
Smith ScholarWorks Smith ScholarWorks 

Mathematics and Statistics: Faculty 
Publications Mathematics and Statistics 

12-1-2006 

Linear Conditions Imposed on Flag Varieties Linear Conditions Imposed on Flag Varieties 

Julianna S. Tymoczko 
University of Michigan, Ann Arbor, jtymoczko@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Tymoczko, Julianna S., "Linear Conditions Imposed on Flag Varieties" (2006). Mathematics and Statistics: 
Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/mth_facpubs/110 

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs/110?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


ar
X

iv
:m

at
h/

04
06

54
1v

3 
 [

m
at

h.
A

G
] 

 2
4 

O
ct

 2
00

5

LINEAR CONDITIONS IMPOSED ON FLAG VARIETIES

JULIANNA S. TYMOCZKO

Abstract. We study subvarieties of the flag variety called Hessenberg vari-
eties, defined by certain linear conditions. These subvarieties arise naturally
in applications including geometric representation theory, number theory, and
numerical analysis. We describe completely the homology of Hessenberg va-
rieties over GLn(C) and show that they have no odd-dimensional homology.
We provide an explicit geometric construction which partitions each Hessen-
berg variety into pieces homeomorphic to affine space. We characterize these
affine pieces by fillings of Young tableaux and show that the dimension of the
affine piece can be computed by combinatorial rules generalizing the Eulerian
numbers. We give an equivalent formulation of this result in terms of roots.
We conclude with a section on open questions.

1. Introduction

The full flag variety over GLn(C) is the collection of nested complex vector spaces
V1 ( V2 ( · · · ( Vn = Cn where Vi is i-dimensional. Given a linear operator X on
Cn, the set of flags that are stabilized by X—that is, flags V1 ( · · · ( Vn such that
XVi ⊆ Vi for each i—is an important subvariety of the full flag variety called the
Springer-Grothendieck fiber. Geometric representation theorists use this subvariety
to construct the irreducible representations of the symmetric group ([CG, section
3.6] has background and references).

More generally, fix any nondecreasing function h : {1, 2, . . . , n} → {1, 2, . . . , n}
such that h(i) ≥ i for each i, and consider the flags

H(X,h) = {flags V1 ⊆ · · · ⊆ Vn such that XVi ⊆ Vh(i) for each i}.

The subvariety H(X,h) is called a Hessenberg variety, and the map h is a Hessen-
berg function.

For example, consider the set of flags with XVi ⊆ Vi+1 whenever i is less than n.
This parametrizes the bases that put the operator X into Hessenberg form, a form
used in a common algorithm to compute eigenvalues (see [dMS] for more about the
QR algorithm). The natural generalization presented here was defined in [dMPS].

Our main theorem explicitly partitions each Hessenberg variety into affine spaces
satisfying weak closure rules. This decomposition is a paving and is the intersection
ofH(X,h) with a special Bruhat decomposition of the flag variety. Pavings give the
homology of H(X,h), and hence a combinatorial description of its Betti numbers.
We conclude that Hessenberg varieties have no odd-dimensional homology.

For notational convenience, we give the main result here in the case when X = N
is nilpotent. Theorems 6.1 and 7.1 have the result for general X in two different
forms. If the nilpotent operator N has Jordan blocks of size d1 ≥ . . . ≥ dk, then
associate to it the Young diagram λN with row lengths d1 ≥ . . . ≥ dk. Our Young
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2 JULIANNA S. TYMOCZKO

diagrams are left-aligned and top-aligned. For example, Figure 1 shows a nilpotent
with Jordan blocks of dimension 3 and 1 and the associated Young diagram.









0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0









←→

Figure 1. The Young diagram corresponding to one nilpotent operator

The cells of the paving are indexed by Young tableaux that are filled with the
numbers from 1 to n without repetition. Each tableau defines a permutation w of
n letters for which w−1(k) is the number of boxes to the left of or below the box
filled by k (including the box itself).

Theorem 1.1. Fix a nilpotent N . The Hessenberg variety H(N, h) is paved by
affines. Each nonempty cell corresponds to a unique filling of λN in which k j

occurs only if k ≤ h(j). This correspondance is a bijection. The dimension of a
nonempty cell is the number of pairs i,k such that

(1) i is below or anywhere to the left of k (see Figure 2),
(2) k < i, and
(3) if there is a box immediately to the right of k that is filled by j then i ≤ h(j).

k j

i

Figure 2. Configuration of triples

This result extends N. Spaltenstein’s description of the Springer fibers’ compo-
nents, the case when h(i) = i [Sp]. In particular, it can be used to give a new
proof that the rank of each irreducible representation of the symmetric group is
the number of standard fillings of its Young tableau. It also partially extends the
work of F. de Mari, C. Procesi, and M. Shayman paving Hessenberg varieties by
affines when X is regular semisimple [dMPS], and of C. de Concini, G. Lusztig, and
C. Procesi paving Springer fibers by affines [dCLP]. Our methods are different from
theirs though similar in spirit to Spaltenstein’s or to those in [KnM]. B. Kostant
used a different Bruhat decomposition to pave one Hessenberg variety when X is
regular nilpotent, giving a geometric construction of the quantum cohomology of
the flag variety [K]. According to personal communications [C] and announcements
[BC, Theorem 3], D. Peterson has other uncirculated results studying Hessenberg
varieties when X is regular nilpotent. Our methods do not use torus actions, as
there is no obvious torus action for general X . Rather than using one-dimensional
deformations as in [V] or restricting to intersections with codimension-one Schubert
varieties as in [So], our approach makes fewer deformations of higher dimension in
each Schubert cell.
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Our proof begins by describing H(X,h) in terms of matrices g for which g−1Xg
is zero in fixed coordinates, and then reducing to the case when g = u is upper-
triangular. The entries of the matrices u−1Xu need not be linear nor affine functions
of the entries of u. However, the entries of the ith row of u−1Xu are affine functions
of the ith row of u. For instance, when X is nilpotent with a single Jordan block
its conjugate by an upper-triangular u is

u−1









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









u =









0 1 u23 − u12 u24 − u12(u34 − u23)− u13

0 0 1 u34 − u23

0 0 0 1
0 0 0 0









.

Section 2 has the necessary background on the Bruhat decomposition and pavings.
In Section 3 we partition the upper-triangular matrices into subgroups called rows
and show that conjugation by a row is an affine transformation of the row’s entries.

In our example, the functions of u1j in the first row have the same rank regardless
of the other uij . This is true if X is in highest form, defined for any linear operator
in Section 4. Section 5 has the paper’s key lemma. That lemma is one step in the
main theorem of Section 6, which proves that each cell of a Bruhat decomposition
intersects H(X,H) in an iterated tower of affine fiber bundles. The main theorem
is described using tableaux in Section 7 and using roots in Section 8. Section 9 has
open questions and conjectures about Hessenberg varieties, including whether they
are pure dimensional and how many components they have.

This work was partially supported by an NDSE graduate fellowship and was
part of the author’s doctoral dissertation. I thank Emina Alibegović, Jared Ander-
son, Henry Cohn, William Fulton, Gil Kalai, David Kazhdan, Robert Lazarsfeld,
David Nadler, Arun Ram, Eric Sommers, and the anonymous referee for valuable
comments. I am especially grateful to my advisor, Robert MacPherson.

2. Pavings and the Bruhat decomposition

In this section we describe a classical partition of the flag variety called the
Bruhat decomposition. We also precisely define pavings, the special partitions of a
variety used in this paper, sometimes called cellular decompositions.

Definition 2.1. A paving of the variety X is an ordered partition X =
∐∞

i=0 Xi

so that each finite union
∐j

i=0 Xi is Zariski-closed in X . If in addition each Xi is
homeomorphic to affine space Rdi then

∐∞
i=0 Xi is a paving by affines.

Our pavings have a finite number of pieces. We call the Xi cells. Figure 3 shows
three spheres glued successively at a point like a string of beads. It is paved by four
affine cells: the marked point and each S2 without its leftmost point. The closure
of a cell need not cover the cells it intersects, as it must in a CW-decomposition.

t
✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✒ ✑✒ ✑✒ ✑
Figure 3. A Space Paved by Four Cells

Pavings by affines determine Betti numbers [F, 19.1.11]:



4 JULIANNA S. TYMOCZKO

Proposition 2.2. Let X =
∐

Xi be a paving by a finite number of affines Xi with
each Xi homeomorphic to Cdi . Then the nonzero cohomology groups of X are

Hk(X ) =
⊕

i such that 2di=k

Z.

The full flag variety has a well-known paving by affines called the Bruhat decom-
position. Recall that the flag V1 ⊆ · · · ⊆ Vn is determined by any matrix g whose
first i column vectors generate the ith vector space Vi. The flag corresponding to g
is denoted [g].

The next definition parametrizes the cells of this paving [H, section 28.4].

Definition 2.3. Let w be a permutation matrix. The group Uw of upper-triangular
matrices associated to w is defined as Uw = {u : u ∈ U,w−1uw is lower-triangular}.

We now state a classical result in the language of this paper. Write ei for the basis
vector of Cn which has one in the ith position and zero otherwise. The permutation
matrix w corresponds to the permutation of {1, 2, . . . , n} given by eiw = ew(i).

Proposition 2.4. The flag variety is paved by affines
∐

w∈Sn
Cw. The Schubert

cell Cw is the set of flags [Uww], which is homeomorphic to Uww and has dimension
|{(i, j) : 1 ≤ i < j ≤ n,w(i) > w(j)}|.

Proof. The Schubert cells are described in [H, section 28.3]. The Uw parametrize
the cells by [H, section 28.4]. The cells form a paving by [BL, section 2.10]. �

The matrix description of the flag variety gives a different formulation of the
definition of Hessenberg varieties.

Definition 2.5. The Hessenberg space H associated to h is the linear subspace of
matrices X whose (i, j)th entry Xij = 0 if i > h(j).

Section 8 has an intrinsic definition of Hessenberg spaces from [dMPS]. The next
proposition relates the linear subspace H to the function h. Its proof is immediate
from w−1Ejkw = Ew(j),w(k), where Ejk is the matrix basis unit with 1 in its (j, k)
entry and zero everywhere else.

Proposition 2.6. The matrix basis unit Ejk ∈ wHw−1 if and only if w(j) ≤
h(w(k)).

An alternate definition of Hessenberg varieties first given in [dMPS] is

H(X,H) = {flags [g] : g−1Xg ∈ H} = H(X,h).

Conjugation by g ∈ GLn(C) is a homeomorphism of Hessenberg varieties in two
ways.

Proposition 2.7. Fix X and H and g0 ∈ GLn(C). The Hessenberg variety
H(g−1

0 Xg0, H) is homeomorphic to H(X,H).

Proof. Using associativity gives H(g−1
0 Xg0, H) = g−1

0 H(X,H). Multiplication is
an automorphism of flags so this is homeomorphic to H(X,H). �

Proposition 2.8. Fix a matrix X, a Hessenberg space H, and g0 ∈ GLn(C). The
Hessenberg variety H(g−1

0 Xg0, g
−1
0 Hg0) is homeomorphic to H(X,H).

Proof. By definition, H(g−1
0 Xg0, g

−1
0 Hg0) = {flags [g

−1
0 gg0] : g

−1Xg ∈ H}. Con-
jugation is an automorphism of flags so this is homeomorphic to H(X,H). �
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These show that the topology and geometry of an arbitrary Hessenberg variety
H(X,H) are the same as when X , H , and the underlying basis are in fixed relative
position. In what follows, we assume that X and H are in fixed conjugacy classes
without further comment.

3. Rows of upper-triangular matrices

This section describes a decomposition of the upper-triangular invertible matri-
ces into subgroups called rows and shows how rows act on arbitrary matrices. A
similar partition is used implicitly in [Ste, section 2.C] and in [CP, section 3].

Unless otherwise stated all matrices are n×n with complex coefficients. We use
X to denote an arbitrary matrix, N to denote a nilpotent upper-triangular matrix,
and S to denote a diagonal matrix. Write U for the group of upper-triangular
matrices with ones on the diagonal. Let Xjk be the (j, k)th entry of the matrix X .

Definition 3.1. The ith row Ui is the subgroup Ui = {u ∈ U : ujk = 0 if j 6= i, k}.

We distinguish the rows Ui from the Schubert cell subgroups Uw by subscripts:
i, j, k always denote an integer, while w always denotes a permutation matrix.
Note that Ui ∩ Uj is the identity if i 6= j. The rows generate all of U because each
row is a product of one-parameter subgroups, as in [H, Proposition 28.1].

Proposition 3.2. The group U factors uniquely as U = Un−1Un−2 · · ·U1.

This result together with Proposition 2.4 shows that representatives for each
Schubert cell factor uniquely as (Uw ∩ Un−1)(Uw ∩ Un−2) · · · (Uw ∩ U1)w.

We use rows because of their group structure, given next. Its proof is immediate.

Proposition 3.3. Ui is naturally isomorphic to the additive group Cn−i. If u and
v are elements of Ui then (uv)ik = uik + vik for each k > i. In particular, the
entries of the inverse u−1 are given by

(

u−1
)

ik
= −uik for each k > i.

The group Ui acts on a matrix X by left-multiplication, right-multiplication, or
conjugation. In each case most of the rows of X are preserved, as the following
makes precise.

Proposition 3.4. Fix u in Ui.

(1) (uX)jk = Xjk except possibly when j = i.
(2) (Xu)jk = Xjk except possibly in rows j for which Xji is nonzero.
(3) If X is upper-triangular then

(

u−1Xu
)

jk
= Xjk except possibly when j ≤ i.

Proof. The first two parts restate matrix multiplication.
Since X is upper triangular the product (Xu)jk = Xjk except perhaps in a row j

with j ≤ i by Part 2. By Part 1 the product
(

u−1Xu
)

jk
= (Xu)jk except perhaps

when j = i. Thus
(

u−1Xu
)

jk
= Xjk whenever j > i. �

Denote the ith row vector of X by Xi•. Let X = S + N be upper-triangular.
The next result shows that the ith row of u−1Xu is the image under an affine
transformation of the ith row of u, namely the translation of a linear map on ui•.

Proposition 3.5. The map ui• 7→ u−1(S +N)ui• is an affine transformation of
the entries of ui•. Explicitly,

(

u−1(S +N)u
)

i•
= Siiui• +

(

u−1
)

i•
(S +N).
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Proof. We prove this by comparing the kth entry of each vector. Note that

(

u−1(S +N)u
)

ik
=

n
∑

j=1

(

u−1
)

ij
((S +N)u)jk

=
n
∑

j=1

(

u−1
)

ij
(Sji +Nji)uik +

n
∑

j=1

(

u−1
)

ij
(Sjk +Njk)ukk.

The first sum simplifies to (u−1)ii(Sii + Nii)uik because if i > j then (u−1)ij = 0
and if i < j both Sji and Nji vanish. Since Nii = 0 and (u−1)ii = 1 this is Siiuik.

The second sum is the kth entry of (u−1)i•(S +N) by definition. �

4. Highest forms of linear operators

This section introduces one of the main tools of our proof: the highest form for
linear operators. We first define the highest form of a nilpotent matrix and then
reduce the general case to a sum of nilpotents. We begin with some linear algebra.

Definition 4.1. Fix a matrix X . The entry Xik is a pivot of X if Xik is nonzero
and if all entries below and to its left vanish, that is Xij = 0 if j < k and Xjk = 0
if j > i.

Given i, define ri to be the row of Xri,i if the entry is a pivot and zero if not.

Definition 4.2. Fix an upper-triangular nilpotent matrix N . Then N is in highest
form if the pivots form a nondecreasing sequence, namely r1 ≤ r2 ≤ · · · ≤ rn.

By definition ri = rj only if both are zero, so only initial columns of a matrix in
highest form can be zero. Columns with pivots are linearly independent, so when
N is in highest form its first dim (kerN) columns are zero.

To construct a highest form for N fill the Young diagram λN constructed in the
Introduction with 1 to n starting at the bottom of the leftmost column, increment-
ing by one while moving up, then moving to the lowest box of the next column and
repeating. The highest form for N is the matrix with Nij = 1 if i fills the box to
the left of j and Nij = 0 otherwise, as in Figure 4.

















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

















←→

3 5 6
2 4
1

←→

















0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

















Figure 4. Jordan canonical form, the Young diagram, and the
highest form

The main property of the highest form is that conjugation by U preserves it.

Proposition 4.3. If N is nilpotent and in highest form and u ∈ U then u−1Nu
is in highest form. The entry Nrj,j is a pivot if and only if (u−1Nu)rj,j is. If so,

Nrj,j = (u−1Nu)rj ,j.
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Proof. The entry (Nu)jk is the sum of Njk and multiples of Nj1, . . ., Njk−1. This
means (Nu)jk = Njk for each column up to and including the first nonzero column
in the jth row ofN . Similarly (u−1Nu)jk = (Nu)jk for each row after and including
the last nonzero row in the kth column of Nu. So the pivots of u−1Nu are in the
same entries with the same values as in Nu, which are in the same entries with the
same values as in N . �

We now describe highest form for an arbitrary upper-triangular matrix S + N ,
where S is diagonal and N is nilpotent. If c is an eigenvalue of S then let Ec be
its eigenspace. Recall that S induces a decomposition of the total vector space
Cn =

⊕

eigenvalues c of S Ec.

Inclusion and then projection gives a map from the semigroup End(Cn) to
End(Ec). For instance, the image of S +N under this map is the composition

Ec →֒ Cn S+N
−→ Cn −→



Cn/
⊕

c′ 6=c

Ec′




∼= Ec.

The matrix for (S+N)c is given by the dim Ec× dim Ec minor of S+N obtained
by removing the jth row and jth column if Sjj 6= c. This is shown in Figure 5.

S +N =





1 a b
0 0 c
0 0 1



 7→ (S +N)1 =

(

1 b
0 1

)

Figure 5. An example of S +N and (S +N)1

Note that Nc is the strictly upper-triangular part of (S +N)c.

Definition 4.4. S +N is in highest form if the following hold:

(1) S +N is upper triangular;
(2) if Sii = Sjj then Sii = Skk for each k between i and j; and
(3) Nc is in highest form for each eigenvalue c of S.

The diagonal blocks of a matrix in highest form are in highest form. However,
highest form matrices need not be block diagonal in general. Condition 2 is designed
so the map Y 7→ Yc is a morphism of semigroups, as in the next lemma. Again ei
is the standard basis vector in Cn.

Lemma 4.5. (XY )c = XcYc for all upper-triangular matrices X and Y if and only
if there are i and j so that Ec is the span of the basis vectors ei,ei+1,ei+2,. . ., ei+j.

Proof. The coefficient of ek in XY ei′ is
∑i′

j=k xkjyji′ . If Ec satisfies the hypothesis
then for each ek spanning Ec the entries xkj and yji′ are in Xc and Yc respectively
as long as j is between k and i′. Consequently (XY )c = XcYc.

Conversely, suppose ei, ei+k, and ei+j are vectors with 0 < k < j and with
ei, ei+j in Ec while ei+k is not. If X is a matrix nonzero only in entry Xi,i+j and
Y is nonzero only in entry Yi+j,i+k then Xc = Yc = 0 but (XY )c is nonzero. �

To construct a matrix in highest form which is conjugate to S+N , write S+N
in Jordan canonical form

∑

(Si+Ni) with blocks Si+Ni corresponding to distinct
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eigenvalues ci. If N
′
i is highest form for Ni then the matrix

∑

(Si+N ′
i) is in highest

form, called the permuted Jordan form of S +N .
The next proof extends Proposition 4.3 to general linear operators.

Proposition 4.6. If S +N is in highest form and u is in U then u−1(S +N)u is
in highest form. The (rk, k) entry of Nc is a pivot if and only if the (rk, k) entry
of (u−1Nu)c is a pivot. In this case the two entries are equal.

Proof. Note that u−1(S+N)u is upper-triangular if S+N is. Direct computation
shows u−1(S +N)u = S + (u−1Nu+ u−1Su− S) = S +N ′ for some nilpotent N ′.

Fix an eigenvalue c of S. By Lemma 4.5 we know (u−1Nu)c = u−1
c Ncuc. Propo-

sition 4.3 applies since Nc is in highest form and uc is upper-triangular with ones
on the diagonal. �

5. Paving Hessenberg varieties by affines

In this section we prove that if X is in highest form, each row of each Schubert
cell is in H(X,h) if and only if certain affine conditions hold. This is the key step
in the paper.

Recall that Xi• is the ith row of X , that X•j is the jth column, and H is
the Hessenberg space given by h in Definition 2.5. The next lemma identifies
{u ∈ Ui :

(

u−1Nu
)

i•
∈

(

wHw−1
)

i•
} ∩ Uw as the solution to an affine system of

equations and finds its rank.

Lemma 5.1. Fix a permutation w, a row Ui, a Hessenberg space H, and N in
highest form. If the pivots of N are in nonzero entries of wHw−1 then the set
{u ∈ Ui :

(

u−1Nu
)

i•
∈
(

wHw−1
)

i•
} ∩ Uw is homeomorphic to Cd for

d = |{k : k > i, w(i) > w(k), h(w(j)) ≥ w(i) if Nkj is a pivot in N}|.

The inequality h(w(j)) ≥ w(i) does not apply if the kth row of N has no pivot.

Proof. The ith row of u−1Nu is (u−1)i•N by Proposition 3.5. Examining the

condition (u−1)i•N ∈
(

wHw−1
)

i•
for each column gives the system of equations

(u−1)i•N•j = 0 for j such that w(i) > h(w(j)).

Each equation in this system has the form

(1,−ui,i+1, . . . ,−ui,n) · (Ni,j , . . . , Nn,j)
t = 0

for j satisfying w(i) > h(w(j)). Adding the constraint that u ∈ Uw gives the
following affine system of equations in the free entries uik:

(5.1) (uik1
, uik2

, . . . , uikdi
)











Nk1j

Nk2j

...
Nkdi

j











= Nij
for j with w(i) > h(w(j))
and kl with w(i) > w(kl).

The linear system of equations xM = v has a solution if and only if the rank of the
coefficient matrix M equals that of the extended matrix

(

v

M

)

. To prove this here,
we show that if either Nij or one of the Nklj is nonzero then in fact one of the Nklj

is a pivot in N .
Indeed, if Nij or Nklj is nonzero then N has a pivot Nkj in some row k ≥ i.

The pivots of N are in wHw−1 by hypothesis. This means that w(k) ≤ h(w(j)) by



LINEAR CONDITIONS IMPOSED ON FLAG VARIETIES 9

Proposition 2.6. In addition w(i) > h(w(j)) by hypothesis on j. Hence w(i) > w(k)
and so Nkj is one of the entries of the column vector of Equation (5.1).

The dimension of the solution space is the number of free entries in Ui ∩ Uw

less the number of pivots of N in the coefficient matrix of Equation (5.1). The
set {k : k > i, w(i) > w(k)} indexes the free entries while {k : k > i, w(i) >
w(k), Nkj is a pivot and w(i) > h(w(j))} indexes the rank of the coefficient matrix.
This proves the claim. �

This extends to general linear operators in much the same way.

Lemma 5.2. Fix a permutation w, a row Ui, a Hessenberg space H, and S + N
in highest form. If the pivots of each submatrix Nc are in wHw−1 then the set
{u ∈ Ui :

(

u−1(S +N)u
)

i•
∈
(

wHw−1
)

i•
} ∩ Uw is homeomorphic to Cd for

d = |{k : k > i, w(i) > w(k),

h(w(j)) ≥ w(i) if Nkj is a pivot in NSii
, Skk = Sii}|

+ |{k : k > i, h(w(k)) ≥ w(i) > w(k), Skk 6= Sii}|.

Proof. The ith row of u−1(S +N)u is Siiui• + (u−1)i•(S +N) by Proposition 3.5.

The condition that this be in
(

wHw−1
)

i•
gives the system of equations

Siiuij + (u−1)i•(S +N)•j = 0 for j such that w(i) > h(w(j)).

Each equation in this system is of the form

Siiuij + (1,−ui,i+1, · · · ,−ui,n) · (Nij , · · · , Nj−1,j , Sjj , 0, . . . , 0)
t = 0

for j such that w(i) > h(w(j)). Adding the condition that u ∈ Uw gives the system

(uik1
, uik2

, . . . , uikdi
)

























Nk1j

Nk2j

...
Sjj − Sii

0
...
0

























= Nij
for j such that w(i) > h(w(j))
and kl such that w(i) > w(kl).

As in the previous lemma, we show that the rank of the coefficient matrix is un-
changed if the vector of solutions (Nij) is inserted as the top row.

We study the cases when Sii = Sjj and when Sii 6= Sjj separately. Let ci be the
cardinality |{Sjj : j > i, Sjj = Sii}| so Sjj − Sii is zero exactly when j is at most
i+ ci. The columns with j > i+ ci have a pivot in position (j, j) regardless of Nij .
For each such j we know w(i) > w(j) since h(w(j)) ≥ w(j).

The first ci columns and rows of this system satisfy Sjj−Sii = 0 and so form the
system of Equation (5.1). Its pivots are computed in Lemma 5.1. Each is a pivot
in the original system because the (kl, j)

th entry is zero when kl is greater than j.
The rank of the entire matrix is therefore

|{k : k > i, w(i) > w(k), w(i) > h(w(j)) and Nkj is a pivot in NSii
, Sii = Sjj}|

+ |{k : k > i, w(i) > w(k), w(i) > h(w(k)), Sii 6= Skk}|.

Since the dimension of Ui ∩ Uw is |{k : k > i, w(i) > w(k)}| the claim follows. �
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6. The Main Theorems

We now demonstrate that requiring each row of a flag in H(X,h) to satisfy
the Hessenberg conditions gives the structure of an iterated tower of affine fiber
bundles on each Bruhat cell in H(X,h). This constructs a paving by affines on
the Hessenberg variety. We use the Hessenberg space H determined by h as in
Definition 2.5, as well as the description of the Schubert cells in Proposition 2.4.

Theorem 6.1. Fix a Hessenberg space H and a basis for which S+N is in highest
form and in permuted Jordan form. Let {Cw} be the Schubert cells.

The intersections Cw ∩ H(S +N,H) form a paving by affines of H(S +N,H).
The cell Cw∩H(S+N,H) is nonempty if and only if N is in wHw−1. If nonempty,
the cell Cw ∩H(S +N,H) is homeomorphic to Cd for

d = |{(i, k) : k > i, w(i) > w(k),

h(w(j)) ≥ w(i) if Nkj is a pivot in NSii
, Skk = Sii}|

+ |{(i, k) : k > i, h(w(k)) ≥ w(i) > w(k), Skk 6= Sii}|.

Proof. The Schubert cells {Cw} form a paving of the full flag variety. The Hessen-
berg varietyH(S+N,H) is a closed subvariety of the flag variety so the intersections
Cw ∩H(S +N,H) pave the Hessenberg variety.

We now identify the nonempty cells. If N is in wHw−1 then the flag [w] is in
H(S+N,H). Conversely, if the flag [uw] is inH(S+N,H) then w−1u−1(S+N)uw ∈
H . This implies that the pivots of each submatrix (u−1Nu)Sii

are in wHw−1.
Since N is in highest form, its pivots are in the same positions as those of u−1Nu
by Proposition 4.3. Each pivot of N is a pivot of some NSii

because S + N is in
permuted Jordan form. The pivots of each NSii

are in wHw−1 if and only if those
of (u−1Nu)Sii

are. The only nonzero entries of N are pivots so N is in wHw−1.
Next, suppose Cw ∩H(S +N,H) is nonempty. Define

Zi =
{

u ∈
(

Un−1Un−2 · · ·Ui

)

∩ Uw :
(

u−1(S +N)u
)

j•
∈
(

wHw−1
)

j•
for all j > i

}

.

For instance, Zn−1 = Un−1 ∩ Uw since wHw−1 always contains the span of Enn.
Also, observe that Z1 is homeomorphic to Cw ∩H(S+N,H) under the map which
sends u 7→ uw. We will show that Z1 is affine and compute its dimension.

To do this, we factor each element in Zi uniquely as u′u for u′ ∈ Un−1 · · ·Ui+1 and
u ∈ Ui by Proposition 3.2. Conjugation by Ui only affects the first i rows of an upper
triangular matrix by Proposition 3.4, so u−1(u′−1

(S+N)u′)u agrees with u′−1
(S+

N)u′ in rows i + 1 and higher. Thus, this factorization satisfies the additional

conditions that u′ ∈ Zi+1 and that u ∈ Ui ∩ Uw has
(

u−1(u′−1(S +N)u′)u
)

i•
∈

(

wHw−1
)

i•
. This gives a well-defined map πi : Zi → Zi+1 sending u′u to u′.

We now show that πi : Zi → Zi+1 is an affine fiber bundle and compute its rank.

For each element u′ ∈ Zi+1, the operator u′−1
(S +N)u′ is in highest form and has

its pivots in the same position as S +N . Consequently, the hypotheses of Lemma
5.2 hold. Lemma 5.2 states that for each u′ ∈ Zi+1, the preimage π−1

i (u′) ⊆ Zi is
affine of dimension

di = |{k : k > i, w(i) > w(k),

h(w(j)) ≥ w(i) if Nkj is a pivot in NSii
, Skk = Sii}|

+ |{k : k > i, h(w(k)) ≥ w(i) > w(k), Skk 6= Sii}|.
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The fiber π−1
i (u′) is the set of solutions xu′ to the affine system xu′Mu′ = vu′ ,

where Mu′ and vu′ vary continuously (by conjugation) in u′. In other words πi :
Zi −→ Zi+1 is a fiber bundle.

We produce a bundle homeomorphism from πi : Zi −→ Zi+1 to the trivial
bundle of rank di over Zi+1. Let I be the set of indices used to define di in Lemma
5.2. For each u′ ∈ Zi+1, Lemma 5.2 shows that the (i, k) entry of the matrices
in π−1

i (u′) is free whenever k ∈ I. The map sending u′u 7→ (u′, (uik)k∈I) has a
continuous inverse given by the system xu′Mu′ = vu′ and so is the desired bundle
homeomorphism. Given this bundle map, if Zi+1 is homeomorphic to affine space
then Zi is homeomorphic to affine space of dimension dim Zi+1 + di.

Finally, consider the sequence Z1
π1−→ Z2

π2−→ Z3 · · ·
πn−2

−→ Zn−1. Each map πi is
an affine fiber bundle of rank di. We know Zn−1 = Un−1 ∩ Uw is affine and write
its dimension as dn−1 = |{k : k > n − 1, w(n − 1) > w(k)}| to stress the analogy

to the other di. Inducting on i, we may assume the base space of Zi
πi−→ Zi+1 is

homeomorphic to affine space, and so its total space Zi is homeomorphic to affine
space of dimension dim Zi+1 + di. By induction Z1 is homeomorphic to Cd with
d = d1 + · · ·+ dn−1. �

This along with Proposition 2.2 leads to an immediate corollary when the base
field is C.

Corollary 6.2. Hessenberg varieties have no odd-dimensional cohomology.

The main theorem is much simpler if the operator is nilpotent or semisimple.

Corollary 6.3. Fix a Hessenberg space H. Let N be a nilpotent matrix in highest
form and in permuted Jordan form. Let {Cw} be the Schubert cells.

The intersections Cw ∩H(N,H) form a paving by affines of H(N,H). The cell
Cw ∩ H(N,H) is nonempty if and only if N is in wHw−1. If nonempty, the cell
Cw ∩H(N,H) is homeomorphic to Cd for

d = |{(i, k) : k > i, w(i) > w(k), h(w(j)) ≥ w(i) if Nkj is nonzero}|.

The proof of this is immediate, as is that of the next corollary.

Corollary 6.4. Fix a Hessenberg space H. Let S be a diagonal matrix in high-
est form and let {Cw} be the Schubert cells of the flag variety. The intersections
Cw ∩ H(S,H) form a paving by affines of H(S,H). The cell Cw ∩ H(S,H) is
homeomorphic to Cd for

d = |{(i, k) : k > i, w(i) > w(k), h(w(k)) ≥ w(i) if Skk 6= Sii}|.

In particular, the intersection of each Schubert cell with H(S,H) is nonempty!

Corollary 6.5. If S is diagonal then the Euler characteristic χ(H(S, h)) is n! for
every Hessenberg function h.

Proof. Since w−1Sw is diagonal for each permutation, every Schubert cell Cw in-
tersects H(S, h) in a nonempty affine cell Cdw . Since the cohomology is only even-
dimensional, the Euler characteristic of H(S, h) is the total number of cells. �

7. Tableaux Interpretations

We describe the main theorems combinatorially using Young diagrams.
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To each linear operator X we associate a multitableau λX as follows. If
∑

(Si +
Ni) is a Jordan canonical form for X then λX is the collection of tableaux λNi

associated to Ni as in the Introduction. We assume tableaux are ordered verti-
cally by size as shown in Figure 6. Note that λX is independent of the numerical
eigenvalues of Si. When X is nilpotent this definition reduces to that of Figure 1.





















0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 1 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2





















←→

5 6 7
4

2 3
1

←→





















2 0 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0





















Figure 6. The Jordan form, multitableau with base filling, and
highest form of a general linear operator

The base filling of λX is that for which each λNi
is filled according to the rules

in Figure 4 except that the lowest number in λNi
is one more than the highest in

λNi−1
. Figure 6 demonstrates this. The box containing i in this filling of λX is

called the ith box.
We associate each filling of the multitableau λX to a unique permutation w

according to the convention that the ith box contains w(i). For instance, the ith

box of the base filling contains i.

Theorem 7.1. Fix any linear operator X and Hessenberg function h. The Hessen-
berg variety H(X,h) is paved by affines. The nonempty cells are naturally in bijec-
tion with the fillings of λX which contain the configuration k j only if k ≤ h(j).
The dimension of a nonempty cell is the sum of:

(1) the number of pairs i,k in the corresponding filling of λX such that
• i and k are in the same tableau,
• the box filled by i is to the left of or directly below the box filled by k,
• k < i, and
• if j fills the box immediately to the right of k then i ≤ h(j).

(2) the number of pairs i,k in λX such that
• i and k are in different tableaux,
• the box filled with i is below k, and
• k < i ≤ h(k).

The first condition is illustrated in Figure 2 and the second in Corollary 7.2.

Proof. Write i′ for the index of the box containing i, respectively j′ and k′. This
means that w(i′) = i so i > k if and only if w(i′) > w(k′).

The i′th box is in the same tableau as the k′th box if and only if Si′i′ = Sk′k′ .
Box i′ sits left of or directly below box k′ if and only if k′ > i′ by the labelling

convention.
The nilpotent part of a permuted Jordan form is the sum of Ek′j′ over (k

′, j′) such
that box j′ sits to the right of box k′. X is in wHw−1 exactly when each of these
summands is and eachEk′j′ is in wHw−1 exactly when k = w(k′) ≤ h(w(j′)) = h(j)
by Proposition 2.6. �
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We prove Theorem 1.1, paving nilpotent Hessenberg varieties using tableaux.

Proof. If N is nilpotent its multitableau consists of exactly one tableau. Condition
2 of Theorem 7.1 never applies so Condition 1 gives the dimension. �

The following interprets the main theorem for semisimple operators.

Corollary 7.2. Fix a Hessenberg space H. Let S be a diagonal matrix and λS

its associated multitableau. The Schubert cell Cw intersects the Hessenberg variety
H(S,H) in a space homeomorphic to Cd where d is the sum of:

(1) the number of pairs i,k such that

(1)

...

...
k
...
i
...
...

• i and k are in the same tableau,
• i is below k, and
• k < i.

(2) the number of pairs i,k such that (2)

...
k
...
.

.

.

...
i
...

• i and k are in different tableaux,
• i is below k, and
• k < i ≤ h(k).

Proof. The nilpotent associated to each eigenspace is the zero matrix so each Young
diagram is a single column. This implies that every Schubert cell intersects the
Hessenberg variety and that the first condition of Theorem 7.1 simplifies as given.

�

8. Root system interpretation

The main theorem can also be expressed in terms of roots. For general back-
ground on Lie algebras, the reader is referred to [H2].

Recall that the Lie algebra of GLn(C) is gln(C), which we think of as n × n
matrices over C. Fix the Borel subalgebra b of upper-triangular matrices in gln(C).

The standard embedding of gln(C) into the space of matrices associates the
matrix Eij with i < j to the root vector Eα where α = αi + αi+1 + . . . + αj−1.
The root α can also be regarded as the linear functional on diagonal matrices with
α(S) = Sjj − Sii.

The set of positive roots Φ+ are the roots α for which Eα is upper-triangular.
The set of negative roots Φ− are the roots −α for α in Φ+. They correspond
to the lower-triangular matrices by the map which sends Eji to −α if Eα = Eij .
The action of the permutation w on the set of roots is defined by w−1α = β if
w−1Eαw = Eβ .

With this notation a Hessenberg space H can be defined intrinsically as a vector
subspace of gln(C) which contains b and which is closed under Lie bracket with b

as in [dMPS]. We write ΦH to denote the roots whose root spaces span H .
The definition of highest form operators can be extended to root spaces by the

standard embedding. If S + N is in highest form we denote by ΦS+N the set of
roots corresponding to the pivots of Nc over all eigenvalues c of S.

Theorem 8.1. Fix a Hessenberg space H. Fix b with respect to which S + N is
in highest form and permuted Jordan form. The intersection Cw ∩H(S +N,H) is
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nonempty if and only if w−1ΦS+N is in ΦH . If so Cw ∩ H(S + N,H) is homeo-
morphic to Cd for

d = |{α ∈ Φ+ : α(S) = 0, w−1α ∈ Φ−, w−1(α+ β) ∈ ΦH for some β ∈ ΦS+N}|

+ |{α ∈ Φ+ : α(S) 6= 0, w−1α ∈ ΦH , w−1α ∈ Φ−}|.

Proof. Write N in terms of root vectors as
∑

β∈ΦS+N
Eβ .

The pivot Eβ is in wHw−1 if and only if w−1β ∈ ΦH by Proposition 2.6.
If α = αi + αi+1 + · · · + αk−1 then Sii = Skk if and only if α(S) = 0, which

describes two of the conditions in the theorem.
The condition h(w(k)) ≥ w(i) is equivalent to w−1α ∈ ΦH by Proposition 2.6.
The root α satisfies k > i and w(i) > w(k) if and only if α ∈ Φ+ and w−1α ∈ Φ−

according to the characterization of the Bruhat decomposition in Proposition 2.4.
The condition thatNkj be a pivot inNSii

indicates that β = αk+αk+1+· · ·+αj−1

is a root in ΦS+N . The root α + β corresponds to Eij . This means that the
condition w−1(α + β) ∈ ΦH is equivalent to w−1Eijw ∈ H , which in turn is just
w(i) ≤ h(w(j)). �

The theorem also simplifies when the operator is either nilpotent or semisimple.

9. Open Questions

Many questions about Hessenberg varieties remain, some of which are described
here.

9.1. Geometric properties. One of the most fundamental unanswered questions
about the geometry of Hessenberg varieties is:

Question 1. Is every Hessenberg variety pure dimensional?

In every known example, the answer to this is yes. This also raises the following.

Question 2. What is the dimension of the Hessenberg variety H(X,H)?

The answer is known for various examples, including the Springer fibers (where it

is
∑k

i=1(i−1)di if the Jordan blocks have size d1, . . ., dk [Sp]) and regular nilpotent
Hessenberg varieties (namely

∑n
i=1(h(i)− i) [ST]). It is unknown in general.

The answer to the next question is known for the Springer fiber, where it is the
dimension of the corresponding irreducible representation of the symmetric group
([Sp], [CG, 3.6.2]).

Question 3. How many components does H(X,H) have?

This paper has discussed Hessenberg varieties overGLn(C). Hessenberg varieties
are defined for general complex linear algebraic groups (see [dMPS]), and the same
questions can be posed in the general setting.

Question 4. How many of these results hold for general G?

9.2. Closure relations. Given a Schubert cell Cw , classical results show that the
cell Cx lies in its closure if and only if w is a product of simple transpositions
w = s1 · · · sk and x = si1 · · · sik′

with 1 ≤ i1 < · · · < ik′ ≤ k (see [BL, section 2.7]).

The closure Cw is a Schubert variety, whose geometry and associated combinatorics
has been extensively studied [BL].
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The cells of a general Hessenberg variety are intersections with Schubert cells.
However, the closure relations of these intersections are not in general restrictions
of the closure relations of the full Schubert cells.

Question 5. What are the closure relations for cells in a Hessenberg variety? For
which x does Cx ∩H(X,H) intersect the closure of Cw ∩H(X,H)?

The answer to an apparently simpler question is also unknown.

Question 6. If Cw ∩H(X,H) is nonempty, for which permutations x does the flag
given by x lie in the closure of Cw ∩H(X,H)?

9.3. Betti numbers. The previous results established that the odd-dimensional
Betti numbers for Hessenberg varieties are zero. They also provide an algorithm to
generate tables of the even-dimensional Betti numbers, which are available at

http://www.math.lsa.umich.edu/∼tymoczko

The even-dimensional Betti numbers for Hessenberg varieties H(N,H) have closed
formulae when N is a regular nilpotent operator, i.e., N consists of a single Jordan
block. These Betti numbers are both symmetric (namely bi = bk−i+1 for each i) and
unimodal (namely b1 ≤ b2 ≤ b3 · · · ≤ b⌈k/2⌉) by [ST]. Yet most of these varieties
are singular.

The even-dimensional Betti numbers for general Hessenberg varieties need not
be symmetric. Robert MacPherson conjectured the following, which is true in all
known cases. It is the combinatorial description of the hard Lefschetz property and
has been studied in other contexts [Sta].

Question 7. For any Hessenberg variety H(X,H) the even-dimensional Betti num-
bers are unimodal and satisfy bi ≤ bk−i+1 for all i between 1 and k/2.
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