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Abstract
Private Set Intersection (PSI) protocols allow one party (“client”) to compute an intersection of its

input set with that of another party (“server”), such that the client learns nothing other than the set inter-
section and the server learns nothing beyond client input size. Prior work yielded a range of PSI protocols
secure under different cryptographic assumptions. Protocols operating in the semi-honest model offer
better (linear) complexity while those in the malicious model are often significantly more costly. In this
paper, we construct PSI and Authorized PSI (APSI) protocols secure in the malicious model under stan-
dard cryptographic assumptions, with both linear communication and computational complexities. To
the best of our knowledge, our APSI is the first solution to do so. Finally, we show that our linear PSI is
appreciably more efficient than the state-of-the-art.

1 Introduction

Private set intersection (PSI) protocols allow two parties – a server and a client – to interact on their re-
spective input sets, such that the client only learns the intersection of the two sets, while the server learns
nothing (beyond the client input set size). (In mutual PSI protocols instead, both interacting parties learn the
intersection.) PSI addresses several realistic privacy issues. Typical application examples include:

1. Aviation Security: The U.S. Department of Homeland Security (DHS) needs to check whether any
passenger on each flight from/to the United States must be denied boarding or disembarkation, based
on so-called Terror Watch List. Today, airlines surrender their entire passenger manifests to DHS,
together with other sensitive information, such as credit card numbers. Besides privacy implications,
this modus operandi poses liability issues with regard to (for the most part) innocent passengers’ data
and concerns about potential data losses. Ideally, DHS would obtain information only pertaining to
passengers on the list, while not disclosing any information to the airlines.

2. Healthcare: Insurance companies often need to obtain information about their insured patients from
other parties, such as other insurance carriers or hospitals. The former cannot disclose the identity of
inquired patients, whereas, the latter cannot provide any information on other patients.

3. Law Enforcement: Investigative agencies (e.g., the FBI) need to obtain information on suspects from
other agencies, e.g., local police departments, the military, DMV, IRS, or employers. In many cases, it
is dangerous (or simply forbidden) for the FBI to disclose subjects of investigation. For their part, other
parties cannot disclose their entire data-sets and need the FBI to access only desired information. Also,
the FBI requests might need to be pre-authorized by some appropriate trusted authority (e.g., a federal
judge, via a warrant). This way, the FBI can only obtain information related to legitimate requests.

∗An earlier version of this paper appears in the Proceedings of Asiacrypt 2010.
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Other examples include recent developments in collaborative botnet detection techniques [NMH+10] and
denial-of-service attacks identification [ARF+10].

1.1 Adversaries in PSI

Over the last years, PSI-related research has yielded several PSI constructs, with a wide range of adversarial
models, security assumptions, and efficiency characteristics. One major distinguishing factor is the adversar-
ial model which is typically either semi-honest or malicious. (Note that, in the rest of this paper, the term
adversary refers to insiders, i.e., protocol participants. Outside adversaries are not considered, since their
actions can be mitigated via standard network security techniques.)

Following Goldreich’s definition [Gol04], protocols secure in the presence of semi-honest adversaries
(or honest-but-curious) assume that parties faithfully follow all protocol specifications and do not misrep-
resent any information related to their inputs, e.g., set size and content. However, during or after protocol
execution, any party might (passively) attempt to infer additional information about the other party’s input.
This model is formalized by considering an ideal implementation where a trusted third party (TTP) receives
the inputs of both parties and outputs the result of the defined function. Security in the presence of semi-
honest adversaries requires that, in the real implementation of the protocol (without a TTP), each party does
not learn more information than in the ideal implementation.

Therefore, the actual “degree” of security provided by PSI-s secure against semi-honest adversaries may
depend on the specific setting. For instance, it may be reasonable to consider only semi-honest adversaries if
parties are subject to auditing and could face severe penalties for non-compliance, e.g., in the aforementioned
“aviation security” scenario. Nonetheless, it is unclear how their security arguments are affected when parties
deviate from the protocol. In other words, security focuses on (strictly) privacy guarantees: a party cannot
learn more information about the other party’s set (beyond the intersection). However, it might be unclear
what occurs if the format of one party’s input is artificially manipulated. Can such input exploit some protocol
characteristics and be used to extract information about the other party’s input set?

In contrast, security in the presence of malicious parties allows arbitrary deviations from the protocol.
In general, however, it does not prevent parties from refusing to participate in the protocol, modifying their
private input sets, or prematurely aborting the protocol. Security in the malicious model is achieved if the
adversary (interacting in the real protocol, without the TTP) can learn no more information than it could in the
ideal scenario. In other words, a secure PSI emulates (in its real execution) the ideal execution that includes a
trusted third party. This notion is formulated by requiring the existence of adversaries in the ideal execution
model that can simulate adversarial behavior in the real execution model, and thus provide the same security
of general two-party computation.

1.2 Authorized (Client) Input

Malicious parties cannot be prevented from modifying their input sets, even if a protocol is proven secure in
the malicious model. Considering that the client learns the intersection while the server learns nothing, this
appears a severe threat to server’s privacy. For instance, suppose that a malicious client faithfully follows
the protocol, but populates its input set with its best guesses of the server set (especially, if the set is easy to
exhaustively enumerate). This would maximize the amount of information it learns. In the extreme case, the
client could even claim that its set contain all possible elements. Although the server could impose a limit on
this size, the client could still vary its set over multiple protocol runs.

We claim that this issue cannot be effectively addressed without some mechanism to authorize client
inputs. Consequently, a trusted certification authority (CA) is needed to certify input sets, as proposed
in [DJKT09, CZ09]. This variant is called “Authorized Private Set Intersection” (APSI) in [DT10]. Note
that the CA is an off-line entity; it is neither trusted, nor involved in, computing the intersection.
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As discussed above, input authorization ensures that malicious clients cannot manipulate their inputs to
harm server privacy. However, this does not help at all as far as manipulation of server inputs. One way
towards security against malicious servers would be to introduce authorization for server input, along the
same lines as client input authorization. Although this would likely yield protocols secure in the malicious
model, we choose not to pursue this direction. The main reason is that, it is more natural for the client
(who learns the intersection) to be authorized on its input, than for the server (who learns nothing). However,
though it is outside the scope of this paper, we believe that enforcing both server and client input authorization
is a subject worth investigating. Finally, we leave as an open question whether we can reduce security of PSI
in the malicious model to authorization of both client and server inputs.

1.3 Technical Roadmap and Contributions

Over the last few years, several elegant (if not always efficient) PSI and APSI protocols have been pro-
posed, that are secure in the malicious model, under standard assumptions [KS05, HL08, DSMRY09, CZ09,
CKRS09, HN10]. Only [JL09] presentd a linear-complexity PSI protocol secure in the malicious setting. Its
proof requires that the domain of inputs to be restricted to polynomial in the security parameter and requires a
Common Reference String model (CRS), where the reference string, including a safe RSA modulus, must be
generated by a mutually trusted third party. Other results (such as [DT10]) construc linear-complexity PSI and
APSI protocols secure in the semi-honest model, under assumptions of the one-more-XXX type [BNPS03],
with much lower computational and communication complexity. (Note that we overview prior work in Sec-
tion 2). As shown in [DT10], via both analysis and experiments, there is an appreciable efficiency gap
between the two “families” of PSI/APSI protocols: those secure in the malicious and in the semi-honest
models. In this paper, our main goal is to construct efficient PSI and APSI protocols secure under standard
assumptions, with malicious participants (both server and client).

Our starting point are the linear-complexity protocols from [DT10] (specifically, Figure 2 and 3), which
are secure only in the semi-honest model. First, we modify the APSI construct of [DT10] and obtain APSI
protocol secure in the malicious model, under the standard RSA assumption (in ROM). Then, we modify its
PSI counterpart: while the linear-complexity PSI protocol in [DT10] is secure under the One-More-Gap-DH
assumption [BNPS03] against semi-honest parties, our modified variant is secure in the malicious model
under the standard DDH assumption (again, in ROM). We present formal proofs for all proposed protocols.

Contributions of our work are:

1. To the best of our knowledge, our APSI protocol is the first result with linear communication and
computational complexity, in the malicious model. (Previous work achieved quadratic computational
complexity.)

2. Our PSI protocol also offers linear complexity. Although some prior work (i.e., [JL09]) also achieves
the same asymptotic bound, we do not require the CRS model and our proof does not restrict input
domain size. We also show that our protocol incurs significantly reduced constant factors.

3. We prove security of proposed protocols, in presence of malicious adversaries, under standard crypto-
graphic (RSA and DDH) assumptions, in ROM.

Organization. Section 2 overviews previous work. Then, after some preliminaries in Section 3, we present
our constructions in Sections 4 and 5. Next, Section 6 discusses the efficiency of our constructs and Section 7
concludes the paper. Finally, in Appendix A, we present a simple extension to support data transfer, that
allows the client to receive – along with the set intersection – additional data associated with each item in the
intersection. Appendix B describes the details of our performance analysis.
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2 Related Work

This section overviews prior work on PSI and APSI.

2.1 Prior Work on PSI

It is well known that PSI could be realized via general secure two-party computation [Yao82]. However, it is
usually far more efficient to have dedicated protocols (see [FNP04, KS05]); which is the direction we pursue
in this paper. From here on, we consider PSI as an interaction between a server S and a client C. The server
set contains w items, while the client set – v.

Freedman, et al. [FNP04] introduce the concept of PSI and presented protocols based on Oblivious Poly-
nomial Evaluation (OPE) [NP06]. The basic idea is to represent a set as a polynomial, with individual ele-
ments as its roots. The construction for the semi-honest setting incurs linear communication, and quadratic
computational, complexity. Using Horner’s rule and balanced bucket allocation, the number of modular ex-
ponentiations can be reduced to O(w log log v) exponentiations for the server and O(w+ v) exponentiations
for the client. [FNP04] also gives constructions for a malicious client and semi-honest server. This proto-
col uses a cut-and-choose strategy, thus, the overhead is increased by a statistical security parameter. Also
presented is a protocol secure in the presence of a malicious server and a semi-honest client in ROM.

Kissner and Song [KS05] propose OPE-based protocols for mutual PSI (as well as for additional set
operations), and may involve more than two players. Protocols are secure in the standard model against
semi-honest and also malicious adversaries. The former incurs quadratic (O(vw)) computation (but linear
communication) overhead. The latter uses (expensive) generic zero-knowledge proofs to prevent parties from
deviating to the protocol. Later, Dachman-Soled, et al. [DSMRY09] present an improved PSI construction,
based on [KS05]. Their construction incorporates a secret sharing of polynomial inputs. Since Shamir’s
secret sharing [Sha84] implies Reed Solomon codes, they do not need generic zero-knowledge proofs. Com-
plexity of their protocol amounts to O(wk2 log2(v)) in communication and O(wvk log(v) +wk2 log2(v)) in
computation, being k the security parameter.

Another family of protocols rely on so-called Oblivious Pseudo-Random Functions (OPRF-s). An OPRF
is a two-party protocol (between a sender and a receiver) that securely computes a pseudorandom function
fk(·) on key k contributed by the sender and input x contributed by the receiver, such that the former learns
nothing from the interaction, and the latter learns only the value fk(x). OPRF-based PSI-s work as follows:
Server S holds a secret random key k. Then, for each sj ∈ S , S computes uj = fk(sj), and publishes (or
sends the client) the set U = {u1, · · · , uw}. Then, C and S engage in an OPRF computation of fk(ci) for
each ci ∈ C (of size v), such that S learns nothing about C (except the size) and C learns fk(ci). Finally, C
obtains ci ∈ C ∩ S if and only if fk(ci) ∈ U . The idea of using OPRFs for PSI protocols is due to Hazay
and Lindell [HL08], who propose one solution with security against malicious adversaries with one-sided
simulatability, and one – against covert adversaries [AL07].

This protocol has been later improved by Jarecki and Liu [JL09], who proposed a protocol secure in the
standard model in the presence of both malicious parties, based on the Decisional q-Diffie-Hellman Inversion
assumption, in the Common Reference String (CRS) model, where a safe RSA modulus is generated by
a trusted third party. Encryption operations are performed using an additively homomorphic encryption
scheme, such as Camenisch and Shoup [CS03]. As pointed out in [JL09], this approach can be further
optimized, based on the concurrent work in [BCC+09]. In fact, the OPRF construction can operate in groups
with a 160-bit prime order unrelated to the RSA modulus, instead of the more expensive composite order
groups. Assuming such improved construction, [JL09] incurs the following computational complexity: Let
m be the number of bits needed to represent each set item; the server performs at leastO(w) PRF evaluations,
i.e., bothm-bit and group exponentiations, plusO(v) group exponentiations, whereas, the client at leastO(v)
m-bit exponentiations plus O(v) group exponentiations. We discuss in details the complexity of this solution
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later in the paper. Finally, note that the proof in [JL09] requires the ability to exhaustively search over the
input domain, i.e., the input domain size of the PRF should be polynomial in the security parameter.

As shown in [DT10], the above protocols, though secure in the standard model, are relatively inefficient
in practice, since their asymptotic complexities hide constants that, in reality, prevent these protocols from
scaling to large sets.

A recent result by Hazay and Nissim [HN10] presents an improved construction of OPE-based PSI based
on [FNP04], but without ROM. Specifically, it introduces zero-knowledge proofs that allow client to demon-
strate that encrypted polynomials are correctly produced. Also, it uses a technique based on a perfectly
hiding commitment scheme with an OPRF evaluation protocol to prevent the server from deviating from the
protocol. The PSI protocol in [HN10] incurs O(v + w(log log v + m)) computational and O(v + w · m)
communication complexity, where m is the number of bits needed to represent a set item. Note that execu-
tion of the underlying OPRF in [HN10] requires m oblivious transfer invocations, and hence O(m) modular
exponentiations, for each set item. However, such overhead can be avoided by instantiating the protocol in
ROM. This protocol can be also optimized if the size of the intersection is allowed to be leaked to the server,
in contrast to our strict privacy definitions (see Section 3.3). Nonetheless, the resulting protocol is of sending
O(v + |S ∩ C| ·m) and computing O(v + w · log log v + |S ∩ C| ·m), which is still not linear. (Also recall
that it is not clear how to enable convert the PSI construct of [HN10] into APSI.)

In another recent result, [DT10] (Fig.4) presents an adaptive PSI protocol based on blind-RSA signa-
tures [Cha83], secure in the semi-honest model, under the One-More-RSA assumption [BNPS03], in ROM.
Specifically, during an initialization phase, the server generates RSA keys (N, e, d) and commits to its set, by
publishing the hash of the RSA signature of each item. During the interaction, the client obtains blind-RSA
signatures of its items from the server. Thus, the server needs to compute O(w) RSA signatures during the
initialization phase, and O(v) online. Whereas, the client (assuming e = 3) only computes O(v) multiplica-
tions, thus making this construct particularly appealing for clients running on limited-resource devices.

[DT10] (Fig.3) includes another PSI secure in the presence of semi-honest adversaries, under the One-
More-Gap-DH assumption, in ROM. Common inputs are primes p, q (with q|p − 1, the order of a subgroup
of Z∗p) and a generator of the subgroup, g. First, the client computes the accumulator PCH =

∏v
i=1(H(ci))

and sends X = PCH · gRc for Rc random in Z∗q . Also, for i = 1, . . . , v, it computes PCHi = PCH/H(ci)
and sends xi = PCHi · gRc:i for Rc:i in Z∗q . The server picks a random Rs in Z∗q , sends Z = gRs , and, for
each xi, sends back x′i = xi

Rs . Then, for j = 1, . . . , w, it computes Ts:j = H ′((X/H(sj))Rs). Finally,
the client computes Tc:i = x′i · ZRc · Z−Rc:i , and learns that ci ∈ C ∩ S if Tc:i = Ts:j . Computational
complexity of this protocol is O(w + v) and O(v) exponentiations (with short exponents) for the server and
client, respectively.

2.2 Prior Work on APSI

Authorized Private Set Intersection (APSI) is defined in [DT10] to extend PSI to support authorization of
client inputs. Each client input must be authorized (via signing) by some trusted authority, e.g., a CA. Recall
the third example in Section 1: to obtain information on a suspect from her employer, the FBI needs to be
duly authorized. APSI represents an authorization using a digital signature. Note that authorizations obtained
from the CA are private to the client and cannot be disclosed to the server. 1

[DT10] shows that the PSI protocol (reviewed in Section 2.1 above) can be instantiated in a RSA setting,
where client input is a set of RSA signatures and the server obliviously verifies them by slightly modifying
the protocol. Specifically, the client C needs to obtain from the CA signatures σi = H(ci)d (for input set

1APSI is inspired by a previous construct for a related type of protocols – PPIT [DJKT09]. PPIT provides APSI for the case
where one party has a set of size one and matches a database query scenario where client has a single authorized keyword and server
– a database.
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C = {c1, . . . , cv}). C computes the accumulator PCH∗ =
∏v
i=1 σi and sends X = PCH∗ · gRc for random

Rc. Also, it computes PCH∗i = PCH∗/σi and sends xi = PCH∗i · gRc:i for random Rc:i. The server picks
a random Rs, sends Z = geRs , and, for each xi, sends back x′i = xi

eRs . Then, for j = 1, . . . , w, it computes
Ts:j = H ′((Xe/H(sj))Rs). Finally, the client computes Tc:i = x′i · ZRc · Z−Rc:i , and learns that ci ∈ C ∩ S
if Tc:i = Ts:j . Asymptotic complexity of this solution is the same as that of the standard PSI presented above,
i.e., O(w + v) and O(v) exponentiations for the server and client, respectively. (Although short exponents
are replaced with “RSA” exponents.) The resulting protocol is secure in the semi-honest model, under the
standard RSA assumption, in ROM. Note that the use of “authorized” client inputs seems to increase server
privacy: under the RSA assumption, the client does not learn any information about server inputs, unless it
holds a valid RSA signature. In other words, there appears to be a strong correlation between server privacy
and client’s difficulty of forging signatures.

A similar concept (adaptable to APSI) is Public-Key Encryption with Oblivious Keyword Search pro-
posed by [CKRS09]. It proposes an Identity-based cryptosystem (inspired by PEKS in [BDOP04]), where
the client obtains authorized search trapdoors from a CA, and uses them to search over data encrypted by the
server. The client learns only the information matching the authorized trapdoors, whereas, the server learns
nothing. The protocol is secure in the presence of malicious adversaries in the standard model, under the De-
cision Bilinear Diffie-Hellman assumption [BF03]. It uses a modification of the Boyen-Waters IBE [BW06].
Even without taking into account zero-knowledge proofs, the server would compute O(w) encryptions of
[BW06] (each requiring 6 exponentiations and a representation of 6 group elements). The client would need
to test each of the O(w) PEKS against its O(v) trapdoors, hence performing O(w · v) decryptions (each
requiring 5 bilinear map operations).

Finally, [CZ09] introduces another similar notion – Private Intersection of Certified Sets. This construct
allows a trusted third party to ensure that all protocol inputs are valid and bound to each protocol partici-
pant. The proposed protocol is mutual (i.e., both parties receive the intersection) and builds upon oblivious
polynomial evaluation and achieves quadratic computation and communication overhead.

3 Preliminaries

In this section, we present our cryptographic assumptions and tools, as well as security model. We introduce
our notation in Table 1.

a←r A variable a is chosen uniformly at random from set A
κ security parameter

N = pq safe RSA modulus with at least κ-bit security
e, d public and private exponents of RSA

ZN/2 1/2 of bit-size of N
H() random oracle H : {0, 1}∗ → {0, 1}κ
H1() random oracle H1 : {0, 1}∗ → G (G depends on the context)
H2() random oracle H2 : G×G× {0, 1}∗ → {0, 1}κ (G depends on the context)
C,S client and server sets, respectively
v, w sizes of C and S, respectively

i ∈ [1, v] indices of elements of C
j ∈ [1, w] indices of elements of S

ci, sj i-th and j-th elements of C and S, respectively
hci, hsj H1(ci) and H1(sj), respectively

σi H1(ci)d, RSA-signature on client item

Table 1: Notation.
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3.1 Cryptographic Assumptions

Definition 1 Let G be a cyclic group and let g be its generator. Assume that the bit-length of the group size
is l. The DDH problem is hard in G if for every efficient algorithm A the probability:∣∣∣Pr[x, y ←r {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ←r {0, 1}l : A(g, gx, gy, gz) = 1]

∣∣∣
is a negligible function of κ.

Definition 2 Let RSA-Gen(1κ) be an algorithm that outputs so-called “safe RSA instances”, i.e. pairs (n, e)
where n = pq, e is a small prime such that gcd(e, φ(n)) = 1, and p, q are random κ-bit primes subject to
the constraint that p = 2p′ + 1, q = 2q′ + 1 for prime p′, q′, p′ 6= q′. The RSA problem is hard if, for every
efficient algorithm A, the probability:

Pr[(n, e)← RSA-Gen(1κ), z ← Z∗n : A(n, e, z) = y s.t. ye = z (mod n)]

is a negligible function of κ.

3.2 Tools

In this section, we consider signature of knowledge of a discrete logarithm and equality of two discrete
logarithms in a cyclic group G = 〈g〉. In particular, we consider G where either the order of G is known or
the order of G is unknown but its bit-length l is publicly known. Fujisaki and Okamoto [FO97] show that
(under the strong RSA assumption) standard proofs of knowledge that work in a group of known order are
also proofs of knowledge in this setting. We define discrete logarithm of y ∈ G with respect to base g as any
integer x ∈ Z such that y = gx in G. We assume a security parameter ε > 1.

Definition 3 (ZK of DL over a known order group) Let y, g ∈ G of order q. A pair (c, s) ∈ {0, 1}κ × Zq
verifying c = H(y||g||gsyc||m) is a signature of knowledge of the discrete logarithm of y = gx w.r.t. base g,
on message m ∈ {0, 1}∗.

Definition 4 (ZK of DL over an unknown order group) Let y, g ∈ G where the group order is unknown, but
its bit-length is known as l bits. A pair (c, s) ∈ {0, 1}κ ×±{0, 1}ε(l+κ)+1 verifying c = H(y||g||gsyc||m) is
a signature of knowledge of the discrete logarithm of y = gx w.r.t. base g, on message m ∈ {0, 1}∗.

The player in possession of the secret x = logg y can compute the signature by choosing a random t ∈ Zq
(or ±{0, 1}ε(l+κ)) and then computing c and s as: c = H(y||g||gt||m) and s = t− cx in Zq (or in Z).

Definition 5 (ZK of EDL over a known order group) Let y1, y2, g, h ∈ G of order q. A pair (c, s) ∈ {0, 1}κ×
Zq verifying c = H(y1||y2||g||h||gsyc1||hsyc2||m) is a signature of knowledge of the discrete logarithm of both
y1 = gx w.r.t. base g and y2 = hx w.r.t. base h, on message m ∈ {0, 1}∗.

Definition 6 (ZK of EDL over an unknown order group) Let y1, y2, g, h ∈ G where the group order is
unknown, but its bit-length is known as l bits. A pair (c, s) ∈ {0, 1}κ × ±{0, 1}ε(l+κ)+1 verifying that
c = H(y1||y2||g||h||gsyc1||hsyc2||m) is a signature of knowledge of the discrete logarithm of both y1 = gx

w.r.t. base g and y2 = hx w.r.t. base h, on message m ∈ {0, 1}∗.

The player in possession of the secret x = logg y1 = logh y2 can compute the signature by choosing a random
t ∈ Zq (or ±{0, 1}ε(l+κ)) and then computing c and s as: c = H(y1||y2||g||h||gt||ht||m) and s = t − cx in
Zq (or in Z).
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3.3 Security Model

We assume a malicious adversary that behaves arbitrarily. Informally, a protocol is secure in this model if
no adversary interacting in the real protocol (where no TTP exists) can learn any more from a real execution
than from an execution that takes place in the ideal world. In other words, for any adversary that successfully
attacks a real protocol, there exists a simulator that successfully attacks the same protocol in the ideal world.

We now define ideal functionalities of PSI and APSI. In particular, in contrast to PSI, APSI employs an
(off-line) CA with algorithms (KGen, Sign, Ver). The CA generates a key-pair (sk, pk)← KGen, publishes
its public key pk, and, on client input ci, it issues a signature σi = Sign(sk, ci) such that Ver(pk, σi, ci) = 1.

Definition 7 The ideal functionality FAPSI of an APSI protocol betw. server S on input S = {s1, · · · , sw}
and client C on input C = {(c1, σ1), · · · , (cv, σv)} is defined as:

FAPSI : (S, C)→ (⊥,S ∩ {ci | ci ∈ C ∧ Ver(pk, σi, ci) = 1})

where w, v are the public input to FAPSI.

Definition 8 The ideal functionality FPSI of a PSI between server S on input S = {s1, · · · , sw} and client C
on input C = {c1, · · · , cv} is defined as follows:

FPSI : (S, C)→ (⊥,S ∩ C)

where w, v are the public input to FPSI.

4 APSI Protocol

We now present our protocol for secure computation of authorized set intersection. We start from the APSI
protocol of [DT10] (reviewed in Section 2.2), secure in the semi-honest model. We describe a modified
version that securely implements the FAPSI functionality in the malicious model, in ROM, under the RSA and
DDH assumptions.

The CA (trusted third party that authorizes client input) is realized with the following algorithms:

• KGen: On input of security parameter κ, this algorithm generates safe RSA modulus N = pq where
p = 2p′ + 1, q = 2q′ + 1 and picks a random element g, g′ s.t. 〈−1〉 × 〈g〉 ≡ 〈−1〉 × 〈g′〉 ≡ Z∗N .
RSA exponents (e, d) are chosen in the standard way: e is a small prime and d = e−1 mod φ(N). The
algorithm also fixes hash function H1 : {0, 1}∗ → Z∗N and H2 : Z∗N × Z∗N × {0, 1}∗ → {0, 1}κ. The
secret key is (p, q, d) and the public parameters are: N, e, g, g′, H1(), H2().

• Sign: On input of ci, this algorithm issues an authorization σi = H1(ci)d mod N .

• Ver: On input of (σi, ci), this algorithm verifies whether σie = H1(ci) mod N .

The resulting protocol is presented in Figure 1.

Theorem 1. If RSA and DDH problems are hard, and π, π′ are zero-knowledge proofs, then the protocol in
Figure 1 is a secure computation of FAPSI, in ROM.

Proof. [Construction of an ideal world SIMs from a malicious real-world server S∗]

The simulator SIMs is built as follows:

• Setup: SIMs executes KGen and publishes public parameters N, e, g, g′.

• Hash queries to H1 and H2: SIMs constructs two tables T1 = (q, hq) and T2 = ((k, h′q, q
′), t) to

answer, respectively, the H1 and H2 queries. Specifically:
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Common input: N, e, g, g′, H1(), H2()

Server Client
On input: S = {s1, · · · , sw} On input: C = {(c1, σ1), · · · , (cv, σv)}

For i = 1, . . . , v
Rc:i ←r ZN/2, bi, b̄i ←r {0, 1}
Mi = (−1)bi · σi · gRc:i

Ni = (−1)b̄i · hci · (g′)Rc:i

π = ZK{Rc:i, i = 1, . . . , v |
Mi

2e/N2
i = (ge/g′)2Rc:i}{Mi, Ni}, πooIf π doesn’t verify, then abort

Rs ←r ZN/2
Z = g2eRs

For i = 1, . . . , v
M ′i = (Mi)2eRs

For j = 1, . . . , w
Ks:j = (hsj)2Rs

Ts:j = H2(Ks:j , hsj , sj)
π′ = ZK{Rs | Z = g2eRs ,
∀i,M ′i = (Mi)2eRs} Z, {M ′i}, {Ts:j}, π′ // If π′ doesn’t verify, then abort

For i = 1, . . . , v
Kc:i = M ′i · Z−Rc:i

Tc:i = H2(Kc:i, hci, ci)
Output
ci ∈ C ∩ S if ∃i,j s.t. Tc:i = Ts:j

All notations are from Table 1 and all computations are performed mod N .

Figure 1: Our APSI Protocol with linear complexity secure against malicious adversaries.

– On query q to H1, SIMs checks if ∃(q, hq) ∈ T1: If so, it returns hq, otherwise it responds
hq ←r Z∗N , and stores (q, hq) to T1.

– On query (k, h′q, q
′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ T2: If so, it returns t, otherwise it

responds t←r {0, 1}κ to H2, and stores ((k, h′q, q
′), t) to T2.

• Simulation of the real-world client C and the ideal-world server S:

1. SIMs picks M ′i ←r Z∗N , N ′i ←r Z∗N and computes Mi = (M ′i)
2, Ni = (N ′i)

2 for each i =
1, · · · , v.

2. SIMs sends {Mi, Ni}i=1,...,v and simulates the proof π.

3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as verifier in the proof π′,
if the proof π′ verifies, SIMs runs the extractor algorithm for Rs. Otherwise, it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2, s.t. q = q′, hq =
h′q, k = (hq)2Rs and t = Ts:j . If so, add q to S; otherwise, add a dummy item into S.

(b) Then SIMs plays the role of the ideal-world server, which uses S to respond to ideal client
C’s queries.

Since the distribution of {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribution produced by the real
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client C and the π proof system is zero-knowledge, S∗’s views when interacting with the real client C and
with the simulator SIMs are indistinguishable.

[Output of (honest) real client C interacting with S∗]
Now we consider the output of the honest real client C interacting with S∗. By soundness of proof π′,

message Z and M ′i sent by S∗ is Z = geRs and M ′i = (Mi)eRs for i = 1, · · · , v. Then, C’s final output is a
set containing all ci’s, such that H2(M ′i · Z−Rc:i , hci, ci) ∈ {Ts:j}. In other words, for each ci, C outputs ci
if ∃ j s.t. H2(M ′i · Z−Rc:i , hci, ci) = Ts:j . Since H2 is a random oracle, there are two possibilities:

1. S∗ computes Ts:j fromH2((hsj)2Rs, hsj , sj) for sj = ci. Since SIMs described above extracts sj = ci
and adds sj in S, the ideal world C also output ci on its input ci.

2. S∗ did not query H2 on (M ′i ·Z−Rc:i , hci, ci) but H2(M ′i ·Z−Rc:i , hci, ci) happens to be equal to Ts:j .
This event occurs with negligible probability bounded by v · w · 2−κ.

Therefore, with probability 1− v · w · 2−κ, the real-world client C interacting with S∗ and the ideal-world
client C interacting with SIMs yield identical outputs.

[Construction of an ideal world SIMc from a malicious real-world client C∗]
The simulator SIMc is formed as follows:

• Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses described above in
construction of SIMs.

• Authorization queries: On input m, SIMc responds with (m,σ) where σ = (H1(m))d and stores
(m,σ) to table T3.

• Simulation of real-world server S and ideal-world client C:

1. After getting {Mi, Ni}i=1,...,v, and interacting with C∗ as verifier in the proof π, SIMc checks
if proof π verifies. If not, it aborts. Otherwise, it runs the extractor algorithm for {Rc:i} and
computes ±(hci, σi) s.t. hci = σe.

2. For each ±(hci, σi):

- If @(q, hq) ∈ T1 s.t. hq = ±hci then add a dummy item (δ, σδ) to C where δ and σδ are
randomly selected from the respective domain.

- If ∃(q, hq) ∈ T1 s.t. hq = ±hci, but @(m,σ) ∈ T3 s.t. σ = ±σi then output fail1 and abort.
- If ∃(q, hq) ∈ T1 s.t. hq = ±hci and ∃(m,σ) ∈ T3 s.t. σ = ±σi, then add (q,±σ) to the set
C.

3. SIMc plays the role of the client in the ideal-world. On input C = {(c1, σ1), · · · ,
(cv, σv)}, SIMc interacts with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, · · · , c′|L|}, with |L| ≤ v from the ideal-world interaction, SIMc

forms S= Π
(
c′1, · · · , c′|L|, δ

′
1, · · · , δ′w−|L|+1

)
, where δ′’s are dummy items and Π is a permuta-

tion function.

5. SIMc picks Rs ←r ZN/2, and computes Z = g2eRs and M ′i = (Mi)2eRs for i = 1, ..., v.

6. For each sj ∈ S:

- If sj ∈ L, compute Ts:j = H2((hsj)2Rs , hsj , sj).
- If sj /∈ L, compute Ts:j ←r {0, 1}κ.

7. SIMc returns Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w to C∗ and simulates the proof π′.
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Claim 1. If event fail1 occurs with non-negligible probability, then C∗ can be used to break the RSA assump-
tion.

We describe the reduction algorithm using a modified simulator algorithm called Ch1 that takes an RSA
challenge (N ′, e′, z) as an input and tries to output z(e′)−1

. Ch1 follows the SIMc as described above, except:

• Setup: On input (N ′, e′, z), Ch1 sets N = N ′, e = e′ and picks generator g, g′ ←r Z∗N . (Note that
random g in Z∗N matches that chosen by a real key generation with probability about 1/2.)

• Authorization queries: On input m, Ch1 responds with (m,σ) with σ ←r Z∗N , assign H1(m) = σe,
and records (m,σ) to T3.

• Hash queries to H1: On query H1 on q, if @(q, hq) ∈ T1 then Ch1 responds hq = z(rq)e where
rq ←r ZN , and stores (q, rq, hq) to T1. (Since rq is uniformly distributed in ZN , the distribution of hq
is also uniformly distributed in ZN .)

Assume that fail1 occurs on (hci, σi). Then, Ch1 extracts entry (q, rq, hq) ∈ T1 s.t. hq = hci and outputs
σi/rq, which breaks the RSA assumption.

Now unless the fail1 event occurs, the views interacting with the SIMc and with the real protocol are
different only in the computation of Ts:j for sj ∈ S but sj /∈ L. Let fail2 be the event that C∗ queries H2 on
((hsj)2Rs , hsj , sj) for sj ∈ S and sj /∈ L.

Claim 2. If event fail2 occurs with non-negligible probability, then C∗ can be used to break the DDH
assumption.

We describe reduction algorithm Ch2 that takes a DDH challenge (N ′, f, α = fa (mod N ′), β = f b

(mod N ′), γ) as input and outputs the DDH answer using C∗. Ch2 follows the SIMc algorithm as we
describe above, except that:

• Setup: On input (N ′, f, α, β, γ), Ch2 sets N = N ′, g = f and picks generator g′ ←r Z∗N and odd
e←r ZN .

• Authorization queries: Same as in Ch1 simulation.

• Hash queries to H1: On query q to H1, if @(q, hq) ∈ T1 then Ch2 responds with hq = βgrq where
rq ←r ZN/2, and records (q, rq, hq) to T1. (Since rq is random ZN/2, the distribution of hq is compu-
tationally indistinguishable from the uniform distribution of Z∗N .)

• In computation for Z, {Mi}, {Ts:j}:

– Ch2 sets Z = A2e and computes M ′i = γ2(α)2rq+2eRc:i for i = 1, . . . , v (instead of picking Rs
and computing Z = g2eRs and M ′i = (Mi)2eRs).

– For each sj ∈ S, if sj ∈ L, Ch2 computes Ts:j = H2(γ2(α)2rq , hsj , sj).

Given α = ga(= gRs) and β = gb, we replace gab by γ in the above simulation of Mi and Ts:j . Thus, C∗’s
views when interacting with the real server S and with the simulator Ch2 are indistinguishable under that
DDH assumption. Assume that fail2 occurs, i.e., C∗ makes a query to H2 on ((hsj)2Rs , hsj , sj) for sj ∈ S
but sj /∈ L. Ch2 checks if ∃(q, rq, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2 s.t. q = q′, hq = h′q, k = γ2(α)2rq for
each q ∈ S but q /∈ L. If so, Ch2 outputs True. Otherwise, Ch2 outputs False. Thus, the DDH assumption is
broken.

Therefore, since fail1 and fail2 events occur with negligible probability, C∗’s view in the protocol with
the real-world server S and in the interaction with SIMc is negligible.

[The output of honest real server S interacting with C∗]
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Finally, the real-world S interacting with C∗ in the real protocol outputs ⊥ and the ideal-world S̄ inter-
acting with SIMc gets ⊥. This ends proof of Theorem 1.

Our APSI protocol differs from the one in [DT10] in the following:

• We modify inputs to the protocol and add efficient zero-knowledge proofs to prevent client and server
from deviating from the protocol and to enable extraction of inputs.

• We multiply client inputs by −1 to a random bit to: (1) ensure that they are uniformly distributed in
QRN , and (2) simplify reduction to the RSA problem.

• We do not use “accumulated” values, such as PCH∗i , as they are not needed either for protocol security
or for input extraction during simulation.

5 PSI Protocol

This section presents our protocol for secure computation of set intersection. It is a modified version of the
PSI protocol of [DT10] (reviewed in Section 2.1), secure in the semi-honest model under the One-More-Gap-
DH assumption (in ROM). We amend it to obtain a protocol that securely implements FPSI in the malicious
model under the DDH assumptions (in ROM). We assume that KGen generates p, q, g, g′, g′′ where p and q
are primes, such that q|p− 1 and g, g′, g′′ are generators of Z∗q .
The resulting protocol is presented in Figure 2.

Theorem 2. If the DDH problem is hard and π, π′ are zero-knowledge proofs, the protocol in Figure 2 is a
secure computation of FPSI, in ROM.

Proof.[Construction of an ideal world SIMs from malicious real-world server S∗]
Simulator SIMs is built as follows:

• Setup: SIMs executes KGen and publishes public parameters p, q, g, g′, g′′.

• Queries H1 and H2: SIMs creates two tables T1 = (q, hq) and T2 = ((k, h′q, q
′), t) to answer,

respectively, H1 and H2 queries. Specifically,

– On query q to H1, SIMs checks if ∃(q, hq) ∈ T1: If so, it returns hq, otherwise it responds
hq ←r Z∗p, and stores (q, hq) to T1.

– On query (k, h′q, q
′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ T2: If so, it returns t, otherwise it

responds t←r {0, 1}κ to H2, and stores ((k, h′q, q
′), t) to T2.

• Simulation of real-world client C and ideal-world server S:

1. SIMs picks X ←r Z∗p and {Mi, Ni |Mi ←r Z∗p, Ni ←r Z∗p} (for i = 1, . . . , v).

2. SIMs sends X, {Mi, Ni}i=1,...,v and simulates proof π.

3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as verifier in proof π′, if
π′ verifies, SIMs runs the extractor algorithm for Rs. Otherwise, it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2, s.t. q = q′, hq =
h′q, k = (hq)Rs and t = Ts:j . If so, add q to S; otherwise, add a dummy item into S.

(b) Then SIMs plays the role of the ideal-world server, which uses S to respond to ideal client
C’s queries.
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Common input: p, q, g, g′, g′′, H1(), H2()

Server Client
On input: S = {s1, · · · , sw} On input: C = {c1, · · · , cv}

PCH =
∏v
i=1 hci

Rc ←r Zq
X = PCH · (g)Rc

For 1 ≤ i ≤ v
PCHi=PCH/hci
Rc:i ←r Zq
Mi = hci · (g′)Rc:i

Ni = PCHi · (g′′)Rc:i

π = ZK{Rc, Rc:i, i = 1, · · · , v |
X/(MiNi) = gRc/(g′ · g′′)Rc:i}

X, {Mi}, {Ni}, πooIf π doesn’t verify, then abort
Rs ←r Zq
Z = (g′)Rs

For 1 ≤ i ≤ v
M ′i = (Mi)Rs

π′ = ZK{Rs|Z = (g′)Rs ,
∀i,M ′i = (Mi)Rs}

For 1 ≤ j ≤ w
Ks:j = (hsj)Rs

Ts:j = H2(Ks:j , hsj , sj) Z, {M ′i}, {Ts:j}, π′ // If π′ doesn’t verify, then abort
For 1 ≤ i ≤ v
Kc:i = (Z)−Rc:i ·M ′i
Tc:i = H2(Kci , hci, ci)

OUTPUT:
ci ∈ C ∩ S if ∃i,j s.t. Tc:i = Ts:j

All notations are from Table 1 and all computations are performed mod p.

Figure 2: Our PSI Protocol with linear complexity secure against malicious adversaries.

Since the distribution ofX, {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribution produced by the real
client C and the π proof system is zero-knowledge, S∗’s views when interacting with real client C and with
simulator SIMs are indistinguishable.

[Output of the honest real client C interacting with S∗]
Now we consider output of honest real client C interacting with S∗. By soundness of π′, message Z

and M ′i sent by S∗ is Z = (g′)Rs and M ′i = (Mi)Rs for i = 1, · · · , v. Then C’s final output is a set
containing all ci’s such that H2(M ′iZ

−Rc:i , hci, ci) ∈ {Ts:j}. In other words, for each ci, C outputs ci if ∃ j
s.t. H2(M ′iZ

−Rc:i , hci, ci) = Ts:j . Since H2 is a random oracle, there are two possibilities:

1. S∗ computes Ts:j fromH2((hsj)2Rs, hsj , sj) for sj = ci. Since SIMs described above extracts sj = ci
and adds sj in S , ideal world C also output ci on its input ci.

2. S∗ did not query H2 on (M ′iZ
−Rc:i , hci, ci) but H2(M ′iZ

−Rc:i , hci, ci) happens to be equal to Ts:j .
This event occurs with negligible probability bounded by v · w · 2−κ.

Therefore, with probability 1− v · w · 2−κ, real-world client C interacting with S∗ and ideal-world client C

13



interacting with SIMs produce identical output.

[Construction of ideal world SIMc from malicious real-world client C∗]
Simulator SIMc is formed as follows:

• Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses described above in
construction of SIMs.

• Simulation of real-world server S and ideal-world client C:

1. After getting (X, {Mi}, {Ni}), and interacting with C∗ as verifier in proof π, SIMc checks if π
verifies. If not, it aborts. Otherwise, it runs the extractor algorithm for Rc, {Rc:i} and computes
hc1, · · · , hcv.

2. For each hci, if ∃(q, hq) ∈ T1 s.t. hq = hci then add q to the set C. Otherwise, add a dummy
item to C.

3. SIMc plays the role of the client in the ideal-world. On input C = {c1, · · · , cv}, SIMc interacts
with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, · · · , c′|L|}, with |L| ≤ v from the ideal-world interaction, SIMc

forms S= Π
(
c′1, · · · , c′|L|, δ

′
1, · · · , δ′w−|L|+1

)
, where δ′’s are dummy items and Π is a permuta-

tion function.

5. SIMc picks Rs ←r Zq, and computes Z = gRs and M ′i = (Mi)Rs} for i=1,...,v.

6. For each sj ∈ S:

– If sj ∈ L, compute Ts:j = H2((hsj)Rs , hsj , sj).
– If sj /∈ L, compute Ts:j ←r {0, 1}κ.

7. SIMc returns Z, {M ′i}, {Ts:j} to C∗ and simulates proof π′.

Let fail be the event that C∗ queries H2 on ((hsj)Rs , hsj , sj) for sj ∈ S and sj /∈ L. Similar to the argument
in the proof of Theorem 1, if fail event does not occur, since the π′ is zero-knowledge, we argue that C∗’s
views in the real game with real-world server S and in the interaction with simulator SIMc constructed above
are indistinguishable .

Claim. If event fail occurs with non-negligible probability, then C∗ can be used to break the DDH assump-
tion.

We describe the reduction algorithm called Ch that takes a DDH problem (p′, q′, f, α = fa (mod p′), β =
f b (mod p′), γ) as an input and tries to output the answer using C∗. Ch follows the SIMc algorithm as we
describe above, except that:

• Setup: On input (p′, q′, f, α, β, γ), Ch2 sets p = p′, q = q′, g′ = f and picks generator g, g′′ ←r Z∗q .

• Hash queries to H1: On query q to H1, if @(q, hq) ∈ T1 then Ch2 responds with hq = β(g′)rq where
rq ←r Zq, and records (q, rq, hq) to T1.

• In computation for Z, {M ′i}, {Ts:j}:

– Ch2 sets Z = A and computes M ′i = C(A)rq+Rc:i .

– For each sj ∈ S, if sj ∈ L, Ch2 computes Ts:j = H2(C(A)rq , hsj , sj).

Using an argument similar to that in the proof of Theorem 1, C∗’s views, when interacting with real server
S and with simulator Ch2, are indistinguishable under the DDH assumption. Assume that fail occurs, i.e.,
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C∗ makes a query to H2 on ((hsj)Rs , hsj , sj) for sj ∈ S but sj /∈ L. Ch checks if ∃(q, rq, hq) ∈ T1 and
∃((k, h′q, q′), t) ∈ T2 s.t. q = q′, hq = h′q, k = C(A)rq for each q ∈ S and q /∈ L. If so, Ch outputs True.
Otherwise, Ch2 outputs False. Thus, Ch solves the DDH problem.

Since fail occurs with negligible probability, C∗’s view in the protocol with the real-world server S and
in interaction with SIMc is negligible.

[Output of honest real server S interacting with C∗]
Finally, real-world S interacting with C∗ in the real protocol outputs ⊥ and ideal-world S̄ interacting

with SIMc gets ⊥.

6 Protocols Efficiency

In this section, we analyze the efficiency of our protocols and compare them to prior results. We summarize
different features and estimated asymptotic complexities of prior work on Authorized Private Set Intersection
and Private Set Intersection, respectively, as well as those of our protocols, in Table 2 and 3. Recall that we
use w and v to denote the number of elements in the server and client input sets, respectively. For each
solution, we choose parameters that achieve similar degrees of security. We also list several features of
the protocols, such as the underlying assumptions, and whether they are in the standard model or ROM, in
malicious or semi-honest adversary model. Also, we specify whether they can support the extension for data
transfer – a PSI variant introduced in [DT10] and discussed in details in Appendix A.

Protocol Standard Malicious Assumption Communication Server Client Data
Model Model Complexity Transfer

[CKRS09] ! ! BDH O(w)
O(w) enc’s O(w · v) dec’s

!of [BW06] of [BW06]

[CZ09] ! !
Strong

O(w + v)
O(w · v) O(w · v)

%RSA exps exps
Fig.2 of

% % RSA O(w + v)
O(w + v) O(v)

![DT10] exps exps

Our APSI % ! RSA O(w + v)
O(w + v) O(v)

!exps exps

Table 2: Comparison of Authorized Private Set Intersection protocols.

Protocol Standard Malicious Assumption Communication Server Client Data
Model Model Complexity Transfer

[FNP04] ! %
Homom.

O(w + v)
O(w log log v) O(w + v)

!Encr. exps exps

[KS05] ! !
Homom.

O(w + v)
O(w · v) O(w · v)

%Encr. exps exps

[JL09] ! !
Decisional

O(w + v)
O(w + v) O(v)

!q-DH, CRS exps exps

[HN10] ! ! DDH O(w + v)
O(w log log v) O(w + v)

%exps exps
Fig.3 of

% %
One-More

O(w + v)
O(w + v) O(v)

![DT10] Gap-DH exps exps
Fig.4 of

% %
One-More

O(w + v)
O(w + v) O(v)

![DT10] RSA exps mults

Our PSI % ! DDH O(w + v)
O(w + v) O(v)

!exps exps

Table 3: Comparison of Private Set Intersection protocols.

Note that our APSI protocol (in Figure 1) is, to the best of our knowledge, the only such construct, secure
in the malicious model, with linear communication and computational complexity.
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Comparing our PSI [Fig. 2] to [JL09]. Our PSI protocol achieves the same (linear) asymptotic overhead as
in prior work [JL09], although, in ROM. However, the underlying cryptographic operations of [JL09], hidden
in the big O() notation, are much more expensive than those in Figure 2, as we discuss below.

First, recall that, on average, each q-bit multi-exponentiation mod p involves (1.5 · |q|) multiplications of
p-bit numbers. Whereas, each q-bit fixed-based exponentiation mod p incurs only (0.5 · |q|) multiplications.
From now on, we denote with m a modular multiplication of p-bit numbers, and we assume |p| = 1024.

Observe that the PSI protocol in Figure 2, in the malicious model, incurs the total cost of (240w+960v)m.
To ease presentation, we refer to Appendix B for all the details of our estimation.

In order to count the number of operations of [JL09], we use the optimized OPRF construction due
to [BCC+09] and we use standard non-interactive ZK in ROM. We select set items to be drawn from a 40-bit
domain.2 The total cost of [JL09], in the malicious model, amounts to (80w + 81320v)m. (Again, refer to
Appendix B for the details).

Selecting, for instance, w = v, protocol in Figure 2 would require as low as 1.5% of the total modular
multiplications incurred by [JL09] (even with the optimized OPRF construction and using non-interactive
ZK in ROM). Only when w/v >> 500, [JL09] incurs lower cost. Furthermore, note that, although secure
in the standard model, the PSI constrcut in [JL09], when compared to ours, has three major drawbacks: (1)
The size of set items should be polynomial in the security parameter, whereas, in our protocol, items can
be taken from {0, 1}∗, (2) It requires Decisional q-DH assumption and Common Reference String (CRS)
model, where a safe RSA modulus must be generated by a mutually trusted party, and (3) It is not clear how
to convert it into APSI.

We conclude that, though in ROM (as opposed to [JL09]), our PSI protocol significantly improves per-
formance of prior PSI results, secure in the malicious model, while avoiding several restrictions.

7 Conclusion

In this paper, we presented PSI and APSI protocols secure in the malicious model under standard crypto-
graphic assumptions, with linear communication and computational complexities. Proposed protocols offer
better efficiency that prior work. In particular, our APSI protocol is the first technique to achieve linear
computational complexity. Our efficiency claims are supported by detailed performance comparison.
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Appendix

A (Authorized) Set Intersection with Data Transfer

The protocols presented in Section 4 and 5 are designed to address several privacy-related problems. We
argue, however, that, in many realistic examples the client needs not only to obtain the mere intersection
of the private sets, but also additional data associated to those items in the intersection. Consider the law
enforcement scenario (described in Section 1), involving, for instance, the FBI and an employer. The private
sets—whose intersection is to be computed—are, for instance, identifiers, such as Social Security Numbers.
However, beyond the identifiers intersection, the FBI needs to obtain the records associated to suspects. To
this end, [DT10] defines the concept of Authorized Set Intersection with Data Transfer, that we redefine as
follows:

Definition 9 The ideal functionality FAPSI-DT of an APSI with Data Transfer protocol, between server S on
input S = {(s1, D1), · · · , (sw, Dw)} and client C on input C = {(c1, σ1), · · · , (cv, σv)} is defined as:

FAPSI-DT : (S, C)→ (⊥, {(sj , Dj) |∃(ci, σi) ∈ C s.t. ci = sj and Ver(pk, σi, ci) = 1})

where w, v are the public input to FAPSI-DT.

We now show how to extend the protocol in Fig. 1 to support data transfer. The intuition, similar to that
of [DT10], is to let the server encrypt records using a symmetric key (for a symmetric cipher, such as AESused
with a proper mode of operation to guarantee CPA security) derived from the inputs to the random oracleH2.
Let us redefineH2 asH2 : G×G×{0, 1}∗×{0, 1} → {0, 1}κ. In other words, we add an extra bit as the input
of H2 to specify whether H2 is to be used to compute {Tc:i} and {Ts:j}, or to derive encryption keys. Hence,
at server side, we modify Ts:j = H2(Ks:j , hsj , sj , 0), and at client side, Tc:i = H2(Kc:i, hci, ci, 0). Finally,
the server encrypts (for every j = 1, . . . , w): CTj = Enc[H2(Ks:j ,hsj ,sj ,1)](Dj). For its part, the client
decrypts: Di = Dec[H2(Kc:i,hci,ci,1)](CTi) if Tc:i = Ts:j , i.e., ci ∈ S ∩ C. Note that the client can compute
decryption keys (hence, decrypt) only for those items in the set intersection. As a nice consequence on the
performance, the client does not decrypt all w ciphertexts received by the server, but only those associated
to items in the intersection. As long as the underlying encryption scheme is CPA-secure, this extension does
not affect our security arguments. We argue that adapting our proof to FAPSI-DT is straightforward, thus, we
avoid proof details in this version of this paper. Also, note that this extension leaves the complexity of the
protocols unaltered.
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Similar to Authorized Set Intersection with Data Transfer, it is natural to envision the Set Intersection with
Data Transfer functionality. Clearly, applying the technique (based on symmetric key encryption) described
above for Authorized Set Intersection to its Set Intersection counterpart is straightforward. Thus, we avoid
its presentation in this version of the paper.

B Detailed Performance Analysis

PSI in [JL09]. We now present the details of our performance analysis for [JL09]. We denote with w and v
the size of server’s and client’s set, respectively.

We refer to Figure 3 of [JL09] for a detailed description of the set intersection construction: (1) The server
computes w PRF evaluations on its private set, and (2) Server and client engage in v OPRF computations
on client private set. (In the following, we do not take into account operations to generate keys and public
parameters). Each of server’s PRF computation incurs one fixed-base 160-bit exponentiation mod 1024.

Then, we refer to Figure 1 of [JL09] for their OPRF construction. We consider the optimization (dis-
cussed at page 581) using the faster construction of the same fk(x) function, given by [BCC+09]: one can
use multiplicative rather than additive sharing of the exponent value, and groups with 160-bit prime order
unrelated to the RSA modulus. Also, we assume standard Non-Interactive ZK in ROM. Hence, for each
OPRF computation, the server performs: the verification of π2 (i.e., 4 1000-bit exp mod 2048), one [CS03]
decryption (i.e., 1000-bit exp mod 2048), one exponentiation to compute vs (i.e., 160-bit fixed-based exp
mod 1024), and the computation of π3 (i.e., 1 1000-bit exp mod 2048 and 1 1000-bit mod 1024). Whereas,
the client performs: one [CS03] encryption to compute C(r)

a (i.e., 3 1000-bit fixed-base exp mod 2048), one
[CS03] encryption to encrypt its private input (i.e., 2 1000-bit and 1 40-bit fixed-base exps mod 2048), two
exponentiations to compute C(s)

β (i.e., 2 160-bit exp mod 2048), the computation of π2 (i.e., 4 1000-bit exp
mod 2048), then also the verification of π3 (i.e., 1 1000-bit exp mod 2048 and 1 1000-bit mod 1024), and
one final exponentiation to compute vr (i.e., 160-bit fixed-base exp mod 1024). (Recall that with [BCC+09]
construction there is no client [CS03] decryption).

As a result, the total number of operations is estimated as follows. Let m denote a multiplication of
1024-bit numbers. Multiplications of 2048-bit numbers count for 4m. Modular multi-exponentiations with
q-bit exponents modulo 1024-bit count for (1.5|q|)m. If the base of the exponentiations is fixed, then they
count for (0.5|q|)m. Then, we obtain the total number of (80w + 81320v) multiplications.
PSI in Fig. 2. We now discuss the details of our performance analysis for the PSI in Figure 2. We use
the same notation and conventions as above. Recall that all exponentiations involve 160-bit exponents and
1024-bit moduli. The server performs the following operations: first, it verifies π (3v fixed-based exp), then
it computes Z (1 exp), {M ′i} (v exps), and π′ (v fixed-based exps), and calculates {Ks:j} (w exps). The
client computes X (1 exp), {Mi} (v fixed-base exps), {Ni} (v fixed-base exps), π (v + 1 fixed-base exps),
then it verifies π′ (v fixed-base exps) and computes {Kc:i} (v fixed-base exps). Hence, we obtain the total
number of (240w + 960v) multiplications.
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