
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



1

Linear Complexity for Sequences with
Characteristic Polynomial f v

Alex J. Burrage, Ana Sălăgean, Raphael C.-W. Phan

Abstract—We present several generalisations of the Games-
Chan algorithm. For a fixed monic irreducible polynomial f we
consider the sequences s that have as characteristic polynomial
a power of f . We propose an algorithm for computing the linear
complexity of s given a full (not necessarily minimal) period of
s. We give versions of the algorithm for fields of characteristic 2
and for arbitrary finite characteristic p, the latter generalising an
algorithm of Kaida et al. We also propose an algorithm which
computes the linear complexity given only a finite portion of
s (of length greater than or equal to the linear complexity),
generalising an algorithm of Meidl. All our algorithms have
linear computational complexity. The algorithms for computing
the linear complexity when a full period is known can be further
generalised to sequences for which it is known a priori that the
irreducible factors of the minimal polynomial belong to a given
small set of polynomials.

I. INTRODUCTION

The linear complexity of a sequence and the minimum linear
recurrence relation (equivalently minimum LFSR) are impor-
tant parameters for many applications, including cryptography.

The well-known Berlekamp-Massey algorithm computes
the linear complexity of a sequence in quadratic time. For
certain classes of sequences more efficient algorithms exist.
The Games-Chan algorithm [1] takes linear time and works
for binary sequences with period of the form 2n. It exploits
the fact that in this case the minimal polynomial is a factor
of x2n − 1 = (x − 1)2

n

hence it is a power of x − 1 and
we only need to determine which power. The Games-Chan
algorithm assumes that we know a whole (not necessarily
minimal) period of the sequence. In Algorithm 1 we generalise
the Games-Chan algorithm to the case when it is known a
priori that the minimal polynomial is a power of a certain
fixed irreducible polynomial f (so the Games-Chan algorithm
would be the case f = x− 1).

The Games-Chan algorithm has been generalised to fields
of arbitrary characteristic by Kaida et al. in [2] and we will
similarly give Algorithm 2 which is the generalisation of
Algorithm 1 to arbitrary characteristic. (Our algorithm reduces
to the one of Kaida et al. in [2] when f = x− 1.)

It was noted by Sălăgean in [3] and by Meidl in [4] that we
actually do not need to have a whole period of the sequence
in order to determine its linear complexity using the Games-
Chan algorithm. It suffices to have a number of terms greater
or equal to the linear complexity, provided we still know that

Alex J. Burrage and Ana Salagean: Computer Science, Loughborough
University, Leicestershire, LE11 3TU, UK. Raphael C.-W. Phan: Elec-
tronic and Electrical Engineering, Loughborough University, Loughborough
LE11 3TU, UK (email: a.burrage@lboro.ac.uk, a.m.salagean@lboro.ac.uk,
r.phan@lboro.ac.uk)

the sequence admits as characteristic polynomial a power of
x−1 or more generally of some irreducible polynomial f . For
finite sequences which have a characteristic polynomial of the
form fv Meidl gives two algorithms in [4]: one for f = x−1
and arbitrary v, the other for arbitrary f and v being a power
of 2. We generalise his approach as Algorithm 3, which works
for arbitrary f and arbitrary v. At first sight it would seem
tempting to take this generalisation further, to k-error linear
complexity, as in [4, Section 4]. However, we do not feel that
such work would be worthwhile, as the definition used for
the k-error complexity in [4] is a restricted one, (it computes
the minimum linear complexity of all sequences z at Hamming
distance k from s with the additional condition that z admits as
characteristic polynomial a power of f ) and is not equivalent
to the generally used definition (except for f = x− 1).

We further generalise our algorithms for infinite sequences
to determine the minimal polynomial when all its irreducible
factors are known a priori (Algorithm 4). This algorithm is
efficient only if the number of irreducible factors is small.

For all the algorithms and their proofs we found it con-
venient to use the action of a polynomial on a sequence
(Definition 3), a notion that has been used in different guises in
several papers. We felt the proofs were shorter and simpler this
way compared to the original proofs of many of the algorithms
we generalised.

II. PRELIMINARIES

The linear complexity of a sequence is defined as usual:

Definition 1. Given an infinite sequence s = s0, s1, . . . (or
a finite sequence s = s0, s1, . . . , sm−1 ) with elements in
a field K we say that s is a linear recurrent sequence if it
satisfies a homogeneous linear recurrence relation, i.e. there
are c0, c1, . . . , cL−1 ∈ K such that

sj + cL−1sj−1 + . . . + c1sj−L+1 + c0sj−L = 0

for all j = L,L + 1, . . . (or for all j = L, L + 1, . . .m − 1,
respectively). We associate to it a characteristic polynomial
C(x) = xL + cL−1x

L−1 + . . . + c1x + c0. If L is minimal for
the given sequence, we call L the linear complexity of s and
we call C(x) a minimal polynomial.

For infinite sequences the minimal polynomial is unique
and any other characteristic polynomial is a multiple of the
minimal polynomial.

Throughout this paper we work in a field K of finite
characteristic p. We denote by s = s0, s1, . . . an infinite
sequence over K and by s′ a finite sequence consisting of



2

successive terms of s. The infinite sequence s will be assumed
to be periodic with period N . The finite or infinite sequence
consisting only of zeroes will be denoted by 0 (the length
of the sequence will be clear from the context). A monic
irreducible polynomial f ∈ K[x], different from 1 and x is
fixed throughout. For a polynomial g we denote by wt(g) the
weight of g, i.e. the number of non-zero coefficients of g (by
analogy with the Hamming weight of vectors).

For convenience we will introduce the following notation:

Definition 2. Let g be a monic polynomial in K[x]. We
define M(g) to be the set of all infinite sequences over K
with characteristic polynomial equal to g. We also define
M(g∞) = ∪∞i=0M(gi).

The following definition is a commonly used notion:

Definition 3. Let g =
∑n

i=0 aix
i be a polynomial.

For an infinite sequence s we define the action of g on s,
denoted gs, to be the infinite sequence t = t0, t1, . . . defined
by ti =

∑n
j=0 ajsi+j .

For a finite sequence s′ = (s0, s1, . . . , sm−1) with m > n
we define the action of g on s′, denoted gs′, to be the
finite sequence t′ = (t0, t1, . . . , tm−n−1) defined by ti =∑n

j=0 ajsi+j . (One could extend the definition to m ≤ n but
this situation will not occur in this paper).

Using the terminology of actions, the following results
concerning characteristic polynomials are immediate:

Lemma 1. Let g ∈ K[x] be monic and let s be an infinite
sequence. Then:
(i) g is a characteristic polynomial of s iff gs = 0. Moreover, g
is the minimal polynomial of s iff g is a polynomial of minimal
degree for which gs = 0.
(ii) Let h ∈ K[x]. Let gcd(g, h) = g2 and g = g1g2 with all
polynomials monic. If g is the minimal polynomial of s then
g1 is the minimal polynomial of hs.
(iii) If s is periodic and N is a period of s then N is also a
period of gs.

Proof: Parts (i) and (iii) are clear. For (ii) write h as g2h
′.

Denote the minimal polynomial of hs by g3. We will prove
that g1 = g3. From (i) we know gs = g1g2s = 0 and g3hs =
g3g2h

′s = 0. Since the minimal polynomial of a sequence
divides any other characteristic polynomial, g1g2|g3g2h

′. Since
h′ and g1 are coprime we have g1|g3. On the other hand,
gs = 0 implies gh′s = g1g2h

′s = g1hs = 0 and since g3 is
the minimal polynomial of hs, we have g3|g1, which combined
with g1|g3 proved previously results in g3 = g1.

Based on the well-known exponentiation rule (sometimes
known as “Freshman’s dream”): (a + b)p = ap + bp for all
a, b ∈ K, we have:

Lemma 2. Let g be a polynomial over a field K of finite
characteristic p. Then wt(gi) ≥ wt(g) with equality if i is a
power of p.

Recall that the order of a polynomial g (with x - g), denoted
ord(g) is the smallest integer m such that g is a factor of
xm − 1. The minimal period of a periodic sequence is the
same as the order of its minimal polynomial. The order of an

irreducible polynomial f is pdeg(f) − 1 or a factor thereof;
hence ord(f) is not divisible by p. The order of a power of
an irreducible polynomial can be derived as follows:

Theorem 1. ([5, Theorem 3.8]) Let f be irreducible over K[x]
and let r be a positive integer. Then ord(fr) = pt ord(f)
where t is the smallest integer with pt ≥ r.

III. LINEAR COMPLEXITY OF INFINITE SEQUENCES WITH
CHARACTERISTIC POLYNOMIAL A POWER OF AN

IRREDUCIBLE POLYNOMIAL

We assume that we are given an infinite sequence s of
(not necessarily minimal) period N and that we know that
the sequence admits as characteristic polynomial a power of a
fixed irreducible polynomial f , i.e. s ∈M(f∞). Our goal is to
determine the minimal polynomial of s, which will obviously
be of the form fr for some integer r. A naive algorithm could
compute f is for increasing values of i (by repeatedly replacing
s by fs) until the zero sequence is obtained. The more efficient
method described here finds an upper bound for r and then
does a p-ary search for the value of r.

An upper bound on the value of r can be obtained by
looking at the period N and using Theorem 1:

Lemma 3. Let s ∈ M(f∞) and let N be a (not necessarily
minimal) period of s. Write N as N = pwN ′ with p - N ′.
Then s ∈M(fpw

), ord(f)|N ′ and pw ord(f) is also a period
of s.

Proof: Let fr be the minimal polynomial of s and let w′

be the smallest integer with pw′ ≥ r. The minimal period of s
is ord(fr), which by Theorem 1 equals pw′ ord(f). Any other
period of s, for example N = pwN ′ is a multiple thereof.
Since neither ord(f) nor N ′ are divisible by p, this means
w′ ≤ w and ord(f)|N ′. Hence r ≤ pw′ ≤ pw so s ∈M(fpw

)
and pw ord(f) is a period of s.

Once we have an upper bound for r we can find the exact
value of r by a p-ary search. We actually find the largest
exponent i for which f is 6= 0, i.e. r − 1. To obtain r, a
correction of +1 is added at the end. One can view the p-
ary search equivalently as determining the digits of the base
p representation of r − 1. When testing whether f is 6= 0 for
different values of i, the values of i which are powers of p are
preferred for efficiency reasons, as they minimise the weight
of f i, see Lemma 2.

Lemma 4. Let s ∈ M(f∞), s 6= 0 and let N = pwN ′

with p - N ′ be a (not necessarily minimal) period of s (which
by Lemma 3 means s ∈ M(fpw

)). Let fr be the minimal
polynomial of s and let r − 1 = rw−1p

w−1 + rw−2p
w−2 +

. . .+r1p+r0 with ri ∈ {0, 1, . . . , p−1} be the representation
of r − 1 in base p. If w = 0 then r = 1. For w ≥ 1 we have:
rw−1 is the largest integer i ≥ 0 for which f ipw−1

s 6= 0.
Moreover, putting t = frw−1pw−1

s we have t ∈ M(fpw−1
), t

has minimal polynomial fr−rw−1pw−1
and period N/p.

Proof: Write N = pwN ′ with p - N ′. By Lemma 3, we
know ord(f)|N ′. It is easy to see that rw−1p

w−1 ≤ r − 1 <
(rw−1 + 1)pw−1, hence rw−1p

w−1 < r ≤ (rw−1 + 1)pw−1.
So frw−1pw−1

is not a characteristic polynomial of s, whereas



3

f (rw−1+1)pw−1
is. By Lemma 1(i), this means frw−1pw−1

s 6= 0
and f (rw−1+1)pw−1

s = 0.
The last equality also means that fpw−1

t = 0, i.e. t ∈
M(fpw−1

). By Theorem 1, pw−1 ord(f) is a period of t and
since ord(f)|N ′, pw−1N ′ = N/p is also a period of t.

From Lemmas 3 and 4 we have:

Corollary 1. With the notations of Lemma 4: rw−1 = 0 iff
fpw−1

s = 0 iff s ∈M(fpw−1
) iff s has period N/p.

Based on the Lemmas and Corollary above we present the
following two algorithms LinCompChar2 and LinComp given
as Algorithms 1 and 2. The first is for p = 2 and the second
for arbitrary p (including p = 2).

Note that throughout the algorithms the current value of
the infinite sequence s is implicitly stored as being the
finite sequence s′ = (s0, s2, . . . , sN−1) of length N repeated
periodically. When computing the action of a polynomial say
g =

∑n
i=0 aix

i on the infinite s thus stored, the result will be
an infinite sequence t of period N stored as the finite sequence
t′ = (t0, t2, . . . , tN−1) consisting of the first N terms of t,
computed from s′ as ti =

∑n
j=0 ajs(i+j) mod N .

Algorithm 1 LinCompChar2(s′, N, f )
Input: f ∈ K[x] an irreducible polynomial over a field K
of characteristic 2; s′ = (s0, . . . , sN−1) a finite sequence
over K consisting of the first N terms of an infinite
sequence s of (not necessarily minimal) period N such
that s ∈M(f∞).
Output: The minimal polynomial of the sequence s
begin
C = 0

5: if s′ = 0 then
return(fC)

end if
w = the largest integer for which 2w divides N
Optionally, if ord(f) precomputed, set N = 2w ord(f)

10: while w ≥ 1 do
t′ = f2w−1

s′ (as action on an infinite sequence)
if t′ 6= 0 then

s′ = t′

C = C + 2w−1

15: end if
s′ = (s0, s1, . . . , sN/2−1)
w = w − 1
N = N/2

end while
20: C = C + 1

return(fC)
end

Theorem 2. Algorithms LinCompChar2 and LinComp (Algo-
rithms 1 and 2) are correct and terminate. Their complexity
is O(N) if we consider f to be fixed, or O(wt(f)N) if f is
an input parameter.

Proof: The termination follows from the fact that the
value of w is decreased by one at each run of the while loop.

Algorithm 2 LinComp(s′, N, f )
Input: f ∈ K[x] an irreducible polynomial over a field K
of characteristic p; s′ = (s0, . . . , sN−1) a finite sequence
over K consisting of the first N terms of an infinite
sequence s of (not necessarily minimal) period N such
that s ∈M(f∞).
Output: The minimal polynomial of the sequence s
begin
C = 0

5: if s′ = 0 then
return(fC)

end if
w = the largest integer for which pw divides N
Optionally, if ord(f) precomputed, set N = pw ord(f)

10: while w ≥ 1 do
t′ = fpw−1

s′ (as action on an infinite sequence)
while t′ 6= 0 do

s′ = t′

C = C + pw−1

15: t′ = fpw−1
s′ (as action on an infinite sequence)

end while
s′ = (s0, s1, . . . , sN/p−1)
w = w − 1
N = N/p

20: end while
C = C + 1
return(fC)
end

Additionally, for characteristic p, the inner while loop will run
at most p− 1 times, as we know that before it starts we have
fpw

s = 0. The correctness follows from Lemmas 3, 4 and
Corollary 1.

For the complexity it suffices to show the second result. Let
N0 be the initial value of N , w0 be the initial value computed
for w and let N ′ = N0/pw0 . The while loop will run w0 times.

In the binary case, the complexity of each individual loop is
dominated by the calculation of t′ = f2w−1

s′, a finite sequence
representing the first 2wN ′ terms of an infinite sequence of
period 2wN ′. The number of summands for each term is
fixed by Lemma 2 as wt(f). So the number of arithmetic
operations is 2wN ′(wt(f)−1). For characteristic p each loop
takes (wt(f)− 1)pw+1N ′ steps in the worst case.

In total we have
∑w0

w=1 2wN ′(wt(f) − 1) = 2(2w0 −
1)N ′(wt(f) − 1) ≤ 2N0 wt(f) for the binary case and
(wt(f) − 1)N ′∑w0

w=1 pw+1 = (wt(f) − 1)p2N ′ pw0−1
p−1 for

arbitrary p.
Alternative algorithms can be obtained for LinCompChar2

and LinComp (Algorithms 1 and 2) by using the last equiv-
alence of Corollary 1. Namely, we can check immediately at
the start of the outer while loop whether the current value of
s′ consists of p repeating copies of the same sequence. If this
is the case we do not compute t′ but skip to the instructions
for updating the values of s′, w and N at the end of the loop.
The algorithms thus modified would have the same worst-case
complexity but will behave slightly better for the case when
r − 1 has many 0’s in its representation in base p.



4

Remark 1. For f = x−1, Algorithm 1 reduces to the Games-
Chan algorithm, [1], as computing t′ = (x − 1)2

w−1
s′ =

(x2w−1 − 1)s′ for a sequence of period 2w means t′ is the
component-wise subtraction of the two halves of s′ (i.e. t′

is L(s) − R(s) in the notation used in the Games-Chan
algorithm). Similarly Algorithm 2 reduces to the algorithm
of Kaida at al. [2].

Note that in the Games-Chan algorithm the final instruction
C = C + 1 is done conditionally, only if s′ 6= 0. If one deals
at the start of the algorithm with the case of an all-zero input
sequence (as we do), it is no longer necessary to check at the
end if s′ 6= 0, as this will always be the case. Namely, if s′

is non-zero at the start of the outer while loop it will stay
non-zero throughout, as each new value of s′ is always set to
either the first N/p elements of s′ (and s′ consists in this case
of p repeating identical sequences, see Corollary 1, which are
therefore non-zero) or to a non-zero value of t′.

Example 1. Let K = GF(2) and f = x3 + x + 1. The
sequence s has period N = 28 and its first 28 terms are
s′ = 0101000 0101101 0110111 1101110. The running of
Algorithm 1 is described in the table below:

s′ w t = 0? C
0101000 0101101 2 No 2
0110111 1101110
0011111 1000011 1 No 3

1011100 0
C = C + 1 4

Return f4

IV. LINEAR COMPLEXITY OF FINITE SEQUENCES WITH
CHARACTERISTIC POLYNOMIAL A POWER OF AN

IRREDUCIBLE POLYNOMIAL

It was noticed by Sălăgean in [3] and by Meidl in [4] that
we actually do not need to have the whole period of the infinite
sequence in the Games-Chan algorithm in order to compute
the linear complexity. In this section we generalise the idea of
Meidl, [4, Sections 2 and 3].

For a fixed polynomial g, an individual infinite sequence s
with characteristic polynomial g is uniquely defined (within
the class of all sequences with characteristic polynomial g)
by its initial deg(g) terms. Can we decide if s admits a
characteristic polynomial of lower degree just by examining
these initial deg(g) terms?

Lemma 5. Let s be an infinite sequence with characteristic
polynomial g = g1g2. Then:
s has characteristic polynomial g1 iff s′ = (s0, . . . , sdeg(g)−1)
has characteristic polynomial g1.

Proof: The direct implication is obvious. Conversely, as-
sume s′ has characteristic polynomial g1 i.e. g1s

′ = (0, . . . , 0),
a finite sequence of deg(g)− deg(g1) = deg(g2) terms. Note
this sequence also coincides with the first deg(g2) terms of
the infinite sequence g1s. By Lemma 1(i), gs = g2g1s = 0,
so g1s has characteristic polynomial g2. But then g1s = 0 as
its first deg(g2) terms are all zero and its linear complexity is
at most deg(g2).

Consequently, if we are given s′ as being the first v deg(f)
terms of a sequence s ∈ M(fv) we can check whether s
admits some characteristic polynomial of lower degree, i.e.
fv′ with v′ < v by checking whether fv′s′ = 0.

The algorithm LinCompChar2Finite is given as Algorithm 3
and is similar to the Algorithm 1 in the previous section. Note
that throughout the algorithm, the length of the current value
of s′ is v deg(f) for the current value of v.

As in Theorem 2, we can prove that the computational
complexity will be O(v) for a fixed f , or O(v deg(f)wt(f))
if f is an input parameter.

Algorithm 3 LinCompChar2Finite(s′, v, f )
Input: A finite sequence s′ consisting of the first v deg(f)
elements of an infinite sequence s ∈ M(fv) where f ∈
K[x] is a fixed irreducible polynomial over a field K of
characteristic 2.
Output: The minimal polynomial of the sequence s
begin
C = 0

5: if s′ = 0 then
return(fC)

end if
w = the smallest integer such that v ≤ 2w

while w ≥ 1 do
10: t′ = f2w−1

s′ (as action on a finite sequence)
if t′ 6= 0 then

s′ = t′

C = C + 2w−1

v = v − 2w−1

15: w = the smallest integer such that v ≤ 2w

else
v = 2w−1

w = w − 1
s′ = (s0, s1, . . . , sv deg(f)−1)

20: end if
end while
C = C + 1
return(fC)
end

Example 2. Let K = GF (2) and f = x3 + x + 1. The
finite sequence s′ = 010100001011010110 consists of the
first 6 deg(f) = 18 terms of the sequence in Example 1. The
running of Algorithm 3 is described in the table below:

s′ w v t = 0? C
010100001011010110 3 6 Yes 0

010100001011 2 4 No 2
001111 1 2 No 3

101 0 1
C = C + 1 4

Return f4

An analogue of the algorithm LinComp to work for arbitrary
finite characteristic p can be similarly developed but we will
not go into details here as it is straightforward.

Remark 2. For f = x− 1 and arbitrary v, our Algorithm 3



5

reduces to Algorithm 1 of [4]. For f = x2 + x + 1 and v
being a power of 2, it reduces to Algorithm 2 in [4] (which, as
remarked at the end on Section 3 of [4] could be generalised
to arbitrary f and v a power of 2).

Let us examine the relation between the algorithms in this
section (for finite sequences) and the ones in the previous
section (for infinite sequences). We could easily transform one
problem into the other, namely, if we have a finite sequence we
can generate the whole period using the given characteristic
polynomial fv (note that this process can take a number of
steps exponential in the length of the finite sequence) and
conversely given an infinite sequence of period N we could re-
strict to the initial pw deg(f) terms (with w maximal such that
pw|N ), as fpw

is guaranteed to be a characteristic polynomial
of f . However, the complexity of Algorithms 1 and 2 is at
least O(pw ord(f)wt(f)) whereas Algorithm 3 has complex-
ity O(pw deg(f)wt(f)). Since deg(f) ≤ ord(f) ≤ pdeg(f)

with both lower and upper bounds attained for particular
values of f , it means that the algorithms of the previous
section are potentially exponentially slower than the ones in
this section and should therefore be avoided (to clarify, all are
linear in the size of the input, but the size of the input can be
exponentially higher if we use the full period rather than the
initial v deg(f) terms). We did present them though as they
are direct generalisations of the Games-Chan algorithm.

V. LINEAR COMPLEXITY OF INFINITE SEQUENCES WHOSE
MINIMAL POLYNOMIAL IS A PRODUCT OF KNOWN

IRREDUCIBLE FACTORS

With a simple adjustment to the algorithms in Section III,
we can greatly increase their scope, so that they can be applied
to any sequence provided each of the irreducible factors of the
minimal polynomial are known.

As a consequence of Lemma 1(ii) we have:

Corollary 2. Assume that the minimal polynomial of a
sequence s is of the form fr1

1 fr2
2 . . . frm

m , with fi distinct
irreducible polynomials. Let xi ≥ ri for i = 2, . . . ,m. Then
fr1
1 is a minimal polynomial of the sequence fx2

2 . . . fxm
m s.

Therefore, if we know each of the irreducible polynomials
which divide the characteristic polynomial of a sequence and
we have an upper bound on the powers of each irreducible
polynomial, we can use Corollary 2 and Algorithms 1 or
2, to successively determine the powers of each irreducible
polynomial in the minimal polynomial. To obtain an upper
bound of the power of each irreducible polynomial, note
that the minimal polynomial is a factor of xN − 1 where
N is a period of s. Writing N = pwN ′ with p - N ′

we have xN − 1 = (xN ′ − 1)pw

. Putting ΦN ′ = {f ∈
K[x]|f irreducible factor of xN ′ − 1} all irreducible factors
of the minimal polynomial are in ΦN ′ and have multiplicity
at most pw. The resulting algorithm LinCompSet is presented
as Algorithm 4.

Theorem 3. For a sequence of period N , and a fixed set
Φ, Algorithm 4 has complexity O(n). For a general set of
m elements Φ = {f1, . . . , fm}, the algorithm will have
complexity O((

∑m
i=1 wt(fi))mN).

Algorithm 4 LinCompSet(s′, N, Φ = {f1, . . . , fm})
Input: s′ a finite sequence consisting of the first N terms
of an infinite sequence s of (not necessarily minimal)
period N ; Φ a superset of the set of all irreducible factors
of the minimal polynomial of s.
Output: The minimal polynomial of s
begin
w = the largest integer for which pw divides N

5: g = 1
for i = 1, 2, . . . , m do

for j = 1, 2, . . . , m do
if j 6= i then

t′ = fpw

j s′ (as action on infinite sequences)
10: end if

end for
g = g ∗ LinComp(t′, N, fi)

end for
return(g)

15: end

Proof: In each of the m runs of the outer for loop,
the computation of t′ takes ((

∑m
j=1 wt(fj))− wt(fi))N . By

Theorem 2, LinComp has complexity O(wt(fi)N), so a total
of O(N

∑m
i=1 wt(fi)) for each loop.

Note that Algorithm 4 is therefore efficient only if Φ has a
small cardinality and the total weight of its elements is small.

We could remove the condition that Φ by computing ΦN ′

as above and using it as Φ during the algorithm. The cases
of interest will be the ones where N ′ is a small constant. In
the general case all efficiency advantages of the algorithm are
lost as the size of the set ΦN ′ is in the worst case O(N) (see
[5] Theorem 3.5 and estimates for Euler’s totient function).

VI. CONCLUSION

We proposed algorithms for computing the linear com-
plexity and minimal polynomial for sequences which admit
as characteristic polynomial a power of a fixed irreducible
polynomial f . They work for any field of finite characteristic
and we do not necessarily need the whole period of the
sequence. For f = x − 1 our algorithms reduce to the
algorithms of Games-Chan [1], Kaida et al. [2] and Meidl [4].
All our algorithms have linear computational complexity.

REFERENCES

[1] R. Games and A. Chan, “A fast algorithm for determining the complexity
of a binary sequence with period 2n,” IEEE Trans. Information Theory,
vol. 29, pp. 144–146, 1983.

[2] T. Kaida, S. Uehara, and K. Imamura, “An algorithm for the k-error
linear complexity of sequences over GF (pm) with period pn, p a prime,”
Inform. Comput., vol. 151, pp. 134–147, 1999.

[3] A. Sălăgean, “On the computation of the linear complexity and the k-
error linear complexity of binary sequences with period a power of two,”
IEEE Trans on Information Theory, vol. 51, pp. 1145–1150, 2005.

[4] W. Meidl, “How to determine linear complexity and k-error linear
complexity in some classes of linear recurring sequences,” Cryptography
and Communications, vol. 1, pp. 117–133, 2009.

[5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge university Press, 1994.


