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Abstract

It is shown that the linear complementarity problem
of finding a z in R"™ such that Mz + gz 0, 2z 20 and
zT(Mz+q) = 0 can be solved by a single linear program in
some important special cases such as when M or its
inverse is a Z-matrix, that is a real square matrix
with nonpositive off-diagonal elements. As a conse-
quence certain problems in mechanics, certain problems
of finding the least element of a polyhedral set and
certain quadratic programming problems, can each be

solved by a single linear program.
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We consider the linear complementarity problem of

finding a 2z in R™ such that
(1) Mz + gz 0, z 2 0, zT(Mz+q) = 0

where M 1is a given real n x n matrix and g 1s a given
vector in RY. A number of authors [3,19,20,14,4,5,18,9]
have recently considered an important special case of this
problem under the restriction that M is a Z-matrix, that
is a real square matrix with nonpositive off-diagonal
elements, and have proposed a variety of methods for its
solution. Originally Chandrasekaran [3] proposed solving

a sequence of linear inequalities, Saigal [20] proposed
Lemke's method, and Cottle, Golub and Sacher [4,5,18]
proposed a modification of the principal pivoting method
[6], a specialization of Chandrasekaran's method and a
modification of the point successive overrelaxation tech-
nique [9]. Part of the significance of this problem arises
from the fact that a number of free boundary problems

of fluid mechanics can be solved by solving a linear com-
plementarity problem (1) where M isa Z-matrix [8,5]. Itis
anticipated that many more physically significant free
boundary value problems governed by elliptic partial dif-
ferential equations will lead to complementarity problems

(1) for which M 1is a Z-matrix [10].

The principal and somewhat surprising result of this

paper is that each solution =z of the linear program

(2) minimize pTz subject to Mz + g z 0, z 0

Y

for an easily determined p in Rn, solves the linear
complementarity problem (1) for a number of special cases,
including those when M or its inverse (if it exists) are
Z-matrices (Theorems 1 and 2). In addition if M 1is a
Z-matrix with a nonnegative inverse (or equivalently a

Z-matrix with positive principal minors), we show that the
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least element of the polyhedral set {z|Mz+g20,2z20} 1in the
sense of Cottle-Veinott [7] can be obtained by a single

linear program (Theorem 3). Finally, because the gquadratic
programming problem of minimizing %ZTMZ + qu subject to

z > 0 1is equivalent [9, p. 386, 15, p. 111] to the linear
complementarity problem (1) when M is symmetric and positive
semidefinite, we will show (Theorem 4) that this gquadratic
programming problem can be solved by a single linear

program whenever M or its inverse is a Z-matrix. We

state now our principal result.

THEOREM 1: Let the set {z|Mz+g20,z20} be nonempty, and let

M satisfy

(3) Mz, = Z,

(4) rTZl + STZ2 > 0 (r,s)

1A%
<o

. n
where Zl and Z2 are n x n Z-matrices, r € R and

s ¢ R™. Then the linear complementarity problem (1) has
a solution which can be obtained by solving the linear

program (2) with
(b) p=1xr + MTS
To prove this theorem it is convenient to first write
the dual linear program to (2)
. T . T
(6) maximize -q'y subject to -My + p z 0, v 20
and to establish the following simple but key lemma.

LEMMA 1: If 2z solves the linear program (2) and if the

corresponding optimal dual variable vy satisfies
(I-MY)y + p > 0

where I is the identity matrix, then =z solves the linear

complementarity problem (1).




Proof: yT(Mz+q) + zT(—MTy+p) = qu + sz =0
Since y 2z 0, Mz + g 2 0, z z 0 and —MTy + p 20 it follows
that

- ML = -
yi(Mz+q)i = 0, Zi( M y+p)i =0 1=1,...,n

where subscripted quantities denote the ith element of a vector.

But Yy + (—-MTy+p)i >0, i=1,...,n, hence either Yy 0

or (—MTy+p)i >0, i=1,...,n, and consequently (Mz+q)i = 0
or z., = 0, 1i=1,...,0. N
Proof of Theorem 1: Since y = s 1s a dual feasible point,

the dual linear programs (2) and (6) must have solutions, which

we denote by 2z and vy respectively. Let Zl =D - V and

22 =D - U,where V and U are nonnegative matrices and D
is a positive diagonal matrix. Then

0 < rTZl + sTZ2 = (rT+sTM)Zl = pT(D—V)

pl(D-V) + yl (-MD+MV+D-U) (Since M(D-V)=D-U)

il

(—YTM+pT)(D—V) + yT(D—U)

il

(yT(I—M)+pT)D (Since —yTM+pT§O, vz0,

A

Since D is a positive diagonal matrix, it follows that
yT(I—M) + pT > 0 and by Lemma 1, 2z solves the linear com-
plementarity problem (1). O

Remark 1: The proof of Theorem 1 shows that conditions
(3), (4) and (5) imply that there exists a dual feasible
point for (6) and for each dual feasible point the condi-
tion (I-MT)y + p >0 of Lemma 1 is satisfied. The
converse (which is not needed in the sequel of this paper)
is also true and can be shown by using Motzkin's theorem
of the alternative [l15, p. 28]. Conditions (3), (4) and
(5) are also equivalent to MZ3 < I, pTZ3 > 0,

r + MTs, Z3 e 2 and (r,s) z 0. The condition

p =1x + MTs, (r,s) 2 0 is equivalent to dual feasibility.

it

P
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Remark 2: The set 2 of Z-matrices contains an important
subset K which has been extensively characterized by
Fiedler and Ptak [13, p. 387]. This set K will play
an important role in obtaining useful special cases of
Theorem 1. In particular we shall employ the following
equivalent characterizations of a K-matrix A: (a) A is
a Z-matrix with a nonnegative inverse, (b) A 1is a
Z-matrix with positive principal minors, (c) A 1is a
Z-matrix and there exists an 1 ¢ Rn, r 2 0, such that
rTA > 0, and (d) A is a Z-matrix and zi(Az)i < 0,
i=1,e0.,n, 41implies that =z = 0. (A K-matrix is also

called an M-matrix by some authors.)

The following immediate consequence of Theorem 1, is
an existence result for the linear complementarity
problem (1) which also provides a linear program (2) for
solving (1) fcor important special cases such as when M

or its inverse are Z-matrices.

THEOREM 2: Let {z|Mz+gz0,zz0} be nonempty, and let e

be any positive vector in R™ (in particular it may be

taken as a vector of ones.) Then for each of the cases
when
(@) M=2.2."Y 2. ¢RK, 2. ¢ Z (p=r=0,r 2.>0)
2 l 7 l 14 2 p = 7 l

-1 T T
(b) M = ZZZl ’ Zl e 2, Z2 e K (p=M"s,s20,s ZZ>O)
(c) M e Z (p=e)
@ utez (p=mTe)

(e) -M ¢ K (p==-e or p=MTe)

(£) -MT ¢ & (p=—MTe or p=e)

the linear complementarity problem (1) has a solution which
can be obtained by solving the linear program (2) with the

p indicated above.




Proof:

(a) Follows from Theorem 1 by setting s = 0, and from

Remark 2(c) .

(b) Follows from Theorem 1 by setting r = 0, and from

Remark 2(c).

(c) Follows from part (a) of this Theorem by setting

Zl = I, M= 22 and r = e.
(d) Follows from part (b) of this Theorem by setting
= = -1 =
22 = I, M= Zl and s = e,
() The case p = -e follows from part (b) of this
Theorem by setting z, = -1, M= -2, and
s = -MT)"te. The case p = M'e follows from part

(d) of this Theorem by observing that, by Remark 2(a),

M-l < 0 and hence M_l € Z.

(f) The case p = -M'e follows from part (a) of this
Theorem by setting 2, = -I, M = —Zl—':L and
r = --MTeo The case p = e follows from part (c)

of this Theorem by observing that, by Remark 2(a),
M < 0, and hence M e 2. [

Remark 3: Some special nonnegative matrices can be handled

as special cases of Theorem 2 above. For example the case
M—l ¢ K (and hence M 2 0) is a special case of part (d)
of Theorem 2. Also if in part (a) of Theorem 2 we impose
the additional restriction that 22 = Zl then

M = (Z2-—Zl)lel + I 2z I. Similarly some special matrices

with nonnegative inverses can be handled as special cases

of Theorem 2. Thus the case M ¢ K (and hence M1 = 0)
is a special case of part (c) of Theorem 2. Also if in
part (b) of Theorem 2 we impose the additional restriction

that 2, z Z, then Mt = (2.-2.)2 RE T

1 2) 2
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Remark 4: Note that whenever p 2z 0, as is the case in
parts (a), (c) and (f) of Theorem 2 above, y = 0 1is
a dual feasible point, and hence the dual simplex algorithm

[11] should be used.

Remark 5: Note that when M—l 2 0, as is the case for
example when M e K, the set {z|Mz+g20,220} is nonempty
0 and

for any gq. For, choose a e Rn such that a =z
a z q, and define z = M—l(a~q) > 0. Then Mz + g =a z 0.

Our next result shows how to find by a single linear
program the least element, in the sense of Cottle and Veinott

[7], of a polyhedral set defined by a K-matrix.

THEOREM 3: If M ¢ K, then for each g the polyhedral set
{z|Mz+gz0,2z20} contains a unique least element z , that

is z g z for all 2z e {z|Mz+q20,2z20}, whichis also the unique
solution of the linear complementarity problem (1), and which
can be obtained by solving the linear program (2) with any

p > 0.

Proof: Because the condition 2z g z 1is equivalent to

pT(z—E) > 0 for all p » 0, it follows that z is the desired
least element of {z|Mz+gz0,z20} if and only if it solves the
linear program (2) for all p > 0 . By Remark 5 and Theorem 2(c),
for any gq the linear complementarity problem has a solution
which can be obtained by solving the linear program (2) with
any p > 0. Suppose z and 2z are solutions to the linear
program (2) with p =p > 0 and p = p > 0 respectively. (We
do not exclude the possibility that p = p.) Then by Theorem
2(c) both Z and £ solve the linear complementarity problem
(1). Hence, similarly to Gale-Murty [17, p. 76], we have that

for i =1,...,n

(2-2), (M(2-2)); = (z-2) ; (Mz+q- (ME+q)) 4

i

- zi(Mz+q)i - Zi(MZ+q)i - 0
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Thus by Remark 2(d), z — 2 = 0 and 2z is a unique
solution of the linear program (2) no matter what p > 0

is used. Hence 2z is the desired least element. [J

Remark 6: For very large linear complementarity problems

such as those arising from discretization of numerical analysis
problems [9,10,5] and in which M is a Z-matrix, we propose
the use of large scale linear programming codes for solving
(2) or alternatively the use of relaxation methods or pro-
jection methods [16,1,2,12] to solve the system of linear
inequalities and equalities Mz + g 2 0, z z O,

—MTy +pz0,v 20, pTz + qu = 0, which constitutes the
Kuhn-Tucker conditions of the linear program (2). Since these
methods do not disturb the sparsity, if any, of the matrix

M, it would be interesting to compare them with the methods

proposed in [5] for large sparse matrices.
We conclude by showing that under suitable conditions

the quadratic program

(7) minimize %ZTMZ + qu subject to z 2 0

can be solved by solving the linear program (2).

THEOREM 4: (a) Let M be a symmetric positive semidefinite
matrix, let {z|Mz+g20,z20} be nonempty and let either
Mc 7 or MY ¢ 7. Then the quadratic program (7) has a

solution which can be obtained by solving the linear program

(2) with p = e, any positive vector in Rn, when M e Z;

and p = MTe when M_l e Z. (b) Let M be symmetric.

If M e K, or in particular if M ¢ Z and M has a positive
strictly dominant diagonal, then the gquadratic program (7) has a
unique solution which can be obtained by solving the linear

program (2) with p = e, any positive vector in r™.

Proof: (a) The necessary and sufficient Kuhn-Tucker
optimality conditions for (7) are precisely conditions (1)
[9, p. 386, 15, p. 111]. This part of the theorem follows then

from Theorem 2, parts (c) and (4d).
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(b) By Remark 2(c), M 1is a K-matrix , and by

Theorem 3, the conditions (1) have a unique solution for
each g which is also the unique solution of the guadratic

program (7) and the linear program (2) for any p > 0. 0
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