morphological operators allow 
the shape control of morphological filters (exerted by the 
selection of a structuring element) without introducing 
bias.  For example, the LOCO filter with a square 
structuring element preserves 90° corners in an image 
while reducing noise almost as well as the square-shaped 
median filter, which rounds off such corners.  These new 
filter definitions provide a way to perform transformations 
similar to those of mathematical morphology on images in 
which preservation of intensity levels is important. 
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