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LINEAR COMBINATIONS OF PROJECTIONS
IN VON NEUMANN ALGEBRAS

STANISLAW GOLDSTEIN AND ADAM PASZKIEWICZ

(Communicated by Palle E. T. Jorgensen)

Abstract. Any operator in a von Neumann algebra is a linear combination of

a finite number of projections from the algebra with coefficients from the center

of the algebra. Those von Neumann algebras that are the complex linear span

of their projections are identified.

Introduction

Let sf be a von Neumann algebra and 2f its center; let further sff, denote

the set of all self-adjoint elements of sf and Proj sf the lattice of all pro-

jections (i.e., self-adjoint idempotents) in sf . In this note, we show that the

^-module sf is generated by Proj sf . Moreover, we prove that the C-module

sf is generated by Proj sf if and only if the center of the finite discrete part

of sf is finite dimensional.

Let us first consider JlT-linear combinations of projections. As shown by

Pearcy and Topping [7], every self-adjoint operator in a properly infinite von

Neumann algebra can be written as a real linear combination of eight projec-

tions. It follows from the results of Fack and de la Harpe [2] and Pearcy and

Topping [6] that an algebra of type IIi , treated as a ^-module, is generated by

its projections [2, Corollaire 4.2(h)]. Namely, in such an algebra, any operator

with central trace zero is a sum of ten commutators [2], every commutator a

sum of ten operators each having square zero, and every such operator a sum

of sixteen projections. This results in a JZ"-linear combination of 1,601 pro-

jections, with all but one coefficient from C. It is also clear that any operator

in an algebra of type I„ (zz < oo) can be written as a JT-linear combination

of zz2 projections. By using the diagonal representation of a self-adjoint opera-

tor [1, Corollary 3.3], the number of projections required for such an operator

can be reduced to n . The only obstacle in showing that the JT-module sf is

generated by projections has been the case of an infinite direct sum of type I„

algebras. We show that any self-adjoint operator in a discrete finite algebra can

be written as a JT-linear combination of four projections.

Received by the editors February 14, 1990 and, in revised form, February 21, 1991.

1991 Mathematics Subject Classification. Primary 47C15; Secondary 46L10.
The first-named author gratefully acknowledges the Research Fellowship of the Alexander von

Humboldt Foundation and the hospitality offered to him at the Research Center Bielefeld-Bochum-

Stochastik.

©1992 American Mathematical Society

0002-9939/92 $1.00+ $.25 per page

175

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



176 STANISLAW GOLDSTEIN AND ADAM PASZKIEWICZ

Let us next consider complex (or real) linear combinations of projections.

As noted in [3, 7], some von Neumann algebras are not linearly spanned by

projections. The above-mentioned results of Pearcy, Topping, Fack, and de

la Harpe show that any properly infinite algebra and any factor of type II i

is generated by projections. We prove that an arbitrary algebra of type IL

is a complex linear span of its projections, thus giving an affirmative answer

to the question raised by Pearcy and Topping in §3 of [7]. These results are

complemented by the known results on type l„ factors (see [4, 5] and the

references therein). With all this in mind it is easy to single out the class of

algebras that are not generated by projections.

Finally, in von Neumann algebras without a finite discrete summand it is

possible to write any self-adjoint operator using only sums and differences of

projections.

In many cases considered, we managed to reduce substantially the number of

projections required to span an operator. The results are contained in Theorems

1 and 2 and summed up in Theorem 3. Theorem 4 is a slight improvement of

a result of Fack and de la Harpe [2] on commutators.

1. Statement of the results

In the sequel, we consider only self-adjoint operators A £ sf . We denote

by T the normalized trace on a finite factor sf . To facilitate the reading of

the list of results, to each item of the list we add the information regarding the

number of projections and the number of central coefficients required in the

given representation of A (the other coefficients are simply real numbers).

Theorem 1. Let sf be a factor and let A £ sfn.

1. If sf is of type I„, zz < oo, a = r{A), and C = x{A) l& , then
(a) [4 projections] for any ß, y > 2\\A\\, there are projections P, Q, R, S

in sf such that

(1) A = iß + a)P-ßQ + {y + a)R-yS

when a > 0 and

(2) A = ßP-iß-a)Q + yR-iy-a)S

when a < 0.

(b) [5 projections] for any ß, y > \\A\\, there are projections P, Q, R, S

in sf such that

(3) A = C + ßiP-Q) + y{R-S).

2. If sf is of type \\x then
(a) [12 projections] for any a > \\A\\ and any ß,> 2a, i = I, ... , 5, there

exist projections /?,-, S¡, T, T in sf such that

5

(4) A = Yßi(R-S,) + 2aiT-T').
i=\

3. If sf is properly infinite then
(a) [4 projections] for any ß, y > 2\\A\\, there are projections P, Q, R, S

in sf and \a\ < \\A\\ such that (1) holds when a > 0 and (2) holds when
a <0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PROJECTIONS IN VON NEUMANN ALGEBRAS 177

(b) [5 projections] for any a > \\A\\ and any ß, y > \a, there are projections

P,Q,R,S,T in sf such that

(5) A = ßiP-Q) + yiR-S) + aT

or

(6) A = ß{P-Q) + y(R-S)-aT.

It should be noted that a is uniquely determined by A in case 1, depends

on the spectral properties of A in case 3, and is arbitrary (> ||^4||) in case 2.

Theorem 2. Let sf be an arbitrary von Neumann algebra and let A £sf/,.

1. If sf is finite and discrete iand C is the center-valued trace of A), then

(a) [4 projections, 4 central coefficients] there are F, e Projj/ and C¡ £ 2f,

i = I, ... , 4, such that A = Y^=i ^'^' ■ The operators Ci can be chosen so as

to satisfy \\C,\\<3\\A\\.
(b) [5 projections, 1 central coefficient] for any ß, y > \\A\\, there are

projections P, Q, R, S in sf such that (3) holds.
2. Ifsf is of type 11»  then
(a)   [12 projections] the result is identical with 2(a) of Theorem 1.

3. If sf is properly infinite then
(a) [4 projections, 4 central coefficients] there are F, £ Proj sf and C¡■ e 2f,

i = 1, ... , 4 such that A = £,=j QPi- Por a fixed e > 0, the operators C,

can be chosen so as to satisfy \\C¡\\ < 3\\A\\ + e.

(b) [5 projections, 1 central coefficient] for any ß, y > \\A\\, there are

projections P, Q, R, S, T in sf and C £2f such that

(7) A = ßiP-Q) + y{R-S) + CT,

and the operator C can be chosen so as to satisfy \\C\\ < \\A\\.

(c) [6 projections] for any a > \\A\\ andany ß , y > ja, there are projections

P,Q, R, S,T,T' in sf such that

(8) A = ß{P-Q) + 7(R-S) + a(T-T').

Theorem 3. Let sf be a von Neumann algebra.

1. Any self-adjoint operator in sf can be written as a linear combination of

12 projections, with 4 central and 8 real coefficients.

2. sf is the complex linear span of its projections if and only if the cen-

ter of the finite discrete part of sf is finite dimensional. In particular, if it is

m-dimensional (0 < m < oo), then any self-adjoint operator is a real linear

combination of at most m + 12 projections.

3. sf is the linear span, with integer coefficients, of its projections if and

only if it has no direct summand of finite discrete type. If this is the case, any

self-adjoint operator of norm < 1 can be represented in the form

(9) Px + ■ ■ • + Pi2 - P13-F24    with P,£ Proj sf.

Theorem 4. Any self-adjoint operator of central trace zero in a von Neumann

algebra of type llx is a sum of 4 commutators, and also a sum of 12 operators

each having square zero.
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178 STANISLAW GOLDSTEIN AND ADAM PASZKIEWICZ

2. Proofs of the results

Lemma 5 (cf. [5]). Let E, F £ Proj sf , EF = 0, and let U £ sf be a partial
isometry such that E = U*U, F = UU*. For any ß > 0 and any D £ sfh
satisfying -ßE < D < ßE, there are projections P, Q < E + F in sf such

that D - UDU* = ß{P - Q). Moreover, for any D £ sf there are operators

S,T £sf satisfying S2 = T2 = 0 such that D - UDU* =S+T.

Proof. In the 2x2 matrix representation over EsfE,

E + \D        (E-j-D2)1'2'

(E-f2D2fl2        E-jD

E-JD        (E-jjD2)
(£        .02)1/2 E+LD

D     0
0    -D

ß_
2

if
2

»1/2

D
-D

D
-D

1
+ 2

D   -D
D   -D

Lemma 6 (cf. [4, 5]). Let sf be an infinite factor and let A £ sfn . There exists

a £ R such that for any e > 0, there are a sequence (e¡), i £ Z\{0} of positive

numbers satisfying 2^;yoe< - e and a sequence (E¡), i £ Z of projections from

sf such that E¡ ~ 1 and E¡A = AE¡ for all i, ^2¡eZ E¡ — I, and

(a - efiEi < AEi < (a + £i)F,   for i £ Z\{0}.

Proof. There exists a £ [-\\A\\, \\A\\] such that eA((a - £, a + e)) ~ 1 for any

e > 0 (here eA stands for the spectral measure of A). Indeed, it is enough to
use the compactness of the interval [-||^4||, ||^4||]. Now consider two cases:

(i) eA({a}) ~ 1 . Choose F,, i £ Z\{0}, E0 so that E(¡ ~ F, ~ 1 and

£,yo£i + Eo = eAÍ{a}) - Put E0 = E0 + c?^(R\{a}) and e, = 0 for all z ̂  0.

(ii) eAi{a}) *< 1 . First observe that we can replace the set of indices Z by

any other countable set. Now define inductively the sequences ex , e2, ... and

Eo, Ex, ... as follows. Put £| = e/2. Assuming ex, ... , en already defined,

choose £„+i < 2~(,!+1)£ so that

r-   def      ,-,
En = eA{]a , a-en+i]U[a-l-en+i, a + en[) ~ 1.

Finally, put E0 = I* - E~, Et.

Lemma 7 (cf. [2]). Let sf be a von Neumann algebra acting in a separable

Hibert space H, let Z be its center, and let H = J® Hix)dpix) and sf =

J® sf (x) dpix) be the central direct integral decompositions of H and sf over

iX, p), where X is Polish, locally compact and a-compact and p is Radon.

(a) Let Ix Im be some compact subsets of the real line.  Assume that

for any x £ X\N, where N is p-negligible, and any A £ sfix)„, there are

Pi £ Proj sf{x), a¡ £ f, i = 1, ... , m, such that A = Y!¡LX aiT¡ ■ It follows
that for any A £ sfh, there are P¡ £ Proj sf and C¡ £ 3fh, i = I, ... , m,
such that A = YlT=i C^t ■ Moreover, ||C,|| < max{|a| : a £ I¡}, and if for some

1 < j\ < ■ ■ ■ < jk < m » Tji'— {yj¡} for I — I, ■■■ , k, then (C,) can be chosen
so that Cjk = yjk l^ .

(b) Let sf be a finite von Neumann algebra. If, for x £ X\N0 with p-
negligible No, any Hermit ian operator from sf{x) with trace zero and norm

< 1  is a sum of m operators from sf{x) each having square zero and norm
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PROJECTIONS IN VON NEUMANN ALGEBRAS 179

< 3, then any Hermitian operator from sf with center-valued trace zero is a

sum of m operators from sf each having square zero.

Proof, (a) We may assume x >-» H(x) to be a constant field of Hubert spaces,

so that all the algebras sf (x) act in the same Hubert space 7/n ■ Let (Bf) be a

sequence of self-adjoint operators from sf of norm < 1 such that for p-almost

every x , the set {Bfx)} generates sf (x)'. Let Xq be a Borel subset of X with
a p-negligible complement containing N, such that all the fields x h-> A(x) and

x h-> Bj (x) are Borel when restricted to Xq . Put Y = XoxIxx^'x--xImx^s

where & is the set of operators from B(Ho)h with norm < 1 , equipped with

its strong-operator topology. It is evident that Y is Polish. Denote by 5? the

set of those (2m + l)-tuples (x, ax, Px, ... , am , Pm) from Y that satisfy the

following conditions:

(j)    p. — p2 .

(ii)   P¡Bj(x) '= Bj(x)Pi for all i = 1, ... , m and all j ;

(Hi)   A(x) = Y?=i ctiñ -

It is clear that S7 is Borel and that pr,(A/") = Xq. By the measurable

selection principle, there exists a p-measurable mapping

x ^ (ax(x), Px{x), ... , am{x), Pm{x))

defined on X0 such that

(x, qi(x), Px{x), ... , am{x), Pm{x)) £5?   for x £ X0.

Put a,(x) = 0 and F;(x) = 0 for x e X\X0. Then F, = ¡® P¡(x)dp(x) are

projections from sf and C, = Jx a¡(x)lj^^x)dp(x) are diagonalizable so that

Ci £ 2fn. Moreover, A — \f™=\ Ci^i > which concludes the proof of the first

assertion of the lemma.

(b) It t is the center-valued trace on sf and t = f® xx dp{x) is its central

direct integral decomposition, then for p-almost every x, xx is a (not neces-

sarily normalized) trace on sf{x). If x{A) — 0, then for x £ X\NX with some

p-negligible Nx , xx{A{x)) = 0. The rest of the proof can be obtained as in (a),

mutatis mutandis. In particular, one should start with a Hermitian operator of

norm < 1 and replace A/ by 7V0 U Nx .

Proof of Theorem 1. 1(a) This is a result of Paszkiewicz [5]. It should only be

noted that the proof given there for the case of even n works equally well if zz

is odd and > 1 . If zz = 1, put F = Q = 1, R = S = 0.
1(b) (cf. [5, 2.5]). Assume that \\A\\ < 1 , x{A) = 0, and zz > 1 (if zz = 1,

put P-Q = R = S = 0). Take any ß, y > 1. Choose an orthonormal basis

{ex, ... , en} in H consisting of eigenvectors of A, so that A = VJ"=1 a¡e¡

where e¡ = (■, ef)e¡.  The terms in the spectral representation of A can be
def

ordered so that for each j , j — I , ... , n , ßj — ax + ■ ■ ■ + a}■ e [-1, 1].

Indeed, let ax be an arbitrary eigenvector of A. Note that ßn = 0, which

makes it possible to order the terms inductively as follows: we choose aj+x

positive when ßj < 0, negative when ß}■ > 0, and arbitrary when ßj — 0

(j < zz). Assume this particular ordering. By Lemma 5, there are projections

Pj, Qj in sf such that

ß(e -e   A-iß{Pj-Qj)   foreven^
Wj    e^} - { Y{Pj - Qj)    f0r odd;.
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180 STANISLAW GOLDSTEIN AND ADAM PASZKIEWICZ

Since ßn — 0, we have

A = ßx(ex -ê2) + • ■ ■ + ß„-x(e„-.x -ên)

= /5ÍE^-Ea)+>'ÍE^-Ea
\j even j even      J \j odd j odd

2(a) (cf. [2]). We start with taking any a > \\A\\ and replacing A by A/a.

As in [2], denote by V{Z) the diameter of the spectrum of Z . Let P, Q be

two complementary projections from sf , commuting with A and such that

x{P) = x{Q) = j (see [2, Lemma 1.4]). Choose any orthogonal sequence (P„)

of projections from sf suchthat Px = P, P2 commute with AQ, and x{P„) =

2~" . Put Zx = Ax = APX so that V{Ax) < 2, and define (A„) (and (Z„))
inductively as follows. Suppose Ax, ... , A„ are already defined, \\A„\\ < 2,

and V{A„) < 2. According to Lemma 2.2 of [2] (where we do not assume

x{Z) = 0 and do not insist on having x{S) = 0), there exist in sf projections

P'n , Pn' that commute with An and have sum P„ and partial isometries W',

W;' with WfW¿ = P„, W^W'1 = Pn', and W'W¿* = Pn+X = K'K'* such
that V(Zn+i) < V{A„) where Zn+X = W¿A„Wf + WfAnWf* . Put A2 = Z2
and (notingthat ||Z„+1|| < 4) define An+X for zz > 2 tobe Zn+x-c¡nPn+x where

¿;„ G {-2, 0, 2} is chosen so that \\An+x || < 2. Obviously, V{An+x) < 2, and it
is not difficult to see that Ax = {Ax - A2) + iA2 - A^) -\— in the strong-operator

topology. By Lemma 5, for any ß, > 2, i = 1, ... , 4, and any n , there are

projections R'„ , S'n , R'¿, S¡¡ in sf such that

( ßAR'-S'A    for even zz,
7  p' — W'7 W* — )
¿nrn    wn¿nwn - \ h{K _s,n)   forodd„

and

Hence

( ßiiK-S'J)   for even n,
7 P" — W"7  W"* — i
¿nrn     wnz,nwn   -\h{K_s,,)   forodd„.

Ax=ßx   Y(K-S'n) + ß2Y^R'n-S'n)
n even « odd

oo

+ & E (K - sa) + a E (Ä« - 5«) + E^p«+>•
n odd n=\

The last term of the above equality can be written as 2(7i - T[) where Tx, T[ g

Projj/ and F,, T[ < Q .
Now choose an orthogonal sequence {Q„) of projections from sf such that

Q\ = Ô, 02 = P[, and T(ß„) = 2"" . Put Z,e = A® = AQ and imitate the

procedure from the first paragraph of the proof. To define {A%) and (Z,p),

use Qn, Q'„, Q'l in place of Pn,P'n, P1; and U'n, U„' in place of W', W¿,

guaranteeing additionally that Q\ = F2 and Í/,' = H^,'* (now, F(Zne+1) <

F(^ö) for n > 2). Write /if in the same form as Ax with R'„ , S'„ , Ä'„',

S„' replaced by QR'„, QS'n, QR'¿, QS'J, respectively, with Pn+X replaced by

Qn+X and ßA replaced by some ß5>2. Note that R'„-S'n, i?'„'-S¡¡ <Q and

QR'n - QS'n , QR'Ï - QS'J < P for zz > 2, and the last term in the representation
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of Af is < Q. Moreover, by virtue of Lemma 5 with D = AXP[ - W{*A\2W[,

ß2{{R\ - S[) + (OF; - QS[)) = {Ax - A2)P[ + {Af - A%)Q\

= D- W[DW[* = ß2(Rx -SX)<P2 + Q2

for some Rx, Sx £ Proj sf . All the terms with zz > 3 are orthogonal to F2+£?2 ,

which yields (4).
3(a) The proof is essentially the same as the proof of Theorem l.B from [5].

One should only replace Lemma 2.2 of [5] with our Lemma 6.

3(b) (cf. [5, 2.8]). Start with replacing A by A/a so that \\A\\ < 1 . Take

£ such that ß, y > \ + e . Let a, (e„), and (E„) be as in Lemma 6. Choose

a sequence (¿;n) with ¿j0 = 0 and, for zz > 1 , £„ £ {0, 1} or £,„ £ {0, -1}

depending on the sign of a, such that for any zz > 1, Yl"j=x(a ~%j) e [~j > \] ■

As in [5, 2.6], we denote by h the mapping ad(C7)  on B(H), where  U —

Y,j¥o UJ and UJ are such that UjUJ = EJ » uJUj = EJ+i ■ Put AJ = AEi -

i\j\Ej and define

0 for zz = 0,

Ax for zz = 1,

B„ = {  -h~lAo forzz = -l,

h"~lAx + --- + An forzz>2,

-h~xAn+x-h-"A0 for n < -2.

We easily check that A„ — Bn-hBn_x and that for any zz, -(j + e)En < B„ <

(j + e)E„ . Now, apply Lemma 5 with D — Bn to obtain

A-YtjEj = ß{P-Q) + y{R-S)
yez

for some P,Q, R,S £ Proj sf .

Proof of Theorem 2. 1 (a) If sf is of type I and acts in a separable Hubert

space, we can apply Lemma 7(a) and Theorem 1.1(a) with ß, y — 2 to obtain

the conclusion. If, in turn, sf is rr-finite, then the subalgebra of sf generated

by A and a system {U¡j}, j=x,...,„ of matrix units from sf is of type I„ and

its predual is separable (i.e., it is isomorphic to an algebra acting in a separable

Hubert space). Finally, an arbitrary discrete and finite von Neumann algebra is

a direct sum of rj-finite algebras of type I„ .

1(b) We consider the operator A - C in place of A and proceed (almost) as

in 1(a) (cf. proof of Lemma 7(b)).
2(a) For algebras acting in a separable Hubert space the result follows imme-

diately from Theorem 1.2(a) and Lemma 7(a). If sf is er-finite, we generate

a subalgebra containing A, which is of type IL with separable predual. The

generators consist of A and a suitable sequence of partial isometries (see the

remark following the proof of Lemma 3.1 in [2]). If sf is not cr-finite, it is a

direct sum of cr-finite algebras of type II i .

3(a) If sf has separable predual, the result follows from Theorem 1.3(a) and

Lemma 6(a). If sf is arbitrary, we replace sf by a properly infinite subalgebra

â§ generated by A and a system {U¡j)tj€ff of matrix units from sf . Let 2"

be the center of 33, and let  Ck G 2f be such that the algebras 3ACk  are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 STANISLAW GOLDSTEIN AND ADAM PASZKIEWICZ

cr-finite and ^2k Z*. = lg¡ . Then 33 is a direct sum of the cr-finite algebras

33Ck , each generated by the operators ACk and U¡jCk . Hence, 33 is a direct

sum of algebras with separable predual.

3(b). Formula (7) follows from Theorem 1.3(b) in exactly the same way as

described above.
3(c) Note that (5) and (6) can be replaced by one formula only:

A = ß{P-Q) + y{R -S) + a{T - T),

with F = 0 or V — 0. The rest is the same as in 3(a) and 3(b).

Proof of Theorem 3. 1. This is an immediate consequence of Theorem 2, points

1(a), 2(a), 3(a)—note that centrally orthogonal projections, as well as mutually

orthogonal central coefficients, may be summed up to yield one term in the final

representation of the operator.

2. Suppose the center of the finite discrete part of sf is zzz-dimensional. Put

a = \\A\\, ßi = ß = y = 2\\A\\. Represent sf as a direct sum of a properly infi-

nite algebra, a type II i algebra and m type I„ factors (with possibly different

zz). Use each of the Theorems 2.2(a) and 2.3(c) once, and Theorem 1.1(b) m

times, to write the respective part of A as a real combination of projections. A

simple grouping of the terms gives the required formula for A .

Now suppose that the center of the finite discrete part of sf is infinite di-

mensional. We can restrict our consideration to the following two cases: Io

sf is of type I„ (n < oo) and the center of sf is infinite dimensional. In this

case we denote by {Zk) an infinite sequence of mutually orthogonal, nonzero

projections from the center of sf . 2° sf is an infinite direct sum of type l„k

factors sf„k (k = 1,2,...) with nx < n2 < ■ ■ ■ . This time we denote by {Zf)
the sequence of (nonzero) minimal projections of sf for which Zk £ sf„k .

Let {ßk) be a bounded sequence of real numbers satisfying ßk+x £ ßxQ +
• • • + ßkQ for k — 1, 2, ... , ßx í 0 (i.e., ßk are linearly independent over

Q). We shall show that, in either case, the operator A — J2h=\ ßk%k is n°t a

finite complex linear combination of projections. Suppose that, on the contrary,

A = 2~] OLiPi for some ax, ... , am £ C, Px, ... , Pm £ Proj sf .
For case Io, the center-valued trace x{P) of any projection F is a finite

linear combination of nonzero central projections. Hence, A — x{A) would

also be such a linear combination. This is clearly impossible, as the sequence

ißk) consists of distinct numbers.

In case 2°, we have t(F,) = Y,T=x 4°Z* for some l<k € 'Q » i, k =1,2,... .
Therefore,

z(l) ,   t(m) a
l\ 'axl-h/J  'am = ßx

z(l) i  z("») a
rm+xaX+--- + fm^xam = ßm+x.

The independence of ßx, ... , ßm+x over Q implies that the above system of

linear equations in ax, ... ,am is contradictory.

3. If sf is of type I„ , the center-valued trace of a projection is a rational

linear combination of projections. Hence an operator such as A = jrl is not

an integral linear combination of projections.

Now let sf be a direct sum of an algebra of type IL and a properly infinite

algebra, and let A £ sfh, \\A\\ < 1 . Put a = 1 and ßt■ = ß = y = 2 in (4) and
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PROJECTIONS IN VON NEUMANN ALGEBRAS 183

(8) and sum the representations of the parts of A corresponding to the finite

and properly infinite part of the algebra.

This ends the proof of the theorem.

Proof of Theorem 4. We can proceed as in [2] (using Lemma 5 if applicable)

and reduce the numbers of terms needed by using the argument from the proof

of Theorem 1.2(a).
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