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Abstract 

We introduce a new class of dynamical systems that we call "linear complementarity sys

terns". The evolution of these systems typically consists of a series of continuous phases 

separated by "events" which cause a change in dynamics and possibly a jump in the state 

vector. The occurrence of events is governed by certain inequalities similar to those appearing 

in the Linear Complementarity Problem of mathematical programming. The framework we 

describe is suitable for certain situations in which both differential equations and inequalities 

playa role, for instance in mechanics, electrical networks, and dynamic optimization. We 

present a precise definition of linear complementarity systems and give sufficient conditions 

for existence and uniqueness of solutions. 

1 Introduction 

In many technical and economic applications one encounters systems of differential equations 

and inequalities. For a quick roundup of examples, one may think of the following: motion 

of rigid bodies subject to unilateral constraints, electrical networks with ideal diodes, optimal 

control problems with inequality constraints in the states and/or controls, dynamic versions 

of linear and nonlinear programming problems, and dynamic Walrasian economies. It has to 

be noted that there is considerable inherent complexity in systems of differential equations and 

inequalities, since nonsmooth trajectories and possibly even jumps have to be taken into account; 
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as a result of this, even basic issues such as existence and uniqueness of solutions are difficult 

to settle. Given the wealth of possible applications however, it is of interest to overcome these 

difficulties. 

In the literature one can find several lines of research dealing with dynamics subject to inequality 

constraints, some mainly motivated by problems in mechanics, others more closely connected to 

operations research and economics. One way in which differential equations and inequalities can 

be combined is by means of differential inclusions, see [1] and the references given there. By their 

nature, differential inclusions usually have nonunique solutions; in this paper however we shall 

be interested in systems that are like ODEs in the sense that typically one will have uniqueness 

of solutions. A formulation of this type is provided by the "sweeping process" of Moreau [17] 

(see also [16] and [3]), which is mainly geared towards applications in mechanics. In a more 

economically oriented context, Dupuis and Nagurney [8) and Nagurney and Zhang [18] have 

recently discussed so-called "projected dynamical systems" for which they prove existence and 

uniqueness results. In [9] Filippov studies differential equations with discontinuous right hand 

sides. Van Bokhoven [2] has given a formulation for electrical networks with ideal diodes that 

fits within the description that will be used below; he mainly discusses equilibria and only briefly 

touches upon solving the equations in time. 

The framework that we shall present in this paper is more general than the one discussed by 

Moreau and co-workers in that we do not constrain ourselves to mechanical systems; on the other 

hand, we shall discuss only (piecewise) linear systems whereas Moreau considers fully nonlinear 

systems. The limitation to linear dynamics is introduced here mainly because it simplifies the 

discussion of jump phenomena. It will be proven below that the formulation that we give agrees 

with the one given by Moreau within the class of systems to which both formulations apply. 

The solution concept proposed by Dupuis and Nagurney is such that no jumps can occur in 

state trajectories and so in general their formulation is different from ours. In the terminology 

of mechanics, we study inelastic rather than elastic collisions in this paper, since we want to 

allow transitions from constrained to unconstrained modes and vice versa" Elastic collisions 

bring their own problems in existence and uniqueness of solutions, see for instance [22] and [19]. 

The present paper continues a line of research begun in [20], where existence and uniqueness 

results were given for the case of systems with a single inequality constraint. The main result 

of this paper will be to give sufficient conditions for local existence and uniqueness of solutions 

for systems with several inequality constraints. We do this under a formulation of the mode 

transition rule that is different (for the multiconstrained case) than the one used in [20]. It seems 

to be difficult to obtain well-posedness results for the multi constrained case using the rule of 

[20]; moreover, this rule is not consistent with Moreau's rule in the case of mechanical systems. 

Obtaining well-posedness results for Moreau's sweeping process in the multiconstrained case 

is mentioned as an open problem by Monteiro Marques [16, p.126]. Of course, this problem 

is posed in a general nonlinear setting and is certainly not completely solved here, since we 

consider only systems that have linear dynamics in each mode. Dupuis and N agurney [8] prove 

global existence and uniqueness of solutions (under appropriate Lipschitz conditions) for systems 

with several inequality constraints: However, as noted above, the dynamics they consider is in 

general different from ours. To illustrate the difference, note that Dupuis and N agurney also 

2 



obtain continuous dependence of the solutions on initial conditions, which is a property that 

in our context need not hold (see Example 8.3 below). Filippov [9] presents existence and 

uniqueness results for differential equations with discontinuous righthand sides. In particular, 

the right hand side is assumed to be piecewise continuous with a countable number of domains of 

continuity with nonempty interior (separated by surfaces). The main difference with the work 

presented in this paper is that we deal with inequalities that are not allowed to be violated. 

Specification of the domains (called "mode selection" in our set-up) is a nontrivial task and 

has to be accomplished before formulating the dynamics of the linear complementarity systems 

as differential equations with discontinuous righthand sides. However, this results in domains 

of continuity ("modes") that have empty interior, which is different from the assumptions in 

Filippov's work. Furthermore, solutions in [9] are required to be absolutely continuous, while 

our solutions may contain jumps in order not to violate the inequalities. Continuous dependence 

of the solutions on initial conditions holds for systems considered in [9], but in general does not 

apply for linear complementarity systems. 

This paper can be viewed as a continuation of the work of Lotstedt [14] who pioneered the 

application of the Linear Complementarity Problem (LCP) of mathematical programming to 

the simulation of the motion of systems of rigid bodies subject to unilateral constraints. There 

is some change of direction however, since we consider (piecewise) linear systems rather than 

(nonlinear) mechanical systems and aim for a complete specification of the system dynamics. 

Such a specification was not given by Lotstedt; in particular he does not precisely specify what 

trajectories should be chosen in case multiple constraints become active at the same time. One 

of the main objectives in this paper is to give a complete definition of the dynamics of linear 

complementarity systems, in a form that is suitable for simulation purposes. 

The mode-switching behaviour that we study in this paper may also be looked at from a much 

more general viewpoint as an interaction of differential equations and switching rules. Sys

tems in which continuous dynamics and discrete transition rules are connected to each other 

are sometimes called "hybrid systems"; these occur for instance when a discrete device, such 

as a computer program, interacts with a part of the outside world that has its own continu

ous dynamics, such as a chemical process. Hybrid systems have recently drawn considerable 

attention both from computer scientists and from control theorists, see for instance [15]. In this 

literature, existence and uniqueness of solutions is often simply assumed, and easily verifiable 

sufficient conditions for well-posedness in other than trivial cases are rarely given. The work 

presented in this paper may be seen as a contribution towards filling this gap. 

The paper is organised as follows. We start with an example to motivate the definitions that 

will be given later. After having dealt with some mathematical preliminaries in Section 3, a 

formal definition of the class of linear complementarity systems with the corresponding solution 

concept is given in Section 4. Mode selection techniques are presented in Section 5. Sufficient 

conditions for local existence and uniqueness of solutions follow in Section 6. After that, we 

present a computational example to illustrate that our definition is suitable as a basis for the 

actual simulation of linear complementarity systems. In section 8, we establish the connection 

with the sweeping process formulation of Moreau. Finally, conclusions follow in Section 9. 

In this paper, the following notational conventions will be in force. JR denotes the real numbers, 

3 



.IR+ the nonnegative real numbers, .IR* := .IR+ U {oo} and N:= {O, 1,2, ... }. For a positive integer 

l, l denotes the set {1, 2, ... ,l}. If a is a (column) vector with k real components, we write 

a E .IRk and denote the ith component by ai. M E .lRmxn means that M is a real matrix with 

size m X n. MT is the transpose of the matrix M. The kernel of M is denoted by Ker M and 

the image by 1m M. Given M E .lRkx1 and two subsets I ~ k and J ~ I, the (I, J)-submatrix 

of M is defined as MIJ := (mij)iEI,jEJ. In case J = T, we also write MI. and if I = k, we 

write M.J. Fora vector a, al := al. = (ai)iEI. diag(ab'" ,ak) denotes the diagonal matrix 

A E .IR kx k with diagonal entries all ... ,ak. Given two vectors a E .IRk and b E .IR I, then col( a, b) 

denotes the vector in .lRk+l that arises from stacking a over b. 

A rational matrix is a matrix with entries in the field .IR( s) of rational functions in one variable. 

A rational matrix is called proper, if for all entries the degree of the numerator is smaller than 

or equal to the degree of the denominator. A rational matrix is called biproper, if it is square, 

proper and has an inverse, that is proper too. 

The set COO(.IR,.IR) denotes the set of functions from .IR to IR that are arbitrarily often differen

tiable. 

A vector u E IRk is called nonnegative, and we write u ~ 0, if Ui ~ 0, i E k and positive (u > 0), 

if Ui > 0, i E k. If a vector u is not nonnegative, we write u 'I 0. A sequence of scalars is called 

lexicographically nonnegative, written as (u1, u2, ... ,uk) t 0, if (u1, u2, ... ,uk) (0,0, ... ,0) 

or u j > 0 where j := min{p E k I uP f: OJ. A sequence of scalars is called lexicographically posi-

tive, denoted by (ut, u2, . .. ,uk) >- 0, if (u\ u2, .. . ,uk) t 0 and (u1, u2, ... ,uk) f: (0,0, ... ,0). 

For a sequence of vectors, we write (u1, u2, ... ,uk) t ° when (uJ, u;, ... ,uf) >- 0 for all i. 

Likewise, we write (ul , u2, ... ,il) >- 0 when (u}, u;, . .. ,uf) >- 0 for all i. 

For sets A and B, A \ B := {x E A I x ¢ B} and peA) denotes the power set of A, Le. the 

collection of all subsets of A. For two subspaces V, T of IRn, the notation V 6:l T .lRn means 

that V and T form a direct sum decomposition of IRn, Le. V + T := {v + t I v E V, t E T} = IRn 

and V n T = {OJ. 

2 Example 

Before we give a formal description of the class of systems under study, we will illustrate some 

of its hybrid dynamical aspects by considering the example of two carts connected by a spring 

(used also in [20]). The left cart is attached to a wall by a spring. The motion of the left cart 

is constrained by a completely inelastic stop. The system is depicted in figure 1. 

For simplicity, the masses of the carts and the spring constants are set to 1. The stop is placed 

in the equilibrium position of the left cart. We now address the question how to model such 

a system. By Xl, X2 we denote the deviation of the left and right cart, respectively, from their 

equilibrium positions and X3, X4 are the velocities of the left and right cart, respectively. By u, 

we denote the reaction force exerted by the stop_ Furthermore, we set y equal to Xl- By using 
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Figure 1: Two-carts system. 

simple mechanical laws, we deduce the following dynamical relations for this system. 

Xl(t) 

X2( t) 

X3(t) 

:::: X3(t) 

X4(t) :::: 

yet) 

X4(t) 

-2Xl(t) + X2(t) + u(t) 
Xl(t) - X2(t) 

Xl(t) 

(1) 

To model the stop in this setting, we reason as follows. The variable y should be nonnegative, 

because it is the position of the left cart with respect to the stop. The force exerted by the stop 

can only act in the positive direction, so that also u should be nonnegative. If the left cart is 

not at the stop at time t (y(t) > 0), the reaction force vanishes at those moments, i.e. u(t) O. 

Similarly, if u(t) > 0, the cart must necessarily be at the stop, i.e. yet) :::: O. This is expressed 

by 

yet) ~ 0, u(t) ~ 0, y(t)u(t) :::: O. (2) 

The system has two modes, depending on whether the stop is active or not. We distinguish 

between the unconstrained mode (u(t) :::: 0) and the constrained mode (y( t) 0). The dynamics 

of these modes are given by the Differential and Algebraic Equations (DAEs) 

unconstrained 

XI(t) :::: X3(t) 

X2(t) :::: X4(t) 

X3(t) :::: -2Xl (t) + X2(t) 

X4(t) :::: Xl(t) + X2(t) 

u(t) 0 

constrained 

XI(t) = X3(t) 

X2(t) X4(t) 

X3(t) :::: -2Xl(t) + X2(t) + u(t) 

X4(t) = Xl(t) + X2(t) 

yet) = Xl(t) = o. 

When the system is in either of these modes, the triple (u, x, y) is given by the corresponding 

dynamics as long as the remaining inequalities in (2) 

unconstrained constrained 

y(t) ~ 0 u(t) ~ 0 

are satisfied. A mode change is triggered by violation of one of these inequalities. For this 

example, the following mode transitions are possible. 
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• Unconstrained ---+ Constrained: yet) ~ 0 tends to get violated at a time instant t = t'. 
The left cart hits the stop and stays there. The velocity of the left cart is reduced to 

zero instantaneously at the time of impact: the kinetic energy of the left cart is totally 

absorbed by the stop due to a purely inelastic collision. A state for which this happens is 

for instance x( tf) = (0, -1, -1, 0) T. 

• Constrained ---+ Unconstrained: u( t) ~ 0 tends to be violated at tt'. The right cart 

is located at or moving to the right of its equilibrium position, so the spring between the 

carts is stretched and pulls the left cart away from the stop. This happens for example if 

x(t') = (O,O,O,I)T. 

• Unconstrained ---+ Unconstrained with re-initialisation according to Constrained 

mode. yet) ~ ° tends to get violated at t = t'. As an example, consider x(t') = 
(O,I,-I,O)T. At the time of impact, the velocity of the left cart is put to zero just 

as in the first case. Hence, a state jump or re-initialisation to (0,1,0,0) T occurs. The 

right cart is to the right of its equilibrium position and pulls the left cart away from the 

stop. Stated differently, from (0,1,0,0) T smooth continuation in the unconstrained mode 

is possible. 

This last transition is a special one in the sense that first the constrained mode is active caus

ing the corresponding state jump. After the jump no smooth continuation is possible in the 

constrained mode resulting in a second mode change back to the unconstrained mode. 

From state x(t') = (0, -1, -1, O)T, we can enter the constrained mode by starting with an 

instantaneous jump to x(t'+) = (0, 1,0, O)T. This jump is caused by a (Dirac) pulse 6 exerted 

by the stop. In fact, u = 6 results in the state jump x( t' + ) - x( t') = (0,0, 1,0) T. This motivates 

the usage of distributional theory as a feasible mathematical framework to describe physical 

phenomena like jumps and collisions. 

To summarise, the motion of the carts is governed by a pair of Differential and Algebraic equa

tions (DAEs), called the constrained and unconstrained mode. A change of mode is triggered by 

violation of certain inequalities corresponding to the current mode. The time instants at which 

this occurs, are called "event times," and one problem is to detect the instances that these 

events happen. At an event time, the system will switch to a new mode. A mode transition 

often calls for a state jump or re-initialisation. In the example, we observed velocity jumps, 

when the left cart arrived at the stop with negative velocity. In this paper, the above dynamics 

will be formalised for the complete class of linear complementarity systems and special attention 

is paid to the mode selection problem. 

3 Mathematical Preliminaries 

We consider a linear input-output system x(t) = Kx(t) + Lu(t), yet) Mx(t) + Nu(t). The 

time arguments will often be suppressed. Throughout this section, x(t) ERn, u(t) E RID and 

y( t) ERr. The system parameters K, L, M and N are constant matrices of corresponding 

dimensions. 
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The set of distributions defined on JR with support on [0,00) is denoted by V~. For more details 

on distributions, we refer to [23]. Particular examples of elements of V~ are the b-distribution 

and its derivatives. We denote convolution by juxtaposition like ordinary multiplication and 

denote the delta distribution by b and its r-th derivative by b(r). Linear combinations of these 

particular distributions will be called impulsive distributions, that is, a function U E V~ is an 

impulsive distribution, if it can be written as U == .E~=o u- I 
15(1). A special subclass of V~ is the 

set of regular distributions in V~. These are distributions that are smooth on [0,00). Formally, 

a function U E V~ is smooth on [0,00), if a function v E COO(JR, JR) exists such that 

_ { 0 (t < 0) 
u(t) - vet) (t ~ 0). 

Definition 3.1 An impulsive-smooth distribution is a distribution u E V~ of the form u = 

Uimp +ureg ' where Uimp is impulsive and ureg is smooth on [0,00). The class ofthese distributions 

is denoted by Cimp' 

Given an impulsive-smooth distribution U = Uimp + ureg E Cimp, we define the leading coefficient 

of its impulsive part by 

lead( u) (3) 

To define the concept of a distributional solution to x = /( x + Lu, Y == M x + N U given an 

initial condition Xo and input U E C~p' we replace the differential equation by its distributional 

equivalent: 

Y 

/(x + Lu + xob 

Mx+ Nu, 

where x denotes the distributional derivative of x. 

( 4a) 

(4b) 

Definition 3.2 [11] An element (XXG,u, YXG,u) E V~n+T) is a (distributional) solution of x = 

]( x + Lu, Y = M x + N u with initial condition Xo and u = .E~=o u-ib(i) + u reg E C~Pl if 

(xxo,u, YXQ,u) satisfies (4) as an equality of distributions. 

In [11], it is shown that the solution (XXQ,u, YXQ,u) exists, is unique in V~n+r) and belongs to 

C~;. The solution is given by 

with 

1 

xxo,u = L L /(i-j Lu-ib(j-l) + x reg 

i=l j:::::l 

" 
Ximp 
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and 

I i I 

YXQ,u = L L M J(i-j L11,-io(j-l) + L D11,-iO(i) + Yreg 

i=l j=l i=O 

'~--------------v-------------~ 
Yimp 

with 

If it is clear which Xo and 11, are meant, we omit these subscripts in XXQ,U and YXQ,u' 

We introduce the notation 

I 

Xo + L J(i L11, -i. 

i=O 

(7) 

(8) 

(9) 

Note that the jump XXQ,'tL(O+) - Xo of the state at time 0 only depends on the impulsive part of 

the input 11,. Furthermore, observe that 

(10) 

We now consider the system (4) under the additional condition that the output Y is zero. 

Definition 3.3 A state Xo is said to be consistent for (J(, L, M, N), if there exists a regular 

input 11, such that 

x = J( x + L11, + xoo 

o Mx + N11, 
(11) 

is satisfied. The set of all consistent states for (J(, L, M, N) is denoted by V(J(, L, M, N) and 

called the consistent subspace. 

The following sequence of subspaces converges in at most n steps to V(J(, L, M, N) [11]: 

Vo = R
n 

{x E R n 1311, E ]Rm such that J(x + L11, E Vi, Mx +- N11, O}. (12) 

Let Txo (J(, L, M, N) be the set of possible jumps from initial state Xo caused by impulsive-smooth 

inputs 11" that result in regular outputs YXQ,u' Formally, 

Txo(J(, L, M, N) = {XXQ,u(O+) - Xo 111, E C~p such that YXQ,u regular}. (13) 

From (9), it is clear that Txo(J(, L, M, N) is actually independent of Xo. Therefore we omit the 

subscript Xo. The recursion 

E Ti such that x = J(x + LU,Mx + N11, = O} 
(14) 
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converges in maximally n steps to T(K, L, M, N) [11]. 

Note that V(K, L, M, N)+T(K, L, M, N) is the set of states Xo for which there exists au E C~p 

such that (11) holds (see [11, Prop. 3.23]). 

Definition 3.4 The quadruple (K, L, M, N) is called autonomous, if for every consistent state 

Xo there exists exactly one smooth solution (u(·), x(·)) to (11) with x( 0) = Xo. 

One can show that (K, L, M, N) is autonomous is iff for all Xo E V(K, L, M, N)+T(K, L, M, N) 

there exists exactly one u E C~p such that (11) is satisfied [11]. 

Lemma 3.5 Consider the system (K, L, M, N) and suppose that the number of inputs (m) 

equals the number of outputs (r). Then the following statements are equivalent. 

1. (K, L, M, N) is autonomous 

2. V(K, L, M, N) (fJ T(K, L, M, N) IRn and Ker [ ~ ] = {O} 

3. G(s):= M(sI - K)-l L + N is invertible as a rational matrix. 

Proof. The quadruple (K, L, M, N) is autonomous iff the system :E : x Kx+Lu, y = Mx+Nu 

is left invertible in the sense of [11]. In [11], it is proven that the statements 

• the system :E is left invertible 

• V(K, L, M, N) n T(K, L, M, N) {O} and Ker [ ~] {O} 

• G( s) is left invertible 

are equivalent. Since G(s) is assumed to be square (m = r), the last statement in fact im

plies that G( s) is invertible. According to [11, Thm.3.24], invertibility of G( s) implies that 

V(K, L, M, N) + T(K, L, M, N) = IRn. 0 

After these preliminaries from linear systems theory, we now recall some notions from math

ematical programming that we shall use. The Linear Complementarity Problem (LCP) [4] is 

defined as follows. 

Given a matrix M E IRkxk and q E IRk, find w, z E IRk such that 

w q+Mz 

w ~ 0, z ~ 0 

zT w 0 

or show that no such z, w exist. We denote this problem by LCP(q, M). 
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Let a matrix M of size k X k and two subsets I and J of k of the same cardinality be given. 

The (1, J)-minor of M is the determinant of the square matrix MIJ := (mij )iEI,jEJ' The (1,1)

minors are also known as the principal minors. M is called a P-matrix, if all principal minors are 

(strictly) positive. A matrix M is said to be positive definite, if x T M x > 0 for all x ERn \ {O}. 

Note that a positive definite matrix is not necessarily symmetric according to this definition. 

We state the following results. 

Theorem 3.6 For given M, the problem LCP(q, M) has a unique solution for all vectors q if 

and only if M is a P-matrix. 

Proof. See [4, Thm.3.3.7]. o 

Theorem 3.7 A positive definite matrix is a P-matrix. 

Proof. [4, Thm.3.1.6]. o 

4 Linear Complementarity Systems 

In this section, we will introduce linear complementarity systems and formulate the notion of 

solution for such systems. 

A linear complementarity system is governed by the simultaneous equations 

x(t) = Ax(t) + Bu(t) 

yet) Cx(t) + Du(t) 

yet) ;;?: 0, u(t);;?: 0, Y T (t)u(t) = O. 

(18a) 

(lSb) 

(18c) 

The functions u(·), x(·), y(.) take values in Rk,Rn and Rk, respectively; A, B, C and D 

are constant matrices of appropriate dimensions. We shall use the above system description 

throughout the rest ofthis paper. The equations (18) will also be interpreted in the distributional 

sense with an initial condition as in (4). Equation (18c) implies that for every component 

i = 1, ... ,k either Ui 0 or Yi = O. This results in a multimodal system with 2k modes, where 

each mode is characterised by a subset I of k, indicating that Yi = 0, i E I and Ui = 0, i E JC 

with Ie = k \ I. For each such mode the laws of motion are given by Differential and Algebraic 

Equations (DAEs). Specifically, in mode I they are given by 

{ 

x(t) 

yet) 

Yi( t) 

Ui(t) = 

Ax(t) + Bu(t) 

Cx(t) + Du(t) 

0, i E I 

0, i E Ie, 
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or equivalently, 

Ax(t) + B.IUI(t) 

CI.XCt) + DIlUI(t) 

CIe.X(t) + DIcIUI(t) 
o. 

(20) 

The set of consistent states for mode I, denoted by VI, equals V(A,B.I,CIc.,Dn). The jump 

space is given by TI := T(A, B.I, CIe, Dn). The set of initial states for which an impulsive

smooth input exists such that (19) is satisfied in the distributional sense is VI + TI. 

We call mode I autonomous, if the quadruple (A, B./, CI., DIl) is autonomous. A standing 

assumption in the remainder of this paper will be the following one. 

Assumption 4.1 All modes are autonomous. 

By Lemma 3.5 this is equivalent to saying that GIl(S) := CI.(sI - A)-l B.I + DIl is invertible 

for each subset I ~ k. Note that GIl(S) is indeed the (I,I)-submatrix of the rational matrix 

G(s) := C(sI A)-l B + D. By the same lemma, Assumption 4.1 implies VI EB TI R.n for all 

I ~ k. 

Under Assumption 4.1, (19) has a unique impulsive-smooth solution for all individual modes 

given an arbitrary initial state. 

4.1 DAE simulation 

Definition 4.2 Given Xo E R.n and I E P(k), we denote the unique solution to (19) for mode I 

and initial state Xo by (u(·, Xo, I), x(·, Xo, I), y(., xo,I)) E C;';;;+k. The flow <jJ : R.+ X R. nx P(k) -t 
R.n is defined as 

<jJ(t,xo,I):= x(t+,xo,l), 

where x(O+, xo,I) is given by (9). 

The computation of this flow or solution in mode I for a consistent state of this mode is called 

DAE simulation. From [11, Thm. 3.10], it follows that the input satisfying a DAE of the form 

(11) can be represented by a linear state feedback. Substituting this feedback in (19) transforms 

the DAE into an ordinary differential equation (ODE). Hence, the regular part of a solution U 

satisfying (19) for some initial state is a Bohl function, i.e. a function of the form 

_ { 0 (t < 0) 
u(t) - FeGtv (t ~ 0) (21) 

for real matrices G and a vector v depending on the initial state and the specific mode I. 
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4.2 Re-initialisation 

If Xo E VI, the corresponding solution (u(·,xo,!),x(·,xo,!),y(·,xo'!)) in mode I is regular. 

If Xo rt V], then a re- initialisation of the initial state will be necessary. Indeed, if Xo rt VI, 

then the solution to (19) calls for a non-regular input u(·, xo'!) E Cfmp' Le. an input u with 

nonzero impulsive part. This impulsive part results in an instantaneous jump or re-initialisation 

to x(O+) as in (9). By definition, such impulsive inputs cause jumps along TI. Using (10), we 

get Yx(O+),Ureg(.,xo,l) = Yreg(',XO,!), i.e. the output of the system (A,B,C,D) with initial state 

x(O+) and input ureg(·,xo,I) equals Yreg(·,XO'!). Hence, looking at the components j E I, we 

get Yx(o+),U"eg(.,XQ,I),j = Yreg,j(', xo'!) = O,j E I. In words, this equation states that the output 

of the system (A,B.I,CI.,DII) with initial state x(O+) and input Ureg,I(',XO,!) is equal to zero. 

But this means that x(O+) is a consistent state for mode I, i.e. x(O+) E VI. Summarizing: we 

have by definition of TI that x(O+) Xo E TI and x(O+) E VI. Since VI EB TI = IR n
, the jump 

along TI from Xo to x(O+) E VI can be done in only one way. The re-initialised vector x(O+) is 

the projection of Xo onto VI along TI. The projection operator is denoted by pJ:. 

4.3 Event detection 

If the current time, state and mode are T, Xo and I, respectively, then we can stay in mode I as 

long as the inequalities in (18c) 

UI( t, Xo, 1) ~ ° and YIc( t, xo'!) ~ 0 (22) 

remain satisfied for t ~ T. The function (} : Rn x P(k) -+ R+ gives the length ofthe time interval 

during which the system stays in mode I from initial state Xo. Formally, () is defined as follows. 

Definition 4.3 The time-to-next-event function () : Rn x P(k) -+ R+ is defined as 

()(xo'!):= inf{t > 0 I UI(t,xo,1) 'J ° or YIc(t,xo,1) 'J a}. 

Vve call T + ()(xo'!) an event time. Since continuation is not possible in mode I after the event 

time T + O(xo,!),a transition to another mode must occur. 

To illustrate the definition of (), consider Example 4.4 and 4.5 of the two-carts system in the 

next subsection. It is clear that ()«O, -1,O,O)T, {I}) = ~ and ()«O, 1, -1,O)T, {I}) = O. 

4.4 Mode selection 

The mode selection procedure that we propose is built on the concept of initial solution. Loosely 

speaking, an initial solution with initial state Xo is a triple (u, x, y) E Cr::;+k satisfying (19) on 

[0,00) for some mode I and satisfying (22) either on a time interval of positive length or on a 

time instant at which delta distributions are active. The idea will be that an initial solution is a 

starting trajectory for the "global" solution to (18). Indeed, we will build up the global solution 

to (18) by concatenation of initial solutions from different initial states. 
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Example 4.4 Consider the two-carts system with initial state (0, 1,0,O)T. The solution to 

the unconstrained mode is u(t) cost and yet) = 0. Hence, it satisfies (19) for I = {I} on 

[0,00) and (22) on [0, ~). So, this solution satisfies (18) on [0, ~). 

Example 4.5 From initial state Xo = (O,I,-I,O)T first a state jump occurs governed by the 

laws of the constrained mode, but no regular continuation is possible in the constrained mode. 

Solving the dynamics corresponding to the constrained mode, i.e. (19) with I = {I}, gives 

u( t) = 8 - cos t. Although (22) is not satisfied on a positive time interval, incorporation of this 

solution in the definition of initial solutions as well seems well-motivated on physical grounds. 

We will make our proposal for mode selection more specific. 

Definition 4.6 We call a scalar-valued impulsive-smooth distribution v E Cimp initially non

negative, if 

{ 
lead( v) > 0, in case lead( v) =f 0 

vreg(t) ~ 0, for all t E [0,£) for certain £ > 0, otherwise. 

An impulsive-smooth distribution in Cfmp is called initially nonnegative; if each of its components 

is initially nonnegative. 

Definition 4.7 We call (u, x, y) E Ct;:;;+k an initial solution to (18) with initial state Xo, if 

1. there exists an I ~ k such that (u,x,y) satisfies (19) on [0,00) with initial state Xo in the 

distributional sense; and 

2. u, yare initially nonnegative. 

By the fact that the parameters in (18) are constant, it is sufficient to consider only initial time 

zero. 

Given a state Xo, we define S(xo) by 

S(xo):= {I ~ P(k) I there exists an initial solution (u,x,y) to (18) that 

satisfies (19)for mode Ion [O,oo)}. (23) 

The set S(xo) denotes the set of possible modes that can be selected from Xo. 

4.5 Solution concept 
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Definition 4.8 A solution to (18) on [0, Te), Te > 0 with initial state Xo consists of a 6-tuple 

(D, r, X e , Xc, U c, Yc) where D is either {O, ... ,N} for some N ~ 0 or N, 

r: D -+ R* 

Xe : D -+ R
n 

Xc: (0, Te) \ TeD) -+ R
n 

U c : (0, Te) \ TeD) -+ Rk 

Yc : (0, Te) \ TeD) -+ Rk , 

that satisfies the following. 

1. There exists a function I: D -+ P(k) with I(i) E S(Xe(i». 

2. (a) r(O)=O 

(b) r(i + 1) r(i) + O(xe(i),I(i», i E D, i + 1 E D 

(c) sUPiE1) rei) + O(xe(i),I(i» ~ Te. 

3. xe(O) Xo and xe(i + 1) = ¢(r(i + 1) - rei), xe(i),I(i», i E D, i + 1 ED. 

4. On an interval (a,b) S;;; [O,Te ) with a = rei) for certain i ED and (a,b)nr(D) 0, 

(uc( t), xc( t), Yc( t» satisfies (19) for t E (a, b) in mode I( i) with xc( a+ ) = p~:(~i; xe( i). 

Note that (uc(t), xc(t), Yc(t» is smooth on an interval (a, b) S;;; (0, Te) with (a, b) n r(D) = 0. 

The above definition describes how the solution is built up by concatenation of initial solutions. 

A solution can be constructed by using flow chart 2 and the following description. Taking Xo 

as the initial state starts the procedure. The state Xo is presented to the mode selection block 

resulting in a selected mode. If mode I is selected, there are two possibilities indicated by the 

question in the decision block: 

1. From the state Xo smooth continuation is possible in the selected mode I E S(xo), i.e. 

Xo E VI (answer is "Yes"). Go to the DAE simulation with this initial state and mode I. 

2. No smooth continuation is possible in the selected mode I from Xo (answer is "No"), i.e. 

Xo f. VI· The right arrow leads to the re-initialisation block performing the projection 

along TI onto VI. The re-initialised state is returned to the mode-selection block. After 

solving the mode selection problem, the same two possibilities have to be considered again. 

If we arrive in a state where the answer to the question in the decision block is "Yes," the DAE 

simulation block leads to a smooth part of the solution until an event time revent is reached. 

The state Xo is set to xc( revent-) and again given to the mode selection block. Next, the whole 

cycle starts again. 

The construction does not lead to a solution on [0, Te ), if we end up in a state x with Sex) = 0 

at time r < Te (deadlock), or we end up in an infinite loop, where only re-initialisations and 

mode selections occur without smooth continuation. 
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No 

Figure 2: Schematic description of complete dynamics 

Before presenting conditions on the complementarity system to guarantee the existence and 

uniqueness of solutions, we have to introduce two algebraic mode selection procedures. 

5 Mode selection methods 

In this section, we present two mode selection methods. It will turn out that these two methods 

are equivalent and that the selected mode set for both selection methods equals S(xo) based on 

the concept of initial solutions. 

As noticed in section 4, the solutions to (19) are impulsive-smooth distributions whose regular 

part is a Bohl function. Such "Bohl distributions" have rational Laplace transforms. Specifically, 

the Laplace transform of u = E~=o u-iC(i) + u reg with u reg as in (21) equals [10] 

I 

u(s) = L u-is i + F(sI - G)-tv. 

i=O 

Observe that the polynomial part of the Laplace transform corresponds to the impulsive part 

and the strictly proper part to the smooth part of the Bohl distribution. 

Lemma 5.1 A Bohl distribution u E cinp is initially nonnegative if and only if there exists 
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an So E JR such that il( s) ~ 0 for all s E JR, s ~ so. A BohZ distribution v E Cimp is the zero 

distribution if and only if v is the zero function. 

Proof. Evident. o 

Let (u, x, y) be an initial solution to (18) with initial state Xo. The Laplace transforms of u, y, 

denoted by U, fJ are rational and satisfy 

yes) = C(sI - A)-lxO + (C(sl - A)-l B + D)il(s) and yT (s)il(s) = 0 (24) 

for all s E JR and 

yCs) ~ 0, il(s) ~ 0 (25) 

for all s E JR larger than some So E R+. This is even an if-and-only-if statement: the Laplace 

transforms are rational and satisfy (24)-(25) iff the corresponding time functions define an initial 

solution of (18). Indeed, since Yi and Ui are rational, they have only a finite number of zeros or 

are identically zero. Hence, since their product Yi( s )11i( s) vanishes for s ~ So at least one of the 

two factors has to be identically zero, implying that Item 1. in Definition 4.7 holds. 

We formulate the Rational Complementarity Problem (nomenclature introduced in [21]): 

Rational Complementarity Problem. (RCP(xo)) Let a system description CA, E, C, D) 

and initial state Xo be given. Find rational functions y( s) and u( s) such that the equalities 

yes) = C(sl - A)-IXO + (C(sl - A)-l B + D)il(s) and yT (s)u(s) = ° (26) 

hold for all 8 E JR, and there exists an So E JR+ such that for all s ~ 80 we have 

yes) ~ 0, ues) ~ o. (27) 

If (il,y) is a solution to RCP(xo), any mode J satisfying uJc(s) 0 and YJ(s) = 0, for all s E R 

is a a mode for which an initial solution exists satisfying (19) for 1 = J. Such modes may hence 

be selected as continuation modes. 

Remark 5.2 The new mode corresponding to a given solution of RCP(xo) is not unique. In

deed, define 

1:= {i E k I Ui(S) > 0 for almost all S > so}. (28) 

Then 1 is the set of indices i for which Ui as a time function (inverse Laplace transform of Ui) is 

initially positive! and consequently, Yi is zero. Hence, an initial solution to (18) satisfying (19) 

1 We call an impulsive-smooth distribution 11 initially positive, if u is initially nonnegative and additionally if 

Ui is regular, then for some e > ° tti(t) > 0, t E (0, e). 
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for mode I exists. Consider now the "undetermined index set" 

J( {i E k I Ui(S) = 0 and Yi(S) = 0 for all s}. 

Any mode I ~ J ~ I U J( may also legally be selected. However, the solution to (19) in mode 

J with initial state Xo is the same solution as for mode I. This follows from the fact that the 

inverse Laplace transform u, y of U, Y satisfies (19) for mode I and mode J. Since all modes are 

assumed to be autonomous, u, y is the only solution for both modes. Hence, solving (19) for I or 

J leads to the same triple (u, x, y). Summarizing, given a solution of the RCP(xo), the freedom 

in the choice of the modes corresponding to this solution is exactly described by J(. Moreover, 

all choices lead to the same (u, x, y). 

The set of modes I that can be selected, or equivalently, the set of modes for which an initial 

solution exists satisfying (20) for mode I is defined as SRCP( xo). More specifically, 

SRCP(XO) = {I~ P(k) 13(u,y) solution to RCP(xo) such thatuIc(s) = 0, YI(S) 0, for all s}. 
(29) 

This completes the formulation of the RCP as a mode selection method. By using the power 

series expansion of the solution to RCP(xo), we will now derive an alternative mode selection 

method. 

If (fl, y) is a solution to RCP (xo), then it necessarily has to satisfy U Ie 

I ~ k. Consequently, 

R[e(s)xo + Gll(S)UI(S) 

RIc.(S)XQ + GIcI(S)UI(S), 

0, YI = 0 for some 

where G(s) is the proper transfer function C(sI - A)-l B + D and R(s) is the strictly proper 

rational matrix C( sI A)-I. Note that G ll( s) is invertible by Assumption 4.1. This implies 

that flIeS) = -Gil(s)RI.(s)xo and 

YIc(S) = RJc.(s)xo - GIGJ(s)Gil(s)RI.(s)xo. 

The maximal degree of the polynomial part of Gi} (s) is n, because the underlying state space 

dimension is n. Hence, the maximal degree of the polynomial part of the rational functions 

U I( s) and YIC (s) is n - 1. So, for initial solutions we only have to consider polynomial parts with 

at most degree n - 1, or equivalently, derivatives of the Dirac function up to order n - 1. 

In terms of the power series expansion of y( s) around infinity, 

00 

yes) = L yis-i, 

i=-n+l 

y( S) is nonnegative for all sufficiently large real S if and only if 

(y-n+1 ,y-n+2, ... ) t O. 
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Given the system description (A, B, C, D), the Markov parameters of the system are defined by 

Note that 

00 

if i = 0 

ifi=I,2, ... 

G(s) LHis-i. 

i=O 

(32) 

(33) 

Using the power series expansions of iJ and u and (33), we can reformulate RCP(xo) as the 

Linear Dynamic Complementarity Problem (nomenclature introduced in [21]) by considering 

the coefficients corresponding to equal powers of s. 

Linear Dynamic Complementarity Problem (LDCPK(xo)) Let a system description 

(A, B, C, D), an integer", ;;:: -n + 1 and an initial state Xo be given. Let Hi, i ;;:: 0 be given by 

(32). Find sequences (y-n+1, y-n+2, ... ,yK) and (u-n+1, u-n+2, . .. ,UK) such that the equations 

~ 

yi = L Ht-JuJ, if - n + 1 ~ i ~ 0 

j=-n+1 

~ 

yi CAi-lxo + L Hi-iui , if 1 ~ i ~ '" 
j=-n+l 

are satisfied, and for all indices i E k at least one of the following is true: 

( -n+1 -n+2 K) 0 d (-n+1 -n+2 K) '-- 0 Yi , Yi , ... , Yi an u i , ui , ... ,ui C 

/ -n+1 -n+2 K) '-- 0 d (-n+1 -n+2 K) 0 tYi , Yi , ... ,Yi C an ui ,. ui , ... , 11, i = 

(34a) 

(34b) 

(35) 

(36) 

LDCP (X) ( xo) denotes the problem of finding a solution (u-n+1, 11,-
n+2 , ... ) and (y-n+1 , y-n+2, ... ) 

that satisfies LDCP K( xo) for all K, ;;:: -n + 1 (or showing that no such solution exists). 

If (11,-
n+1 , u-n+2, ... ) and (y-n+1, y-n+2, ... ) is a solution to LDCP (X) ( xo), then modes J sat-

. f' (-n+1 -n+2 ) O· JC (-n+1 -n+2 ) O· J d'd t J' IS ymg 'lti , 'lti , . . . = , ~ E 'Yi , Yi , . . . = , ~ E are can I a es lor 

selection. 

The complete set of candidates for selection, denoted by SLDCP(xO), is defined by 

SLDCP(XO) := {I E P(k) I 3( ui )j=_n+1' (yi)j=_n+1 solution to LDCP K(XO) such that 

(35) holds for i E I and (36) holds for i E r}. 
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In some cases, it suffices to consider LDCPn(xo) instead of LDCPoo(xo) (see Theorem 6.10 

below). In [7], it has been shown that LDCP ,,(xo) is a special case of the Generalized Linear 

Complementarity Problem [5] and the Extended Linear Complementarity Problem [6]. In [5], 

an algorithm is proposed to find all solutions to GLCP. 

Theorem 5.3 The following statements are equivalent. 

1. The equations (18 J have an initial solution for initial state Xo. 

2. RCP(xoJ has a solution. 

S. LDCPoo(xo) has a solution. 

Proof. From the derivation of RCP, it follows that 1. and 2. are equivalent. If (it, fj) is a 

solution to RCP( xo), then the coefficients of the power series expansion of this solution around 

infinity form a solution to LDCP oo( xo). Hence, 2. implies 3. To see that 3. implies 1., suppose 

that (y-n +1, y-n+2, .. . ), (u-n+1, u-n+2, ... ) is a solution of LDCP oo( xo). Take I E Swcp( xo) 

corresponding to this solution of LDCPoo(xo). Define x(O+) := Xo + 2:~:i AiBu-i . We first 

show that x(O+) E VI. To this end, note that y} = 0 and u}c 0 for all i. From (34b), it follows 

that x(O+) satisfies 

CI.X(O+) + DIIVo 

CI.Ax(O+) + DIIV I + CI.B.IVo 

(37) 

with vi u~+l, i ~ O. Combining algorithm (12) and the equations above, it follows that 

for I ~ 0 the states Aix(O+) + 2:~:~AiB.IVl-l-i belongs to Vj, j ~ 0 for (A,B.I,CI.,Dll) 

and so in particular for I = 0, x(O+) E lim vj = VI. Hence, there exists a regular solution 

(ureg(·),xreg(·),Yreg(·)) to (19) for mode I with initial state x(O+). 

By differentiating (19) in time and evaluating the resulting equalities at time instant 0, we see 

that vi := U~?g,l(O), i 0,1, ... satisfies (37) as well. To show that this implies that vi = vi for 

all i, interpret both sequences as inputs of the discrete time system 

x(1 + 1) = Ax(l) + B.IV1i YI(I) = CI.x(I) + DIIV I
, 1= 0,1,2, ... 

with initial state x(O+) and output YI(l). Then by (37), YI(I) = 0 for aUl ~ 0 and the difference 

wi := vi - vi is an input that keeps the output of the discrete time system with initial state 0 

identically zero. We introduce the z-transform 

00 

w(z) := L wiz-i
. 

i=O 

Using the z-transform GII(Z) of the transfer function of the discrete time system (see e.g. [13]), 

we get 0 = GII(Z)W(Z). The invertibility of GII(Z) implies that w(z) 0 and hence, vi = vi, 

i ~ 0, or equivalently, U~+l = U~?g,I(O), i ~ O. This also implies that yi+1 y~~g(O), i ~ O. 
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VH d fi "n-I -i ;:(i) +' "n-l "i Ai-jB l.'(j-I) + "n-I i ;:(i-l) + 
've e ne U := L..Ji=O U U Ureg ' X := L..Ji=1 L..Jj=1 Ui{l X reg ' Y := L..Ji=1 Y u 

Yreg' Obviously, (u,x,y) satisfies 1. in Definition 4.7. We only have to show that 2. in 

D fi .. 4 7 . t' fi d S' (-n+l -n+2 ) (-n+1 0 (0) (0) (I) (0\ ) e mtlOn . IS sa IS e. !nce Y , Y , . .. = y , ... ,Y , Yreg , Yreg h"" 

(u-n+l,u-n+2, ... ) = (u-n+l, ... ,uo,u~~1,u~~1 ... ) is a solution of LDCPoo(xo), (35) or (36) 

is satisfied for all i E k. Hence, U and yare initially nonnegative and so (u, x, y) is an initial 

solution. 0 

Corollary 5.4 There is a one-to-one correspondence between initial solutions to (18), solutions 

to RCP(xo), and solutions to LDCPoo(xo). Furthermore, S(xo) = SRCP(XO) = Swcp(xo). 

Proof. This follows from the proof above. The second statement is a result of the one-to-one 

correspondence. 0 

Remark 5.5 Notice that in the proof of Theorem 5.3, a direct link between initial solutions 

and solutions to LDCP oo(xo) is given. If u = 2:f;~ u- i
6(i) + ureg and y = 2:i;~ y-iE,(i) + Yreg, 

d fi -i._ i . - 1 0 d -i+1 - (i) (0) . '- 0 d I -i' '- 1 b d fi d e ne U .- U , Z - -n + , ... , an U - ureg ,'t r an et Y , 't r -n + e e ne 

1 1 Th ( --n+l --n+2 ) (--n+l --n+2 ) . I t' t LDCP ( ) "lU ana ogous y. en u ,u , . .., y ,Y , . .. IS a so u lOn 0 00 Xo. vve 

shall use the transformations between LDCPoo(xo), RCP(xo) and initial solutions frequently. 

Note that the above proof also yields an alternative way of deriving the LDCP: differentiate the 

initial solution with incorporation of the impulsive part and evaluate the results at time instant 

zero. For smooth continuations this method can be directly generalized to the nonlinear case as 

in [14,21]. 

6 Well-posedness results 

There exist linear complementarity systems, for which no solution exists from certain initial 

conditions (due to deadlock or infinitely many jumps without smooth continuation) or for which 

the solution is not unique (see [20]). 

Definition 6.1 The complementarity system (18) is (locally) well-posediffrom each initial state 

there exists an £ > 0 such that a unique solution on [0, £) in the sense of Definition 4.8 exists. 

This definition can be reformulated as follows. The system is well-posed if and only if from 

each state there exists a unique solution on an interval of positive length starting with at most 

a finite number of jumps followed by smooth continuation on that interval. 

Definition 6.2 Let (A, B, C, D) be a system with Markov parameters Hi, i = 0,1,2, .... The 

leading column indices 7JI, ... ,7Jk of (A, B, C, D) are defined for j E k as 

7Jj := inf{i E N I H!j =1= O} 
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with the convention inf 0 00. The leading row indices PI,,'" Pk of the linear system 

(A, B, C, D) are defined for j E k as 

Pi := inf{i EN' Hj. f O}. 

Since we consider only invertible transfer functions (see Assumption 4.1 and Lemma 3.5), the 

leading row and column indices are all finite. Due to the Cayley-Hamilton theorem, we even 

have Pi ~ nand 'f/i ~ n. The leading row coefficient matrix M(A, B, C, D) and leading column 

coefficient matrix N(A, B, C, D) for the system (A, B, C, D) are defined as 

M(A,B,C,D) (38) 

respectively. We omit the arguments (A, B, C, D), if this does not give rise to confusion. 

Recall the definition of a P-matrix at the end of section 3. We now present the main result of 

this section. 

Theorem 6.3 If the leading column coefficient matrix N and the leading row coefficient matrix 

M are both P-matrices, then the linear complementarity system (18) is well-posed. From each 

initial condition, at most one state jump occurs before smooth continuation is possible. 

Remark 6.4 Although we prove existence and uniqueness of solutions under the above condi

tions, the system may display discontinuous dependence on initial conditions. An illustration of 

this effect is presented in Section 8. 

Remark 6.5 We allow that the event times r( i) may have a finite accumulation point, i.e. 

limi_oo T( i) = T* < 00. The largest interval on which a solution of (18) exists is [0, T*) in this 

case. Hence, a solution on [0,00) does not exists in the sense of Definition 4.8. Well-posedness 

in the sense of Definition 6.1 implies that for each initial state r* > 0, so that not infinitely 

many events occur at one time instant. At present, there are no nontrivial conditions known to 

the authors that will prevent such accumulations of event times. 

To prove the main result, we first need some auxiliary results. 

Lemma 6.6 If the leading row coefficient matrix M or the leading column coefficient matrix 

N has only nonzero principal minors, then assumption 4.1 is satisfied, i.e. all modes are au

tonomous. 

Proof. From Lemma 3.5, it is sufficient to show that G II( s) is invertible for all I ~ k. For 

notational convenience, we assume I = r, I E k. If M has only nonzero principal minors, then 

MII is invertible. Hence, GII(S) diag(s-Pl, ... ,S-PI)V(S) where V(s) is a biproper matrix, 

because V( 00) = MII is invertible [10, Thm. 4.5]. The reasoning proceeds analogously for N. 0 
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Definition 6.7 A state Xo is called regular for mode I if Xo E VI and the corresponding smooth 

solution in this mode satisfies (22) for a time interval of positive length. A state is called regular 

if it is regular for at least one mode of the system. 

A state Xo is regular if and only if RCP( xo) has a strictly proper solution. Or equivalently, Xo 

is regular if and only if LDCP oo(xo) has a solution with u-nH = ... = UO = O. 

Theorem 6.8 Suppose that the leading row coefficient matrix M is a P-matrix. Then Xo ERn 

is a regular state if and only if for all i E k 

(39) 

Moreover, the smooth continuation is unique. 

Proof. Note that yij)(O) = CiAjxo,j = 0, ... ,Pi -1, i = 1, ... ,k, which cannot be influenced 

by a regular input u. Hence, the above condition is necessary to guarantee y( t) 3 0, t E [0, E) 

for some positive E. 

To prove the converse statement, we will show that if for all i E k (39) holds, the corresponding 

LDCP oo( xo) has a solution with u-
n+1 = ... = uO = o. The idea of the proof is to reduce the 

LDCP oo( xo) to a series of LCP's, that all can be solved uniquely. 

We will show that LDCPoo(xo) has a unique solution with y-nH = ... = yO = 0, u-n+1 = ... = 

uO = o. Observe that (34a) is satisfied automatically. The remaining equalities can be written 

as 

j - C·Aj-l . - 1 2 .. 1 k Yi - t Xo, J - , , ... , Pt, '/, = , ... , ( 40) 

and 

( 41) 

for linear functions ~p, p 3 1. We denote by L(l), lEN the problem of finding a solution 

(u\ ... ,ul
), {yj I j = 1, ... ,k, i = 1, ... ,pj+l} to (40) and (41),p = 1,2, ... ,ltogether with 

the requirement that for all indices i E k at least one of the following statements is true: 

( 1 2 Pi+ l ) 0 d Yi , Yi , ... , Yi = an 

( 1 2 Pi+ l ) >- 0 d Yi , Yi , ... , Yi _ an 

( uJ, ut, ... , u~) t 0 

( uL ut, ... , uD = O. 

( 42) 

(43) 

Note that L(l) is a subproblem of LDCPoo(xo) and that if we find a solution (y\y 2
, •• • ), 

(u 1
, u2

, ••. ) satisfying L(l) for all l 3 0, then this solution is a solution to the corresponding 

LDCPoo(xo). 
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We claim that L(l) has a unique solution ui , j :::: 1, ... ,l- 1 and yi, i E k, j 1, ... ,Pi + I 1, 

for all l ~ O. Note that this holds for l = O. We will prove this by induction, similarly as in 

[14,21]. 

We write 1/, J/, f(1 for the active (input) index set, the inactive index set and the undecided 

index set, respectively, determined by L(l). Formally, for 1 ~ 1, II {i E k I (uJ, . .. ,uD >- O}, 

J/ = {i E k I (yl, ... ,yri+l
) >- O} and](1 = k\(I1UJI) with yi, i 1, ... ,k, j = 1, ... ,Pi+1 

and u i , i 1, ... ,1 determined by L(I). For convenience we also define 10 0, Jo = {i E k I 
(yI, .. . ,yri

) >- O} and ](0 = k \ Jo. 

Note that L(i 1) is a subproblem of L(I), so variables uniquely determined by L(l 1) are 

automatically uniquely specified for L(1). As a consequence, II-I, Jl-1 , ](1-1 are determined as 

well. Comparing L(i) with L(t 1), we observe that L(l) has one additional equation: (41) for 

p = t. We divide this equation into the three parts given by II-I, JI-1 and f(l-l' For notational 

convenience, we omit all indices depending on I and all superscripts: 

( 
YI) (ZI) (MIl YJ ZJ + MJI 

YK ZK MKI 

with Z = 6(xo, u\ ... ,1I,l-1). From the definition of It-b JI-l and f(1-1l we get YI 

UJ = O. By substituting this result in (44), we obtain 

o = ZI + MIlUI + MIKUK 

YJ ZJ + MJIUI + MJKUK 

YK ZK + MKIUI + MKKUK· 

(44) 

o and 

(45) 

( 46) 

(47) 

Since MIl is a principal submatrix of a P-matrix, it is invertible and hence we get from (45) 

that UI = Mi/(ZI + MIKUk). Substituting this expression in (47) leads to 

YK = ZK MKIMi/ZI + (MKK - MKIMi/ MIK)UK (48) 

Due to (42) and (43) and the definition of ](/-1, the complementarity conditions 

(49) 

hold. So, (48) and (49) constitute an LCP. Since MKK - MKIMi/ MIK is a Schur complement 

of a P-matrix, it follows from Proposition 2.3.5 in [4] that it is a P-matrix as well. Theorem 3.6 

states that the corresponding LCP has a unique solution. From UK we can compute UI and YJ. 

Hence, the induction hypothesis has been proven for I. So we find a solution of LDCP (X) (xo) 

with u-
n +1 uO = 0, y-n+1 = ... = yO = O. Since this solution is unique, the one

to-one correspondence between initial solutions and solutions of LDCP (X) ( xo) implies that the 

corresponding smooth initial solution is unique. 0 

Theorem 6.9 If the leading column coefficient matrix N is a P-matrix, then for every state xo 

LDCP",( xo), '" ~ 0 has a solution that is unique except for uj, i E k, j '" - 'fJi + 1, ... ,"', 

which are left undetermined. Furthermore, uin+1 uin+2 
Ui71i 0, i E k and 

y-n +1 yO O. 
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Proof. The proof is based on separation of the equalities (34) in two parts, (34a) and (34b), 

providing the equations for yi, i = -n + 1, ... ,0 and yi, i = 1, ... ,K., respectively. For both 

parts we start an induction that is analogous to the previous proof: we reduce the LDCP to 

a series of LCP's which can be solved uniquely. To do so, we constitute successive LCP's by 

selecting certain equations from (34). This is done in such a way that only principal submatrices 

of the leading column coefficient matrix N appear in these LCP's. 

We introduce the index sets OJ := {i E k I TJi j}, j 0,1, ... ,n and Sj := Uf=oOi, 

j = 0, 1, ... ,n. In words, the TJj-th Markov parameter is the first Markov parameter in which 

the j-th column is nonzero. OJ is the set of indices i for which the i-th column in the sequence 

of Markov parameters (HO, HI, . .. ) is nonzero for the first time in Hj. Sj is the set of indices 

i for which at least one of the sequence of columns (HP, Hl, ... ,H!) is nonzero. As remarked 

before, TJi ~ n. Hence, Sn = k. By definition, H!sc = 0, i ~ j. 
J 

By suitable permutation of rows and columns, we get the existence of 0 ko ~ kl ~ k2 ~ 

.. . kn ~ kn+1 = k such that OJ = {kj + 1, ... ,ki+d, j 0,1, ... ,n. Then 

N = [H2oo H;Ol'" H:o~l· 

We claim that for 1 ~ r ~ n LDCP -n+r(XO) has a solution with 

-n+l -n+2 -n+r 0 
Us = Us = ... = u C' = 

r-l r-2 ~o 
(50) 

-n+l _ -n+2 _ _ -n+r - 0 y -y - ... -y -. (51) 

Th . . . bl -n+l -n+2 -n+r 1 ft d t . d Th" . d t' e remammg varIa es uSc ,uSc , ... ,uSc are e un e ermme. IS IS our m uc IOn 
r-l r-2 a 

hypothesis. 

For r 1, we only have the equation 

(52) 

with the complementarity conditions y-n+1 ~ 0, u-n+1 ~ 0, y-n+l T u-n+1 = O. The comple

mentarity conditions follow from the fact that for each index either (35) or (36) should hold. 

Since H~c 0, (52) reduces to 
o 

Y
- n+1 _ HO u-n+1 

- eSo So • (53) 

Since uS~+l does not appear in this equation, it is left completely undetermined (except for the 
a 

condition us~+1 ~ 0). Considering (53) and the complementarity conditions only for yin+1, 
o 

i E So results in the LCP 

-n+l HO -n+l N -n+l 
YSo So So uSo = So So u So 

Y- n+1 ~ 0 u-n+1 ~ 0 (y-n+l)T u-n+1 = O. 
SO v, So "'" So So 

Since N SoSo is a principal submatrix of N, it is a P-matrix. Theorem 3.6 then states that the 

above LCP has a unique solution. Obviously, Yson+l = 0, uso
n+1 = 0 is this unique solution. From 

(53), y-n+l = 0 follows immediately. This proves the first step of our induction. 
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Suppose that the induction hypothesis above holds for r 1, where 2 ~ r ~ n. 

LDCP -n+r-l(XO) is a subproblem of LDCP -n+r(XO), we consider only the additional 

ity in (34): 

y -n+r 

= 

Since 

equal-

(54) 

The second equality follows from H~c = 0, the third one follows from the induction hypothesis 

(50). The last equality is a consequ;nce of Sj \ Sj-1 = OJ. Since US~+l, uS~+2, ... ,us~+r do 
r-1 r-2 0 

not appear in this additional equation, these variables remain undetermined. 

Equation (54) consists of k scalar equations. Considering only the equalities for y;n+r, i E Sr-1, 

we find 

= 
( 

-n+r 1 ~~~r-1 
U

01 

-n+l 
U

Or
_

1 

( 
-n+r 

1 

U
Oo 

-n+r-l 

N Sr-1 Sr-1 

U
01 

u-n+1 
°r-1 

v 

=:V_r 

Since (35) or (36) should hold for all i, it follows that 

Y-n+r >- 0 v >- 0 v T y-n+r = O. 
Sr-1 r , -r r , -r S,-1 

This is the LCP we are looking for. Since NSr_1Sr_ 1 (as a submatrix of N) is also a P-matrix, the 

above LCP has a unique solution (Theorem 3.6). Hence, this solution must be V-r = Ys-n+r = o. 
r-1 

Using this in (54) shows that y-n+r = O. In combination with the induction hypothesis for r-l, 

this yields the hypothesis for r. This completes our induction step and hence the proof of our 

first claim. 

To complete the proof, we start a second induction with hypothesis as stated in the formulation 

of the theorem. Note that this is equivalent to saying: LDCP ,,( xo) has a unique solution for 

every state Xo, only uSc, us;l, .. , ,us;n+l are left undetermined. For K, = 0 this hypothesis is 
o 1 n-l 

true, for it follows from the previous induction by taking r = n. Suppose the hypothesis is true 

for K, 1,K, ~ 1. Since LDCP,,-l(XO) is a subproblem of LDCP,,(xo), the variables u~;l, .. " 

25 



u"s-n , u,,-n-1, ... , u-n+1 are already uniquely determined. We set 
n-l 

I {i E k I (uin+l, uin+2, . .. , U;-l7i- 1) >- O}, 

J {i E k I (Yin+1,Yin+2, ... ,Yi-1) >- O} and 

J( k \ (I U J). 

In comparison with LDCP ,,-1 (xo), LDCP ,,( xo) has the additional equality 

for some function (]'. Splitting this equation into three parts according to the index sets 

I, J, J(, we can follow the same reasoning as in the proof of Theorem 6.8 to conclude that 

y", ua" , u"a-I, ... , ua,,-n+1 are uniquely determined and thus prove the induction hypothesis for 
o 1 n-l 

~. 0 

We are now in a position to prove Theorem 6.3. 

Proof of Theorem 6.3 Lemma 6.6 implies that all modes are autonomous. Take an arbitrary 

initial state Xo. Theorem 6.9 states that LDCP oo(xo) has a unique solution which satisfies 
-n+1 _ -n+2 - - -l7i - 0 . E k- d -n+1 - - 0 - 0 D t th t ui - ui - ... - ui - , z an y - ... - y - . ue 0 e one- o-one 

correspondence between initial solutions and solutions to LDCP 00 (xo), the initial solution must 

be unique as well. In case this initial solution is regular, we proved smooth continuation without 

jumps. To prove that at most one state jump is needed before smooth continuation is possible, 

we have to show that the re-initialised state x(O+) is regular. The re-initialisation is given by 

the impulsive part Uimp = I:r';o1 u-i
8(i), where the coefficients u-i follow from LDCP oo(xo). 

Since the impulsive part is unique, the re-initialisation is unique and results in x(O+) := Xo + 

I:r';o1 Ai Bu-i . The complementarity conditions (35) and (36) imply that (y1, y2, ... , yn) t O. 

The right hand side of (34) contains for y[ , ... , yfi, i E k only coefficients corresponding to the 

impulsive part, i.e. only uO, ... ,u-n+1. Hence, observe that (CiX(O+), ... ,CiAPi-1x(0+)) = 
(y[, . .. , yfi) t 0, i E k. According to lemma 6.8, x(O+) is a regular state. So after at most one 

re-initialisation, (unique) smooth continuation is guaranteed. 0 

The next theorem states that in case N is a P-matrix, it is sufficient to consider LDCPn(xo) 

(instead of LDCP oo(xo)) to select a mode. Hence, only an algebraic problem with a finite number 

of constraints has to be solved to fulfil the mode selection criterion that has been proposed above. 

Obviously, LDCPn(xo) is to be preferred over LDCPoo(xo) from a computational point of view. 

Theorem 6.10 If the leading column coefficient matrix N is a P-matrix, then from every ini

tial state there exists a unique initial solution to (18). This solution evolves in mode I where 

I:= {i E k I (uin+1,uin+2, ... ,u7-l7i ) >- O} with the vectors {u j } constituting a solution to 

LDCPn(xO)' 
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Proof. Let (y-n+l, y-n+2, ... , yn) and (u-n+1
, u-n+2, ... , un) be a solution to LDCP n(XO) and 

let I be defined as in the formulation of the theorem. The state after re-initialisation x(O+) is 

defined by xo+ L:~;d AiBu-i . The jump is induced by the impulsive input Uimp L:~;d u- i t5(i). 

It follows from the definition of I that (ui n
+1, . .. ,u;-1i·) 0, i E fC, and in combination with 

(35), (36) the same definition yields (yi n+\ ... ,Yi) = 0, i E I. Using (34b), we conclude that 

x(O+) satisfies 

0= y} CI.X(O+) + DIlVl 

o = y~ = CI.Ax(O+) + DIlV2 + CI.B.IV1 

(55) 

o YI 

with vi = u}. By using (12) and the equations above, we can show that x(O+) E Vj, j = 

0,1,2, ... ,n for (A,B.I,CI.,DIl) and so x(O+) E limVj = VI. Hence, there exists a regular 

solutionO(ureg(·),xreg(·),Yreg(·» to (19) in mode I with initial state x(O+). We define 

u .-

f) 

n-l 

~ u- i t5(i) + u L..,; reg, 
i=O 
n-l i 

~ ~ Ai-j Bu .t5(j-l) + X 
L..,; L..,; -t reg, 
i=l j=l 

n-l 

Ly- i
t5(i) + Yreg' 

i=O 

Obviously, this is a solution to (lSa) and (1Sb); so it only remains to show that (1Sc) is satisfied. 

We shall do this by proving that we must have u~?g)O) u~+l for all j and for i = 0,1, ... ,n

'r/i - 1. 

Notice that both vi = u~~-l](O), i 1, ... ,n and vi u}, i = 1, ... ,n satisfy (55). We extend 
g, 

the solution of LDCP n( xo) with zeros to get an infinite series (u-n+1
, u-n+2

, .•• ,un, 0, 0, ... ). 

The difference wi = U~?g,I(O) - ui+1
, i ~ 0 can be taken as an input to the discrete time system 

x( i + 1) 

y( i) 

Ax(i)+B.IWi
, x(O) 0 

CI.x(i) + DIlW
i 

(56) 

satisfying yeO) = ... = yen - 1) = O. Taking the z-transform of the discrete time system (56) 

(see e.g. [13]) with input wi gives 

00 

GII(Z)W(Z) = Ly(i)z-i = z-np(z) (57) 

i=O 

for some proper function p(z), where w(z) denotes the Laplace transform of w. For notational 

simplicity, we set I = r, l E k. Since NIl is a P-matrix (and hence invertible), GIl can be written 

as 

(58) 
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with V2 biproper, because V2( 00) = NIl is invertible (Theorem 4.5 in [10]). Hence, (57) yields 

() G-l() () d' (-T/l-n -T/I-n)-( ) W Z = I I Z P Z = lag z , ... , Z P z , 

where p(z) V2-1(z)p(z) is proper. The definition of wi now implies that u~?g,j(O) 
j E I, i = 0, 1, . . . ,n rJi 1. 

Since for j E I, 

( -n+1 0 (o) (0) (n-1Ji-I)(O)) _ ( -n+I n-T/i) 0 
Uj "",Uj,Ureg,j , ... ,ureg,j - uj , ... ,uj >-

the distribution Uj E Cimp is initially positive. Note that iiI = 0 by construction of y. For 

j E fC, Uj = 0 by definition. Note that 

( -n+1 0 (0) (n-I») (-n+l n) >- 0 Y , ... , Y , Yreg' ... ,Yreg = Y , . .. ,Y -

d h lit b t (i-I) d i H 'f ( -n+I n) 0 th - C . ue to t e equa y e ween U reg an u. ence, I Yi , ... , Yi >- , en Yi E imp IS 

initially positive. For j E fC, it can also happen that (yjn+1 , ... ,Yj) = 0; however, this implies 

that Yj is identically zero. To see this, note that Yreg,iC can be written as the output of the 

system 

X (A + BIF)x 

Yreg,IC = (Clc + DlcIF)x, 

because the input U satisfying (19) can be given in feedback form U Fx (see section 4). By 

the Cayley-Hamilton theorem and because the underlying state space dimension of the system 

is equal to n, (Yin+I
, ••• , Yi) = 0 implies (Yin+1, Yin+2

, •• • ) = O. Since Yreg,i is real-analytic 

(it is even a Bohl function) Yi = Yreg,i E Cimp is identically zero. Hence, (u, X, y) is an initial 

solution to (18). 

Uniqueness follows from the fact that that LDCP oo(xo) has a unique solution (Theorem 6.9). 

Indeed, the one-to-one correspondence between initial solutions and solutions to LDCP oo(xo) 
implies that there is only one initial solution, which must be given by the above mode. 0 

Remark 6.11 Since LDCP oo(xo) has a unique solution, it necessarily has the same solution as 

selected by LDCP n(XO) as indicated in the above theorem. The equivalence between LDCP oo(xo) 

and RCP(xo) shows that RCP(xo) also selects the correct mode. 

Remark 6.12 Solving the LDCPn(xo) can be simplified by using Theorem 6.9. This theorem 

states that the variables y-n+1, y-n+2 , ... ,yO and u;n+1, u;n+2 , ... , UiT/i, i E k can immedi

ately be set to zero. 

Remark 6.13 Note that it is not claimed in the proof that the regular part of (u, y) is initially 

nonnegative; actually this may not be true as shown in the example below. In such cases the 

initial solution constructed in the proof just serves as are-initialisation. 

Next we sha.ll illustrate the above procedure by the two-carts example. 
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7 Computational example 

In this section, we illustrate the computation of trajectories of the example of section 2 by means 

of the flow chart 2. Suppose that the initial state equals 

Xe(O) Xo:; (0.3202, -0.4335,0.3716, -1.0915) T. 

Presenting this state to the mode selection block will result in selection of the unconstrained 

mode (1(0) :; 0), because the distance to the stop is strictly positive. We will show how to go 

through the flow chart 2. 

DAE simulation Since the unconstrained dynamics is specified by an ordinary differential 

equation (ODE), a solution can be computed by an ODE solver. 

Event detection At time t = 1, we arrive at state (0, -1, 1,0)T, which is not regular for 

the unconstrained mode. Note that y(l) = 0, y(l) < 0, so continuing in the unconstrained 

mode would violate the inequality constraint yet) ~ O. So r(1) :; 1 is an event time and 

xe(l) (0, -1, -1, O)T. We have to select a new mode. 

Mode selection Transforming the dynamical system to the Laplace domain, leads to 

(S4 + 3s2 + l)Y(s) = -s - s2 - 1 + (s2 + l)u(s). 

Since f)( s) or u( s) should be zero, there are only two possibilities: 

unconstrained mode: u( s) = 0; 

constrained mode: f)( s) = OJ 

-s-l 

f)( s) = s4 + 3s2 + 1 

s 
u(s) = 1 + 

(59) 

Since the RCP requires nonnegativeness for sufficiently large s, f)( s) = 0, u( s) = 1 + i~l-l is the 

only solution to RCP(xe(l», so SRCp(xe(l» {{I}}. Hence, the constrained mode must be 

selected (I(I) = {I}). Since the solution to RCP( xe( 1» is not strictly proper, the answer to the 

question in the decision block is negative, so we have to re-initialise. 

Re-initialisation Using (12) and (14, we can compute the consistent states and the jump space: 

o 0 1000 

( 
0 1) 

T{I} = 1m ~ ~ ; V{I} = Ker ( 00 I 0 ) 
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To re-initialise we have to project xe(l) onto V{l} along T{l}, which results in 

X(1+) PT{1} () _ ( )T 
V Xe 1 - 0, -1,0, ° . 

{l } 

In the flow chart, the next step is a new mode selection. 

Mode selection We have to solve RCP(x(I+ )): 

(s4 + 3s
2 + l)y(s) = -8 + (s2 + l)u(s) 

together with the complementarity conditions. The only solution is fi( s) = 0, u( s) 

which is strictly proper. Hence, the question in the decision block is answered positively we 

can go to the DAE simulation. The physical interpretation is clear: the left cart hits the stop. 

Instantaneously, the velocity is put to zero and the right cart keeps the left cart pushed against 

the stop. 

DAE simulation The dynamics of the constrained mode is given by a set of DAEs. However, 

these can easily be translated into an ODE. The input u must be chosen in such a way, that it 

keeps y identically zero. Since y = Xl, iJ X3, jj = 2XI + X2 + u, u should equal -2Xl X2. 

Hence, the dynamics is given by Xl X3 0, £2 = -X2, U = -X2' Incorporating x(I+) as new 

initial condition, we get X2(t) = - cos(t - 1), u(t) = cos(t - 1) for t in an interval starting at l. 

Note that we could also have concluded this by taking the inverse Laplace transform of u in the 

previous mode selection. We can continue in this mode as long as u(t) ~ 0. 

Event detection An event is detected at r(2) = inf{t ~ 1 I cos(t 1) < o} = 1 + ~ 

1+0(x(I+),{1}). The corresponding event state is xe(2) = (0,0,0, I? Again we have to select 

a new mode. 

Mode selection This time, LDCP will be demonstrated as a mode selection method. Since 

the conditions of Theorem 6.10 are satisfied, we can use LDCP 4(xe(2)) for mode selection: 

y-3 a 

y-2 ° 
y-l u-3 

yO u-2 

yl u-1 _ 2u-3 

y2 uO _ 2u-2 + u-3 

y3 u 1 _ 2u-1 + u-2 + 3u-3 

y4 1 + u2 2uO + U-1 + 3u-2 _ 3u-3 , 

with complementarity conditions (35) and (36). Setting yi = 0, i E {-3, ... , 4} leads to 

(u-3
, ••. ,uI,u2

) = (0, ... ,0,-1) -< O. Hence, (35) does not hold. It is obvious that setting 

u i = 0, i E {-3, ... ,4} leads to (y-3, . .. ,y3, y4) = (0, ... ,0,1) t 0 implying that (36) holds. 

Hence, stocp(xe(2)) {0} and the unconstrained mode must be selected (1(2) = 0). 

Since the impulsive part of u is zero, i.e. u-3 = u- 2 = u-1 = UO = 0, the arrow marked "yes" in 

the flow chart 2 must be followed and leads to the DAE simulation. This could also be observed 
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from the fact that (0,0,0,1) T is a consistent state for the unconstrained mode. In terms of 

the physical system: the right cart was on the right of its equilibrium and pulled the left cart 

away from the stop. The simulated trajectory is plotted in figure 3. Note the complementarity 

between u and Xl and the discontinuity in the derivative of Xl at time t 1. 

1.5..---.------,-----.------.-----,------y----, 

1 ........... . 

0.5 

-1.5L1 __ -'-__ -'--__ -'--__ -'--__ -'--__ .1...-_-' 

o 0.5 1.5 2 2.5 3 3.5 
time 

Figure 3: Simulation of two-carts system. 

To consider the special case of section 2, we take the initial state xe(O) :::: Xo :::: (0,1, 1,0) T. 

Substituting this initial condition in (59) results in 

(S4 + 3s2 + 1);O(s) :::: S S2 - 1 + (S2 + 1)u(s). 

Solving RCP(xo) leads to yes) :::: 0 and u(s) 1 - s2~1 and so SRCP(XO) = {{I}}. We select 

the constrained mode (I(1) :::: {1}). 

The decision block question is answered negatively, because the solution to RCP is not strictly 

proper. Re-initialisation leads to x(O+) :::: (0,1,0, of. RCP(x(O+)) has to be considered: 

(S4 + 3s2 + 1);0(8) = 8 + (S2 + 1)u(s). 

Notice that setting y( s) equal to zero results in u( s) = - s2~1 ' the strictly proper part of the 

solution of RCP(xo). This is not a valid choice. The solution is u(s) :::: 0 and yes) 

which corresponds to the unconstrained mode. Since the constrained mode cannot chosen, 

we get xe(1) = x(O+). Since the solution of RCP(x(O+)) is strictly proper, the decision block 

question is answered positively. 
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8 Mechanical Systems 

In this section, we show that the mode selection rule that we propose coincides with the one 

proposed by Moreau [16,17] when both rules are applied to the class of systems that are covered 

by both our and Moreau's framework, to wit, linear mechanical systems. 

We will focus on linear mechanical systems whose dynamics in free motion is given by the 

differential equations 

M ij + Dq + J( q = 0, (60) 

where q denotes the vector of generalized coordinates. M denotes the generalized mass matrix, 

which is assumed to be positive definite, D denotes the damping matrix and J( the elasticity 

matrix. The system is subject to frictionless unilateral constraints given by 

Fq ~ 0 (61) 

with of full row rank. Furthermore, we assume that impacts are purely inelastic. 

To obtain a complementarity formulation, we introduce the constraint forces u needed to satisfy 

the unilateral constraints, and the state vector x = col( q, q). According to the rules of classical 

mechanics, the system can then be written as follows 

x ( _M~l J( _:lD) x+ ( 
0 )u (62a) M-IFT 

, , , J 

v V 

A B 

y (F O)x 
'-v--" 

(62b) 

c 

y ~ 0, u ~ 0, yT U O. (62c) 

This systems satisfies Pi 'rJi = 2, i E k; note that M(A, B, C, D) = N(A, B, C, D) = F M- 1 FT 

is positive definite and hence a P-matrix (Theorem 3.7). 

We consider only initial states Xo = col(qo, 40) with Fqo ~ O. We call these points feasible. In 

the two-carts system, this means that we do not consider initial states for which the left cart 

starts on the left of the stop. In Moreau's sweeping process (see [16,17]) no jumps occur in 

q itself, but jumps can occur in the velocities q. These jumps are governed by the following 

minimization problem, where J {i E k I Fiqo = o}. 

Minimization Problem 8.1 Let an initial state Xo col( qo, qo) be given. The new state after 

re-initialization, denoted by x(O+) col(q(O+),q(O+»), is determined by 

q(O+) 

q(O+) 

qo 

arg min ~(w - qo)T M(w - 40)' 
{wIFiW~O, iEJ} 2 
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Note that the minimization problem has a unique solution. The problem reflects a kind of 

"principle of economy": among the kinematically admissible right velocities, the nearest one 

is chosen in the kinetic metric [16, p.75]. Observe that if we have proven that jumps in our 

formulation correspond to the above minimization problem, then it follows that the feasible set 

{x E R,n I C x ~ O} is invariant under the dynamics as introduced in section 4. 

The Kuhn-Tucker conditions [12] for the minimization problem give necessary conditions for op

timality. The vector tj(O+) is the minimizing argument only if there exists a Lagrange multiplier 

>. such that 

M(tj(O+) qo) - FJ>. = 0 

The equality (63) is equivalent to 

tj(O+) = qo + M-1 FJ >. 

and therefore y(O+) = Ftj(O+) and>' satisfy the following LCP with Yo := Fqo: 

YJ(O+) Yo+FJM-1FJ>. 

YJ(O+) ~ 0, >. ~ 0, yJ (0+)>. O. 

(63) 

(64) 

(65) 

(66) 

(67) 

According to Theorem 3.6, this LCP has a unique solution, because FJM-1 FJ is a P-matrix. 

Since the minimization problem (8.1) is convex, the Kuhn-Tucker conditions are even sufficient 

for optimality. Hence, the formulated LCP is equivalent to the minimization problem for deter

mining the jumps. Notice that once this LCP is solved, the required jumps are known, because 

q(O+) follows from (65). 

We will prove now that LDCPn(xo) (and hence also LDCPoo(xo) and RCP(xo» are equivalent 

to the optimization problem in the sense that both methods result in the same jumps of state 

and select the same mode. 

Theorem 8.2 For linear mechanical systems of the form (62) with M positive definite and F 

of full row rank, the re-initialisation by means of LDCPn(xo) (or LDCPoo(xo) or RCP(xo)) 

agrees with Moreau's sweeping process [16],[17] for feasible initial states. Linear mechanical 

complementarity systems are well-posed. 

Proof. Since the row coefficient matrix and the column coefficient matrix are P-matrices, well

posedness follows from Theorem 6.3. Furthermore, Theorem 6.9 states that u-2 = u-3 = ... = 
u-n = O. Because we start from a feasible state Xo, it follows from the proof of this theorem 

that even u-1 O. Indeed, the next LCP in the series is 
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Figure 4: Two-carts system with hook. 

with the corresponding complementarity conditions. Since this LCP has a unique solution, the 

solution must satisfy u-1 = O. Hence, y-n+l y-n+2 yO 0 and yl = Gxo. The next 

relevant equality in (34) is 

(68) 

We define J := {i E k I GiXO = o}. Since one of the expressions (35) or (36) has to be satisfied 

for i E J, the conditions 

20
0

0
20 0' J Yi ~ ,Ui ~ ,Yi Ui = ,t E 

have to hold. Because YI > 0 for elements i E JC, 0 u? ul = ... = ui must hold to satisfy 

(36). Considering only i E J, we can write down the LCP following from (68) and the above 

complementarity conditions: 

y3 = GJAxO + GJABJu~ 

y3 ~ 0, u~ ~ 0, (y3) T u~ = o. 

(69) 

(70) 

This LCP is identical to the LCP (66) and (67). This shows that the re-initialisation by means 

of LDCPn(xo) leads to the same result as the minimization problem (8.1). 0 

From this proof, we see that for feasible initial states only proper rational solutions to RCP 

occur, i.e. only jumps take place along 1m B. 

Example 8.3 To illustrate the mode selection and re-initialisation, we consider the two-carts 

system as in section 2, but this time with an additional hook. See figure 4. 

The complementarity description is given by 

Xl(t) X3(t) 

X2(t) X4(t) 

X3(t) -2Xl(t) + X2(t) + Ul(t) + U2(t) 

X4(t) = Xl(t) - X2(t) U2(t) 

Yl(t) Xl(t) 

Y2(t) Xl(t) X2(t) 
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where Ul, U2 denote the reaction forces exerted by the stop and hook, respectively. These 

equations are completed by the complementarity conditions (18c). Note that 

leads to a description as in the beginning of this section. 

U sing the minimization problem to determine the re-initialisation and mode selection in case 

of an initial state (XIQ, X2Q, X3Q, X40) T with XlO = X20 = 0 results in the alternatives as shown 

in figure 5. Note that the minimization problem consists of finding the minimal distance to 

the feasible set (area indicated by "unconstrained.") The arrows denote the re-initialisation 

directions. 

'-------x, 

unconstrained 

Figure 5: Re-initialisation scheme 

To illustrate that Rep gives the same results, we first give the corresponding equations: 

(8
4 + 38

2 + l)Yl(S) ::.:: 

(s4 + 3s2 + 1)Y2(s) 

(82 + 1)x3o + X40 + (s2 + 1)Ul(8) + s2U2(S) 

S2X3Q - (s2 + 1)x4o + S2Ul(S) + (2s2 + 1)u2(s). 

Using these equations and the corresponding complementarity conditions, we check when to 

enter the stop-constrained mode (J = {I}) which has Yl(S) == 0 and U2(S) == O. Inserting these 

equations in the above and solving for Ul (s) and Y2( s) leads to 

Entering the stop-constrained mode is only valid if for sufficiently large s the above two ex

pressions are nonnegative. This requires X30 ~ 0 and X40 ~ O. This indeed corresponds to the 
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indicated area for the stop-constrained mode in figure 5. Note that the polynomial parts of Ul 

and U2 equal -X30 and ° respectively. Hence, Uimp = (-X30, O)Tb'. According to (9), the state 

jump equals B( -X30 0) T = (0, 0, -X30, 0) T. This agrees with the direction of the arrows in 

figure 5. In the same way, the other modes can be verified. 

This example shows also that the mode selection procedure as mentioned in [20] does not agree 

with Moreau's sweeping process. It is proposed there that if I is the current mode and violation 

of (22) occurs at time I in state X(I), the new mode is given by 

where 

r l := {i E Ie I Yi(t,X(,),I) < 0, t E (",+ e) for some e > O} 

r 2 := {i E I I Ui(t,X(,),I) < 0, t E (",+ e) for some c: > O} 

In the example, this means that if we are in the unconstrained mode (I 0) and we arrive in 

x( I) (0,0, -1,2) T, the selected mode should be J = {I, 2}, the hook/stop constrained mode. 

This does not agree with the minimization problem illustrated in figure 5, which indicates the 

hook-constrained mode. A physical argument against the proposal of [20] might be that removing 

the stop does not lead to violation of YI(t) ;:: o. 

Another phenomenon that may be illustrated in the above example is that the solutions of 

linear complementarity systems do not always depend continuously on the initial state. This 

discontinuous dependence is caused by the sensitivity of the solutions to the order in which 

constraints become active. Consider the initial states xo(c:) = (€,€,-2,1)T,€;:: 0. For e = ° 
the solution is a jump to (O,O,O,O?, after which the system stays in its equilibrium position. 

For € > 0, first the hook becomes active, resulting in a jump to(€,€, !, !)T. This is followed 

by a regular continuation in the hook-constrained mode until the left cart hits the stop. The 

state just before the impact is (0,0, -! + gee), -! + g(€))T for some continuous function gee) 
with g(O) = 0. Re-initialisation yields the new state (0,0,'0, ! + g(€))T, which converges to 

(O,O,O,!)T if e 1 O. Obviously, the system has a discontinuity in (0,0,-2,I)T. One may 

also note that the sequence of initial states xo(€) = (0, -e, -2, 1), € ;:: 0 leads after two re

initialisations for e 1 0 to the limit state (0,0, t, !). This alternative limit corresponds to a 

situation where first the stop-constrained and then the hook-constrained mode occurs. 

9 Conclusions 

In this paper we studied linear complementarity systems. Constraints allowing a complemen

tarity description occur in a natural way in many physical systems. The basic characteristic of 

these systems is the interconnection of continuous dynamics and discrete transition rules. As 
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such, these systems can be seen as "hybrid systems" involving both continuous and discrete 

dynamics. A description of the complete dynamics of linear complementarity systems has been 

proposed. Our description is based on an explicit notion of "mode" or "discrete state." We 

have shown the equivalence of several methods of carrying out the crucial mode selection step, 

which connects continuous states to discrete states. We focused on questions of existence and 

uniqueness of solutions of linear complementarity systems. A notion of well-posedness has been 

introduced, which formalizes the idea that from all states smooth continuation is possible after 

at most a finite number of jumps. Well-posedness is guaranteed whenever the leading column 

coefficient matrix and the leading row coefficient matrix associated with the state space repre

sentation of the system are P-matrices. In particular, this result implies that linear mechanical 

system with unilateral constraints are well-posed. We showed that the description of solutions 

produces the same jump rule as in Moreau's sweeping process. The framework proposed here 

is well-suited for the numerical computation of trajectories of complementarity systems, as is 

illustrated by various examples. 
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