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Abstract:

The problem of characterizing the randomness of finite sequences
arises in cryptographic applications. The idea of randomness clearly
reflects the difficulty of predicting the next digit of a sequence
from all the previous ones. The approach taken in this paper is to
measure the {(linear) unpredictability of a sequence (finite or
periodic) by the length of the shortest linear feedback shift regis-
ter (LFSR) that is able to generate the given sequence. This length
is often referred to in the literature as the linear complexity of

the sequence. It is shown that the expected linear complexity of a
sequence of n independent and uniformly distributed binary random
variables is very close to n/2 and, that the variance of the linear
complexity is virtually independent of the sequence length, i.e. is
virtually a constant! For the practically interesting case of
periodically repeating a finite truly random sequence of length 201
or 2B-1, it is shown that the linear complexity is close to the
period length.
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Linear Complexitv and Random Sequences

Stream ciphers utilize deterministically generated “random" sequences to
encipher the message stream. Since the running key generator is a finite
state machine, the key stream necessarily is {ultimately) periodic. Thus
the best one can hope for is to make the first period of a periodic key
stream resemble the output of a binary symmetric source (BSS). A BSS is a
device which puts out with equal probability a zero or a one independent-
ly of the previous output bits, or in other words, a BSS realizes a fair
coin tossing experiment. (Note that we have tacitly assumed the sequences
under investigation to be defined over GF(2)). The period of the key
stream necessarily is a finite quantity. Thus we are confronted with the
problem of characterizing the randomness of a finite sequence. But how
can this be done in light of the fact that every finite output sequence
of a BSS is equally likely? It seems difficult to define adequately the
concept of randomness (in a mathematical sense) fpr finite sequences.
Still, nearly everyone would agree that something like a "typical® output
sequence of a BSS exists. A finite coin tossing sequence, for example,
would "typically” exhibit a balanced distribution of single bits, pairs,
triples, etc. of bits, and long runs of one symbol would be very rare.
This in contrast to infinite coin tossing sequences, where local non-
randomness is sure to occur. D.E. Knuth (Knut 81) discusses various con-
cepts of randomness for infinite sequences and gives a short description
of how randomness of a finite sequence could be defined. By the above
typicality-argument, one is led naturally to the criterion of distribu-
tion properties. A finite sequence of length T may be called "random" if
every binary k-tuple for all k smaller than some upperbound (e.g. 1ogT)
appears about equally often. The "randomness postulates" of S. Golomb
(Golo 67) based on this definition have gained widespread popularity
(especially in the cryptographic community). Golomb proposed the follow-
ing three requirements to measure the randomness of a periodic binary
sequence. First, the disparity between zeros and ones within one period
of the sequence does not exceed 1. Second, in every period, (1/21)ch of
the total number of runs has length i, as long as there are at least 2
runs of length i. Third, the periodic autocorrelation function is two-
valued. Every sequence which satisfied these three randomness require-
ments was called by Golomb a pseudo-noise (PN) sequence. But although
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Golomb called his requirements "randomness postulates", they do not de-
fine a general measure of randomness for finite sequences. These "random-
ness postulates" rather describe almost exclusively the sequences which
have a primitive minimal polynomial (since they have maximum possible
period, they are also called maximum-length seduences or m-sequences).
But this means that the so-called PN-sequences are highly predictable, if
L &enotes the degree of the primitive minimal polynomial of the PN-se-
guence under investigation, then only 2L bits of the sequence suffice to
specify completely the remainder of the period of length 2L-1. Clearly
the idea of randomness also reflects the impossibility of predicting the
next digit of a sequence from all the previous ones. An interesting
approach to a definition of randomness of finite sequences based on this
concept of unpredictability was taken by R. Solomonov (Solo 64) and A.
Kolmogorov (Kolm 65). They chararacterized the "patternlessness" of a
finite sequence by the length of the shortest Turing machine program that
could generate the sequence. Patternlessness may be equated with unpre-
dictability or randomness. This concept was further developed by P.
Martin-Loef (Mart 66). A different approach to evaluating the complexity
of finite sequences was given by A. Lempel and J. Ziv (Lemp 76). Instead
of an abstract model of computation such as a Turing machine one could
directly use a linear feedback shift register (LFSR) model and measure
the {linear) unpredictability of a sequence (finite or periodic} by the
length of the shortest LFSR which is able to generate the given seguence.
This approach is particularly appealing since there exists an efficient
synthesis procedure (the Berlekamp-Massey LFSR synthesis algorithm {Mass
69)) for finding the shortest LFSR which generates a given sequence. This
length is also referred to as the linear complexity associated to the
sequence, The following sequence obtained by the author in 31 trials with
a fair swiss coin may serve as an illustration for the concept of linear
complexity as measure of randomness {or linear unpredictability).

-~

3 = (1000111101000011011110100010100)° (1)

In Fig. 1, we compare the dynamic behaviour of the linear complexity of
the periodically repeated swiss coin sequence (1) to that of a PN-se-
quence of period 31. A(s") denotes the linear complexity of the first n
digit subsequence of %,
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Fig. 1. Linear complexity profiles of the swiss coin

sequence [1) and the PN-sequence generated
by <5,1+4D2+D% and initial state [0,0,0,0,1]

The linear complexity of the swiss coin sequence (1) grows approximate-
ly as n/2, where n denotes the number of processed bits, and stops at 31
which is the period of the sequence (1). Thus only the circulating
shift register of length L = 31 is able to generate the swiss coin se-
quence. Conversely, the so-called PN-sequence of period 31 has a linear
complexity of only 5 and is highly predictable. But note, a high linear
complexity alone does not guarantee good randomness properties. As an
example consider the sequence built by 30 consecutive 0's and an appended
1 which is periodically repeated. This sequence can also only be generat-
ed by the circulating shift register of length 31, but does not exhibit
any randomness properties whatsoever. This could be seen in the associat-
ed linear complexity profile, in which the linear complexity remains at 0
until the 1 appears at the 31st position which causes the linear comple-
xity to jump from O to 31 in one swoop. Consequently, we expect a “typi-
cal" random sequence to have associated a "typical" linear complexity
profile closely following the n/2 line.
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Let s" = SgsSyreaSn01 denote a sequence of n independent and uniformly
distributed binary random variables, and let A (sn) be the associated
Yinear complexity. Our primary interest is in Nn(L), the number of se-
quences of length n with linear complexity A(s") = L. Consider the basic
recursion from A(s"'l) to A(sn). The difference between the nth binary
random variable Sn-1 and the nth digit generated by the minimal-length
LFSR which is able to generate s"'1 is called the next discrepancy dn- .
If the LFSR of length A(s"'l) which generates s""1 also generates s,
then sn-l = 0 and the linear complexity does not change. Conversely, if
the LFSR of length A(s"'l) which generates s"'1 fails to generate s",
then Sy = 1 and the linear complexity increases when A(sn'l) is smaller
than n/2. The recursion describing the length change is basic to the
LFSR-synthesis procedure (Mass 69):

$pp = O A(s™) = A(s™TH) (2a)
A(sh) = A(s™L) if A(sP1) ;%

pp =1 { 4. (2b)
AGs™) = n = MET) LEAGETTH) < 3

Note that the linear complexity does not change (regardless of the value

of the discrepancy) when A(sn'l) 2 -%. It is illuminating to represent

graphically the linear complexity recursion (2) (see Fig. 2. )

51.‘_1 e {0,1}
I L L=n-L"
n
- T = =7 = = — = 2
5,1 =0
L' L‘l
an—l =0
A h As™)
N,y (L) Np (L)
Fig. 2. Graphical illustration of the linear

complexity growth process
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From the diagram in Fig. 2, we may now directly read off the recursion
for N (L). If A(s") = L' <5, then N (L') = N
choice for Sn-

n_1(L') since only one

1 1 = 0. The second choice for Sn-l causes Gn-l =

1 and thus transfers Nn_l(L‘) sequences to the new complexity L = n-L'.
If A(sn'l) =L > 5, then A(s") = L (irrespective of 5n-1) and 2Nn_1(L)

sequences contribute to Nn(L). The only exception ta the sketched process

in Fig. 2 occurs when n is even and L = 2. In this case no path from

A(Sn-l) = L' < -g— may Tead to A(Sn) = | = 5» since L = .2_ = n-L' would
require L' = % which contradicts the assumption. We can now write the
Nn

causes §
n_

recursion for N (L), the number of sequences of length n with linear com-

plexity N, as

n
2Nn_l (L) + Nn—l (n—L) n L > 5 (3a)
n
Nn(L) = thn__l (L) L = 5 (3b)
n
N, (L) 5 L>»0 . (3¢)

The initial conditions for the recursion (3) are NI(O) = Nl(l) = 1. At
any length n the total number of sequences is 2", In table 1, the
values of Nn(L) are listed for all positive n <€ 10.

n 1 2 3 4 5 6 7 8 9 10
L

0 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2
2 1 4 8 8 8 8 8
3 1 4 16 32 32 32 32 32
4 1 4 16 64 128 128 128
5 1 4 16 64 25 512
6 1 4 16 64 256
7 1 4 16 64
8 1 4 16
9 1 4
10 1

Table 1. values of Nn(L) forn=1, ...
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The general form of Nn(L) is easily guessed from table 1.

2min{2n—2L,2L—l} n>L >0 (4a)
N, (L) =

1 n>L =0 (4b)

To show that this solution is correct, we first prove that the solution
satisfies the recursion (3) for all n > 1,

2n-2L 2n-2-2L

Suppese n » L > n/2, then N (L} = 2 , Nn-1(L) = 2
2n-2L-1 n

Nn_l(n-L) = 2 , since n < 2L implies 2(n-L) < n-1, These values
satisfy recursion (3a) for all n > 1, as can be seen by substitution.

and

2L-2

224 and N (L) = 2%57F, which satisfy

Suppose L = n/2, then Nn(L) =
recursion (3b) for all even n > 1.

Suppose nf2 > L > 0, then Nn(L) = Nn-l(L) = 22L°1 and the recursion
(3¢) is trivially satisfied for all n> 1.

By taking into account the initial conditions NI(O) = Nl(l) = 1 the solu-
tion (4) is seen to yield the correct values for n = 2. Thus (4) 1is
the solution to the recursion (3). We summarize the result in the
following proposition.

Proposition 1. Distribution of Nn(L)

The number Nn(L) of binary sequences s" = of length

SgsSyareeaSno1
n having linear complexity exactly L is

2min{2n—2L,2L—l} n>L >0
N (L) =

1 n>L=0 .

The form of Nn(L) for the general case of g-ary sequences may be found in
(Gust 76) where the objective of that author was to evaluate the perform-
ance of the Berlekamp-Massey LFSR synthesis algorithm, Our interest is in
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characterizing a "typical" random sequence by means of the associated
linear complexity. Proposition 1 tells uys that the vast majority of the
possible binary sequences of length n will have linear complexity close
to n/2. A quantity of independent interest, related to Nn(L), is the
number of semi-infinite sequences of linear complexity L or less, which

we denote by N . For finite L > 0, Proposition 1. gives NofL) = p2Lt-1,

L
Thus
L
N =1+ E 223-1 (5)
j:l .

where the added 1 accounts for the allzero sequence, which has linear
complexity L = 0. Evaluating the finite geometric series (5) yields

=25 1
Ny =5 2%+ 3. (6)

When we consider the tree corresponding to the set of all binary semi-
infinite sequences, then at depth 2L every sequence of linear complexity
L or less is characterized by the fact that the associated LFSR which may
produce the sequence is unique. Hence the significance of (6) is that
almost exactly 2/3 of all sequences of length 2L may be generated with an
LFSR of length L or less. Both proposition 1. and the above argument on
NL suggest that any sequence of n randomly selected binary digits will
"typically" have a linear complexity close to n/2. To obtain a precise
characterization, we may compute the expected linear complexity of a se-
quence s" of n independent binary random variables SgsSyseesSn1 {as
emitted from a BSS).

E[A(s™)] = Z A(ER)Y P (D) (7
bn

where b" denotes a particular realization of the coin tossing sequence
s". Since each b" is equally likely, the probability p(s" = b") is 27",
Therefore

E[A(sM)] = 2‘“§ A(B?) = 277L* (n) (8)

b0
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where we have introduced the symbol L*(n) for 2" E[A(s")]. The set of all
b" may be subdivided into equivalence classes according to the associated
linear complexity. Thus we may rewrite the sum L*(n) in (8) as

L*(n) = E L . (9)
L=1 {pP:A (™) =L}

The Lth equivalent class is easily identified to contain Nn(L) elements.
Thus

n

L*(n) = E L N, (L) . (10)

L=1

Replacing Nn(L) by the solution given in proposition 1 , we obtain

n

L* (n) =§ pmin{2n-21,2r-1} (11)
L=1

which may be subdivided into two sums according to the dominance of 2n-2L
or 2L-1, which results in

I24]

L*(n) = E L2?F 4 E L2%% (12)
l'n+l'[
3

L=1
L=

It is now possible to obtain a closed form expression for the finite sum
in (12) by applying standard analytical methods. We illustrate the
principle by evaluating

m

g 3243-L {13)

j=1

First, we introduce a dummy variable I raised to the (j-1)st power,

m
E 5 p3Tla23-1
j=1
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Now we integrate the sum with respect to I,
m
E 1) 223-1 |
j=1
This is an ordinary geometric series whose sum is given by
m,2m_
21 I 22 1 .
I 2¢ -1
Differentiating this sum and setting I = 1, we obtain as the closed form
solution for (13)

m

E 522371 = _(513-11 22m+1 __3_ 2o+l L1y (14)

j=1

Because of the floor- and ceiling-functions in (12) , it is convenient
to distinguish between even and odd n. Let Lz(n) and L6(n) denote the
function L*(n) evaluated at even n and at odd n, respectively. Then by
applying the standard techniques, as explained in the derivation of
(14) , to the individual sums in (12) , we obtain for even n

-n n

4 4
5—2 (3+§))} (15)

* = n,n_2,2,n n.n
Le(n) {2(3 9+92 )}+{2(6+
where the brackets {1} enclose the values of the two distinct sums in
(20).

In the case of odd n, we similarly obtain

=R

187

n
Lo(n) = {27 (g -

OlIN

-n n,3_ ,n 2,4

2} + (D (g+5-2"(3+g 0. (16)
Now it is straightforward to combine (8), (15} and (16) to obtain
the desired expected linear complexity E[A(sn)] . We summarize the result
in the following proposition.
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Proposition 2.  E[A(s")]

The expected linear complexity of a sequence s"=so,sl,...,sn_1 of
n independent and uniformly distributed binary random variables is
given by

E[A(sn)] = % + 4tRo(n) _ 2 R (24.2)

18 g (17)

where Rz(n) denotes the remainder when n is divided by 2.

Proposition 2. confirms our suspicion that the linear complexity of a
randomly selected sequence s" can be expected close to n/2. Nevertheless,
it is surprising how very close to half the sequence Tength that the ex-
pected linear complexity actually lies. For large values of n,

-~ n 4+R;3 (n)
E[A(Sn)] = 3 + —]T— n>» 1 (18)

which differs from n/2 by only an offset of 2/9 in the case of even n or
5/18 in the case of odd n, Besides the expectation, the variance of the

linear complexity is a second key parameter suited for characterizing
"typical" random sequences. The variance is defined as

Var [A(s™)]

E[{a(s™ - E[A(s™]]

E[A%(s™)] -E[A(s™]2 - (19)

Following the same approach as for the derivation of EDKS")], the second
moment E[h?(s")] is found to be {compare 12)

LHZJ n
L2*(n) = E[A% (sM)]2" = Z 12 92L-1 Z 12 5 2n-2L 03
S o

We apply again the standard technique of integration and differentation

of the finite sums in (20) to obtain a closed form expression for
L2%(n).
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Fo: analytical convenience, let Lg*(n) and Lzz(n) denote the function
L2 (n) evaluated at even and odd n, respectively. We indicate the two
distinct sums in (20) by enclosing them with brackets {}. In the case
of even n, we obtain

12 () = (2l (L R -fn+ ) -3

9 27
n o Ll ,2,4_ .20, (Ll.2.8 .20,
+ {2 (330 +9n+27) (3n +9n+27)} (21)
In the case of odd n, we obtain
2% - 1 2_5 .41, _10
Lo ) = {2 ({3n° -gn+1o8) ~ 27
n,l 2 5 41 , _,1 2 8 _ .20,
+{2(-gn +§n+—4) (3n +9n+27} (22)

Now it is straightforward to combine (20), (21), and (22) to obtain
the desired closed form expression for the second moment of the linear

complexity for all positive n:

4+R, (n)  40+R, (n)
-+
18 36

E[# (sM] = 302+

- Z_n(%—n2+%n+19—o) (23)

where Rz(n) denotes the remainder when n is divided by 2. Finally, the
first moment of the linear complexity (as shown in proposition 2. )
together with the second moment as displayed in (23) , allow the calcu-

lation of Vvar[A(s™)], via (19) . We summarize the result in the
following proposition.
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Proposition 3. Var[A(s")]

The variance of the linear complexity of a sequence s" = Sg>51°
...,sn_1 of n independent and uniformly distributed binary random

variables is given by

86 _ 14=R,(n)  82-2R,(n)

var{A(s™)] = 2™n
ar[a(s™] = g7 (=7 81
- 5=2n 1 2 4 4
2 { g N +3T7I1+'§T ) (24)

where Rz(n) denotes the remainder when n is divided by 2. More-

over,

. n _ 86
lim  var[A(s™] = g7 - (25)
n->-«

The variance is a measure of spread. If the variance is small then large
deviations of the random variable under consideration from its mean are
improbable. One might have expected that the spread of the linear comple-
xity grows with increasing length n of the investigated sequence. Note
that A(s") may assume more and more values with increasing n. The inter-
esting implication of proposition 3. is that the spread of the linear
complexity A(sn) is virtually independent of the sequence length n. Re-
gardless of how many sequence bits are processed, the fraction of se-
quences centered around the mean is virtually constant. We may make these
intuitive statements more precise by invoking Chebyshev's inequality
(Fell 68), which implies that, for any k > 0, the probability that the
linear complexity of a random sequence s" differs by an amount larger or
equal than k from its mean is bounded from above by the variance of the

2

linear complexity divided by k“. Thus, for all n,

n
p{|A(s?) - E[A(sn)]l > k) ¢ Yar[ash] (26)

k2

Suppose k = 10, then, for sufficiently large n, Chebychev's inequality
provides a bound of (86/81)1072 = (,0106. Consequently, at least 99 % of
all random sequences s" have a linear complexity within the range (n/2) %
10. This is a surprisingly sharp characterization of random sequences by
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means of their associated linear complexity. Moreover, Chebychev's ine-
quality is known to yield fairly loose bounds in individual applications
because of its universality, so we may expect an even closer scattering
of the linear complexities around the mean.

A different approach which could help to characterize random sequences is
to consider the growth process of the linear complexity as a special kind
of random walk. In this interpretation,A(sn) gives the "position" of the
“particle" at time n. We may define the n/2-line as the “origin" of the
“particle", since at any time the expected location of the "particle" is
about n/2 (compare proposition 2). Typically the "particle" would de-
part from the n/2-line to some position below the n/2-1ine, then jump
above the n/2-line and walk back to the n/2 Tine, Fig. 3 illustrates
such a typical section of the linear complexity profile of a binary
sequence.

[NF}=]

W
Fig. 3. A typical random walk segment of A(s™)

Compare also the linear complexity profile of the swiss coin sequence
(1) depicted in Fig. 1. The recursion (2) describing the growth of
linear complexity forces A(s") to retain its value, whenever that value
is greater than n/2, until A(s"|) = n'/2. From this point on, a change in
linear complexity could occur at every step. In case of such a change,
the jump of A(sn) is symmetrical with respect to the n/2-1ine, i.e. the
"particle" A(sn) Jumps from L to {n+l1)-L. Without loss of essential gene-
rality, assume that A{s") = n/2. (Note that every nonzero sequence cross-
es at least once the n/2-line). Then the next jump will occur at time
n+k, that is, after k time units, if



181
8y = Oppp = eee =82 =0; 80 =1 (27)
causing the new linear complexity to be
AsPHE) = (n+k) - A(s?) . (28)
By the fact that the s; are independent and fair coin tosses, the proba-
bility that the event (27) occurs is 27k

denoting the number of time units until the next length change occurs,
given that at time n A(sn) = n/2. The above observations then imply

. Let W be the random variable

© o

E(w] = E k 27k = E 27k = 2 . (29)

k=1 k=0

Thus, for the "particle" A(sn), the average return time to the origin
(the n/2-1ine) will be 2E[W] = 4; and the average jump height will be
E[aL] = E[W], since AL = (n + W - (n/2)) - (n/2) = W. The results obtain-
ed from the random walk interpretation of the linear complexity profile
are summarized in the following proposition, where we have also genera-
lized to an arbitrary starting point A(s") = L to cover all possible

sequences.
Proposition 4. Random walk setup
If § = so,sl,... denotes a sequence of independent and uniformly

distributed binary random variables and if A(s") = L, then the
average number of sequence bits that have to be processed until
the next length change occurs is given by

2 if L g2
_— _ 2
E(W[A(s™) =1] = : (30)
2+2L-n if L > 3
Moreover, the average length change is
2 if L »
E[AL|A(s®)=1] = { (31)

[Nk I N1Tet

n-2L+2 1if L <
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The import of proposition 4. dis that it provides information about the
details of the lTinear complexity profile of random sequences.

Proposition 4. tells us that the linear complexity profile of a random
sequence will look like an irregular staircase with an average step
lTength of 4 time units and an average step height of 2 linear complexity
units. A good illustration of this "typical" growth process is given by

the linear complexity profile of the swiss coin sequence depicted in Fig.
1.

The various characterizations of binary random sequences by means of the
associated linear complexity (as described in proposition 1. - 4. )
might now suggest that we have only to put a "channel" of sufficient size
around the n/2-line to separate the random looking sequences from the
nonrandom looking sequences. But obviously enough, the probability that a
random sequence A(s") will leave this fictitious channel at least once
goes to 1 as n goes to infinity. It is not even true that the sequences
whose linear complexity profile stays very close to the n/2 line will
always exhibit good statistical properties. An interesting example is

~

provided by the sequence y whose terms are defined as

(32)

1 if § = 2"-1 n=0,1,2...
y, =

0 otherwise.

The sequence ¥ is highly "nonrandom", yet it has a linear complexity pro-
file following the n/2-1ine as closely as is possible at least for n< 127
(and we conjecture for all n) (see Fig., 4). This conjecture was recently

proven to be true by Zong-duo Dai (Dai 85).

Ay

5 | E;7‘:::

+ —

4 —

-’ /
1 =

ey} n
1 5 10
Fig. 4. The perfect staircase profile

associated to the sequence (32)
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This example suggests that too regular linear complexity profiles are
incompatible with the randomness properties of the associated sequences.

~

But note that the sequence ¥ as defined in (32) 1is not the only se-
g then, in-
} will be equal to A(yn). This in-
dicates that there exist in fact many sequences which have associated the
perfect staircase profil shown in Fig. 4. And undoubtedly, there will
be some among them with good statistical properties. But remember that
the perfect staircase profil would indeed pass randomness tests based on
the expectation of linear complexity (proposition 2. and 3, ), but it

never would pass a randomness test based on the random walk setup (propo-

quence with this perfect staircase profile. wheneyer A(sn) >

dependent of the choice for Yo A(yn+1

sition 4. ). Hence with the knowledge acquired so far on the linear com-
plexity profile of random sequences, we would not accept as "random” a
sequence with such a regular profile as that shown in Fig. 4.

From the practical standpoint in good stream cipher design, one important
question remains to be answered. A deterministically generated key stream
must necessarily be (ultimately) periodic. Thus, the question of what the
Tinear complexity profile of a periodically repeated random bit string
will look like is of considerable practical interest. Let zT =I5, Zp»
ey ZT-* denote the first period of the semi-infinite sequence ¥, and
assume z' to be selected according to a fair coin tossing experiment.
Then from the preceding analysis we may immediately deduce that E[A(Z])
is at least T/2, since that result holds for the finite random sequence
ZT. On the other hand zT could be put into a pure cycling shift register
of length T to produce Z. Thus T+ =
Zys which implies that E[A(Z)] is at most T. But how likely is it that Z
satisfies a linear recursion of order lower than T? And how would the

~

Z certainly satisfies the recursion z

linear complexity profile change from that point on where the first bits
of zT are repeated? Intuitively, one would expect the linear complexity
to grow to close to the period length T, since the recursion which pro-
duces the second half of zT from the first half is unlikely to have any
similarities to the recursion that produces the first half of zT from the
second half (which is required by the periodic repetition). Now let Z*(D)

denote the polynomial associated with the first period 27 of %. Then

Z* (D)
1+p7

Z(D) = (33)
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I*(D) may be interpreted as the polynomial associated with the initial
state of a circulating shift register. The question of the expected li-
near complexity of Z now corresponds to asking for the expected degree m
of the denominator polynomial in (33) after reduction by gcd(Z*(D),
1+DT). To every choice of 7Z*(D), there is a unique partial fraction ex-
pansion

zZ (D) :E:: :gz: x (P) (34)
SNEIE

where Ci(D), i=1,..,n, are the irreducible factors of 1 + o' and me, 1=
1,...,n are their multiplicities, and where deg(Pik(D)) < deg(Ci(D)).
Suppose now that the binary coefficients of the numerator polynomials
Pik(D) are chosen independently from a uniform distribution. This induces
a uniform probability distribution over the set of possible initial
periods zT, (or equivalently, over the set of possible Z*{D)), since
there exists a unique correspondence between initial periods 2*(D) and
the choice of numerator polynomials in the partial fraction expansion

(34). But a uniform probability measure over all zT

implies that each
digit Zj’ J=0,...,T-1, is an independent and uniformly distributed binary
random variable. We conclude that the expected linear complexity of z may
equivalently be computed as the expected degree of the minimal polynomial
of Z given that all coefficients of the numerator polynomials Pik(D) are
chosen independently from a uniform distribution. Unfortunately, there
appears to be no simple solution to this problem since the irreducible
factors Ci(D) of 1+DT, as well as their multiplicities strongly depend on
the value of T. We will demonstrate the solution for 2 extreme cases
thereby obtaining results of some significance for the general case.
Suppose first that T is equal to 2"-1 with n a prime. Then the partial
fraction expansion (34) takes on the special form

M
Z* (D) A Py (D)
Z2(D) = = + E
( ) l+D2n"l 1+D Ci (D) (35

i=1

where each Ci(D) has prime degree n, and thus the number of such factors
is M= (2"-2)/n. When we randomly select A and the coefficients of Pi(D),
i=1,...,M, then the probability that A and P.(D) are zero is 21 and 27",
respectively. Therefore
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= P(A(Z) = 27=-1~-kn) = B(A(Z) = 20 -2 -kn)

W'U
[

() (1-27Rptk (2mmyk

We obtain for large prime n and small k

1
1 -
ok € 7

Pz

k (37)

By considering the two choices of 2"-1 and 2"-2 for the linear complexity
we may provide a rough lowerbound on the expected linear complexity of %,

E[A(®)] > (2"-1)B, + (27-2)R,

2% e (2» - %) (38)

=1

The significance of the bound (38) lies in the fact that, as n in-
creases, it approaches the period T, thereby showing that the linear com-
plexity of z can be expected to be very close to the period length for
all prime n. A much better estimate of the actual E[A(Z)] may be obtained
when more than just the two largest choices for A(Z), with their corres-
ponding probabilities Pk as computed in (37) are taken into account.
When T is chosen odd, then the minimal polynomial of Z does not contain
any repeated factors (which is equivalent to saying that the minimal
palynomial of Z has only simple roots). The other extreme may be found
when the period length T is chosen to be a power of 2, i.e. T = 2". Then
there exists only one root, namely 1, which occurs with multiplicity Zn,
and

_ Z*(D) _ _2*(D) (39)

7 (D)
1+027  (L+D)2®

Then the partial fraction expansion (34) takes on the special form

21’1

E Aj
Z2{(D) = _—
4 (1+D)*

i=1 (40)
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When all the binary coefficients Ai are drawn independently from a uni-
form distribution, then half the sequences ¥ will have linear complexity
2", one forth of the ¥
have A (%) = 2"-2, and so on. Thus the probability distribution induced on

M%) is given by

will have linear complexity 2n-1, one eighth will

n
= oL-2™-1

P(A(Z) = L) L=1,,..,2% (41)

With the help of this probability distribution, it is now easy to compute
the expected linear complexity

20 2n
n _~»0_
E[A(2)] = E L. b2l o el g L2t . (42)
L=1 L=1

Invoking the integration/differentiation technique for sums (as demon-
strated in the derivation of ( 14 ))results in

E[A(Z)] =27 -1+ 2% .

This result is summarized in the following proposition.

Proposition 5. Periodic repetition of random sequence

If the semi-infinite sequence ¥ is generated by periodically re-

T

peating a sequence z of T independent and uniformly

= ZpngeserZ
0 T-1 T 1
distributed binary random variables, i.e. 2 =2, 2z, ..., and if

T = 2", then the expected linear complexity of Z is

E[A(Z)] =27 -1 + 27 (43)

The two investigated cases of periodically repeating a finite sequence of
random bits are extreme in the sense that, for a period T = 2"-1, the mi-
nimal polynomial of % is sure to contain only simple roots whose number
then equals the linear complexity of Z, and, for a period T = 2", the mi-
nimal polynomial of Z is sure to contain only one root whose multiplicity
then equals the linear complexity of Z. For both choices of the period we
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were able to show that the expected linear complexity is almost equal to
the period length,

Recapitulating, we may say that the linear complexity of a sequence pro-
vides a good measure of its unpredictability, expecially when the growth
process of the linear complexity with respect to the number of considered
sequence bits (which was termed the linear complexity profile) is taken
into account. For true random sequences of length n, the expected linear
complexity was shown to be about n/2. Moreover, the vast majority of
these sequences were shown to have associated a linear complexity very
close to n/2. The dynamic characterization of random sequences by means
of Tinear complexity results in an average linear complexity increase of
2 after an average number of 4 considered sequence digits. When a random
sequence of length T = 2" (n 3 0) or T = 2"21 {n prime) T is periodically
repeated, then the expected linear complexity is close to the period
length T and the associated linear complexity profile is not distinguish-
able from the linear complexity profile of a true random sequence up to T
digits. Heuristic arguments suggest that the expected linear complexity
will in general be close to the pericd length T and that in fact the
associated linear compliexity profile will not be distinguishable from the
lTinear complexity profile of a true random sequence even up to 2T digits.
(Compare also the swiss coin sequence example displayed in Fig. 4.1.). we
conclude that a good random sequence generator should have linear comple-

xity close to the period length, and also a Tinear complexity profile

which follows closely, but "irregularly”, the n/2-line (where n denotes

the number of sequence digits) thereby exhibiting average step lengths
and step heights of 4 and 2, respectively.
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