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Abstract In the previous work (Ahmed, Eur Phys J C
78(7):598, 2018), we investigated the relativistic quantum
effects on a scalar and spin-half particles in a topologically
trivial flat Gödel-type space-time. We have found that the
energy eigenvalues of the system are influenced by the vor-
ticity parameter characterizing the space-time. In the present
work, we investigate the linear confinement of a scalar parti-
cle on the Klein–Gordon equation with a linear and Coulomb-
type scalar potential in this flat Gödel-type solution. The
energy eigenvalues of the system get modifies due to the
presence of scalar potentials, and the vorticity parameter. In
addition, we study the relativistic quantum motion of spin-0
particles with vector and scalar potentials of Coulomb-type
and analyze the effects on the energy eigenvalues.

1 Introduction

The first solution to the Einstein’s field equations containing
closed time-like curves is the cylindrical symmetry Gödel
rotating Universe [2]. After that, a variety of solutions admit-
ting closed time-like curves, closed null geodesics and closed
time-like geodesics has been constructed in general relativity
(see [3,4] and references therein). To prevent the appearence
of closed time-like curves in a space-time, Hawking [5] pro-
posed the Chronology Protection Conjecture. However, the
general proof of this Conjecture has not yet been given. On
the contrary, there are many solutions of the field equations
in vacuum as well as non-vacuum known that contains such
closed causal curves. Of these, some solutions with closed
time-like curves content exotic matter-energy sources violat-
ing so called the weak energy condition (WEC) (e.g. [6,7])
and some others violate the strong energy condition (e.g.
[8–10]). Reboucas et al. [11–13] investigated the Gödel-type
solutions characterized by vorticity, which represents a gen-
eralization of the original Gödel metric with possible sources
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and analyzed the problem of causality. The general Gödel-
type metrics in the presence of cosmic strings in polar coor-
dinates (t, r, φ, z) can be written as

ds2 = −(dt +α Ω F(r) dφ)2 +α2 H2(r) dφ2 +dr2 +dz2,

(1)

where the metric functions are

F(r) = sinh2 l r

l2
, H(r) = sinh 2 l r

2 l
. (2)

The variables (t, r, φ, z) can take, respectively the values :
−∞ < (t, z) < ∞, 0 ≤ r , φ ∈ [0, 2π ]. The parameter
Ω characterizes the vorticity of the space-time. The origi-
nal Gödel solution [2] can be recovered for l2 = Ω2

2 and

disclination parametr α = 1. Also for l2 = Ω2

2 and α = 1,
one will obtain an anti-de Sitter space [14]. In the asymp-
totic limit l → 0, the metric (1) reduces to the well-known
Som-Raychaudhuri space-time [15], which is also called flat
Gödel-type metric with cosmic string. So the metric in this
condition is reduced to

ds2 = −(dt + α Ω r2 dφ)2 + α2 r2 dφ2 + dr2 + dz2. (3)

This solution attracted much attention in string theory [16–
20] and it has interpreted as a Gödel-type solution in string
theory. Observe that the line element defined above can be
written as

ds2 = −(dt + Ai dx
i )2 + hi j dx

i dx j , (4)

where the spatial coordinates of the space-time are repre-
sented by xi . An interesting property of this metric is that
the geodesics are circles, which have a physical description
similar to Larmor orbits for an electron that moves in a per-
pendicular magnetic field [21,22]. This analogy also arises

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6621-y&domain=pdf
http://orcid.org/0000-0003-2196-9622
mailto:faizuddinahmed15@gamil.com


104 Page 2 of 13 Eur. Phys. J. C (2019) 79 :104

from the point of view of quantum mechanics, where the
quantum dynamics of scalar and spinorial quantum particles
in this space-time is an analogue of the Landau levels, as
observed in [21–25]. Several researchers have studied the
physical properties of a series of backgrounds with the Som-
Raychaudhuri space-time. For example, Paiva et al. have
investigated the properties of the rotating Som-Raychaudhuri
homogeneous space-time [26], Wang et al. [27] have stud-
ied the relativistic quantum dynamics of a spinless particle
and the Klein–Gordon oscillator in the Som-Raychaudhuri
space-time under the influence of the gravitational field pro-
duced by a topology, Carvalho et al. [23] have worked about
the Klein–Gordon oscillator in Som-Raychaudhuri space-
time with a cosmic disclination, and Vitoria et al. [28] have
investigated the Linear confinement of a scalar particle in the
Som-Raychaudhuri space-time in the presence of a topolog-
ical defect. They analyzed the influence of topology of the
cosmic string and the vorticity parameter on the relativistic
energy eigenvalues and found that the energy eigenvalues get
modified.

Investigation of relativistic quantum effects on scalar and
spin-half particles in Gödel as well as Gödel-type space-
times have been addressed by several authors (see [1] and
references therein). Soares et al. [29] first studied this prob-
lem, where the Klein–Gordon and Dirac equations in a class
of Gödel-type space-times with positive and negative curva-
tures, were investigated and also in flat Gödel-type space-
time. Drukker et al. [21] have investigated the close relation-
ship between the quantum dynamics of a scalar particle in
background of general relativity with Gödel solutions and the
Landau levels in the flat, spherical and hyperbolic spaces.
They solved the Klein–Gordon equation in these class of
Gödel-type space-times and observed the similarity of the
energy eigenvalues with the Landau levels in curved back-
ground (see also [30]). Das et al. [22] also have investigated
the same problem by studying the Klein–Gordon equation in
flat Gödel-type solution (called Som-Raychaudhuri space-
time) and Landau levels in flat spaces. Furtado et al. [31]
have studied the Landau levels in the presence of disclination
parameter. Carvalo et al. [23] solved the Klein–Gordon equa-
tion in a class of Gödel-type solutions with a cosmic string
and analyzed the similarity of the energy eigenvalues with the
Landau levels in flat, spherical and hyperbolic spaces. They
demonstrated there that the presence of a cosmic string, and
the vorticity parameter modifies the energy levels and breaks
the degeneracy of energy eigenvalues. The quantum influ-
ence of topological defects in Gödel-type space-times in flat,
spherical and hyperbolic cases, were investigated in [24].
The relativistic quantum dynamics of Dirac particle with the
topological defect in a class of Gödel-type space-times with
torsion have been investigated in [25]. In Ref. [32] (see also
[33,34]), Weyl fermions in a class of family of Gödel-type
geometries with a topological defect, were investigated. In

Ref. [35], relativistic wave equation for spin-half particles
in the Melvin space-time, a space-time where the metric is
determined by a magnetic field, were investigated.

The relativistic quantum dynamics of a scalar particle
subject to different confining potentials has been investi-
gated in several areas of physics by various authors [36–
50]. The linear confinement of quantum particles has great
importance for models of confinement of quarks [51]. It is
worth mentioning the linear scalar potential has attracted
a great interest in atomic and molecular physics [52–58]
and also in relativistic quantum mechanics [59–79]. Another
important case is the confinement of a scalar particle sub-
jected to Coulomb-type potential which were investigated
by many authors [80–84]. It is worth mentioning studies
that have dealt with Coulomb-type potential in the propa-
gation of gravitational waves [85], quark models [51], and
relativistic quantum mechanics [86–89]. In Refs. [84,90], a
scalar potential is introduced (non-electromagnetic potential)
in the Klein–Gordon equation by making a modification in
the mass term in the form : m → m+ S, where m is the mass
of the free particle and S is the scalar potential (linear or
Coulomb-type). This modification in the mass term has been
explored in recent decades, for instance, by analysing the
behaviour of Dirac particles in the presence of a static scalar
and Coulomb potential [91], relativistic scalar particle in the
presence of a cosmic string [92]. The quark-antiquark inter-
action is mapped into a problem of relativistic spinless pos-
sessing a position-dependent mass (PDM), where the mass
term acquires a contribution given by the interaction potential
that consist of linear and harmonic confining potential plus
a Coulomb potential term, were investigated in [93]. The
Klein–Gordon equation with vector and scalar potentials of
Coulomb-types under the influence of non-inertial effects in
the cosmic string space-time, were studied by Santos et al.
[94]. The relativistic quantum effects of confining potentials
on the Klein–Gordon oscillator, were investigated in [77].
Boumali et al. [95] investigated the Klein–Gordon oscilla-
tor in the background of cosmic strings in the presence of a
uniform magnetic field. Later, the Klein–Gordon oscillator
was investigated in the presence of Coulomb-type potential
by two ways: (1) via a modification of mass term [89], and
(2) via the minimal coupling [78], in the latter case the linear
scalar potential was also included. The Klein–Gordon oscil-
lator in curved background within the Kaluza-Klein theory,
were investigated in [24]. Recently, Santos et al. [94] investi-
gated the Klein–Gordon oscillator in the background space-
time generated by a cosmic string. A scalar quantum particle
confined in two concentric thin shells in curved space-time
backgrounds with a cosmic string, were investigated in [33].
It is worth mentioning the studies of Dirac oscillator under the
influence of non-inertial effects in the background of cosmic
string space-time [96], and the rotating effects in the cosmic
string space-time [97]. In Ref. [98], two different classes of
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solution for the Klein–Gordon equation in the presence of a
scalar potential under the influence of noninertial effects in
the cosmic string space-time, were discussed. The behaviour
of a scalar particle within the Yukawa-like potential in Som-
Raychaudhuri space-time, were investigated in [99].

2 The Klein–Gordon and spin-0 Equation

The relativistic quantum dynamics of a free spinless particle
of mass m is described by the Klein–Gordon equation. In its
covariant form, this equation takes the following form:

1√−g
∂μ

(√−g gμν ∂ν Ψ
) = m2 Ψ, μ, ν = 0, 1, 2, 3,

(5)

with g = det (gμν) being the determinant of metric ten-
sor with inverse gμν , and ∂μ is the ordinary derivative. The
function Ψ gives the amplitude of the probability to find the
particles around the position r at the time t . By introducing
a scalar potential into the Klein–Gordon equation by modi-
fying the mass term in the form : m → m + S, where S is
the scalar potential [84,90]. The KG-equation becomes

1√−g
∂μ

(√−g gμν ∂ν Ψ
) = (m + S)2 Ψ. (6)

The spin-0 particles are represented by the usual Klein–
Gordon equation which can be generalized to the curved
space-time case. In order to determine the generalization of
the wave equation one may replace the ordinary derivatives
by covariant derivative [98] in the Klein–Gordon equation,
the result is

1√−g
Dμ

(√−g gμν Dν Ψ
) = m2 Ψ, (7)

that is, the Klein–Gordon equation in a curved space-time
[100] where, Dμ = ∂μ − i e Aμ, e is the electric charge, and
Aμ is the vector potential. A scalar potential S may be taken
into account by making a modification on the mass term:
m → m + S. Substituting this mass term into Eq. (7) we
obtain the following differential equation:

1√−g
Dμ

(√−g gμν Dν Ψ
) = (m + S)2 Ψ. (8)

This differential equation takes into account a scalar poten-
tial S and vector potential Aμ [83,88,101]. In order to sim-
plify solution of the Klein–Gordon equation, the four-vector
potential can be written as Aμ = (A0, 0, 0, 0). The first com-
ponent of the four-vector potential is represented by a vector
potential, i.e., A0 = V . To have a bound-state (real) solutions
for a relativistic spin-zero particle, the relationship between
vector and scalar potential must be S ≥ V [38,42–44].

In the present work, we consider a flat Gödel-type space-
time and discuss the linear confinement of a relativistic scalar
particle with a linear scalar potential. We also study solution
of the Klein–Gordon equation in the presence of Coulomb-
type scalar potential and analyze the influence of confining
potential, and the vorticity parameter on the energy eigen-
values. In addition, we investigate the relativistic quantum
motion of spin-0 particles with scalar and vector potentials
of Coulomb-type and analyze the effects.

3 A flat Gödel-type space-time

Consider the following stationary space-time [102] (see also
[1]) in the coordinates (x0 = t, x1 = x, x2 = y, x3 = z)
given by

ds2 = −dt2 + dx2 +
(

1 − α2 x2
)
dy2 − 2 α x dt dy + dz2

= −(dt + H(x) dy)2 + dx2 + D2(x) dy2 + dz2, (9)

where α > 0 is a real number, and the function H(x) = α x
and D(x) = 1. The ranges of the coordinates are −∞ <

(t, x, y, z) < ∞. By choosing periodicity of the y coordi-
nate, one can easily show that the space-time display causal-
ity violation, namely, closed time-like curves for x > 1

α
and

closed null curve at x = x0 = 1
α

. The determinat of the met-
ric tensor for the metric (9) is detg = −1 and the covariant
and contravariant components of the metric tensor are

g00 = −1, g11 = g33 = 1, g02 = −α x = g02, g11 = 1,

g22 = (1 − α2 x2), g00 = −(1 − α2 x2), g22 = g33 = 1.

(10)

And that the Christoffel symbols are

Γ 0
01 = 1

2
α2 x = −Γ 2

12 = 1

2
Γ 1

22,

Γ 0
12 = 1

2
α (1 + α2 x2), Γ 1

02 = 1

2
α = −Γ 2

01. (11)

The necessary and sufficient conditions for Gödel-type
space-times to be space-time homogeneous (STH) [11,103–
105] are given by

H ′

D
= α = 2 Ω,

D′′

D
= 0, (12)

where prime denotes ordinary differentiation w. r. t. x . Here
Ω is the vorticity parameter characterising the space-time.

The metric (9) by substituting α = 2 Ω can be expressed
in the form (4) as:

ds2 = −(dt + 2 Ω x dy)2 + δi j dx
i dx j , (13)
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where the vector potential Ay = 2 Ω x , and δi j is the kro-
necker delta. The corresponding uniform magnetic field asso-
ciated with the vector potential is along z-axis given by
Bz = 2 Ω .

In cartesian coordinates system, the Som-Raychaudhuri
space-time (3) can be written as

ds2
SR = −[dt + Ω (x dy − y dx)]2 + δi j dx

i dx j , (14)

by transforming r → √
x2 + y2 and φ → tan−1(

y
x ) into (3).

In that case, the vector potentials are Ax = −Ω y, Ay = Ω x
and the corresponding magnetic field is along z-axis given
by Bz = 2 Ω .

Note that if one takes Ω = 0 which implies α = 0,
the study space-time (9) or (13) reduces to four-dimensional
Minkowski flat space metric.

3.1 Scalar particle with linear and Coulomb-type scalar
potentials in flat Gödel-type metric

For the line element (9), the KG-equation (6) can be written
in the following form:

[−∂2
t + (α x ∂t − ∂y)

2 + (∂2
x + ∂2

z )] Ψ = (m + S)2 Ψ,

(15)

which is independent of t, y, z. One can choose the following
ansatz for the function Ψ

Ψ (t, x, y, z) = ei (−E t+py y+pz z) ψ(x), (16)

where E , py and pz are constants. Here we have considered
the potentials as follow:

Case A: The linear scalar potential [84,90] is given by

S(x) = kL x, (17)

where kL is a constant that characterizes the linear confining
potential. Substituting the ansatz given by Eq. (16) into Eq.
(15), we obtain the following differential equation for ψ(x)
using the potential (17) :

ψ ′′(x) − [ω2 x2 + δ x] ψ(x) = β ψ(x), (18)

where we have written

ω =
√

α2 E2 + k2
L , δ = 2 (α E py + m kL). (19)

Let us define r = √
ω x , Eq. (18) becomes

ψ ′′(r) − [r2 + δ0 r ] ψ(r) = λ ψ(r), (20)

where

δ0 = δ

ω
3
2

, λ = β

ω
, β = (p2

y + p2
z + m2 − E2). (21)

The asymptotic behaviour of the possible solution to the
Eq. (20) are to be determined for r → 0 and r → ∞. These
conditions are necessary since the wave functions must be
well-behaved in this limits, and thus, bound states of energy
eigenvalues can be obtained. Let us impose that the function
ψ(r) is well-behaved at r → 0 and vanish at r → ∞, hence,
the solution to Eq. (20) is given by

ψ(r) = e− r2
2 e− δ0 r

2 H(r). (22)

Substituting Eq. (22) into Eq. (20), we obtain the following
differential equation

d2H

dr2 − [δ0 + 2 r ]dH
dr

+ η H = 0, (23)

where η is given by

η = 1

4
δ2

0 − λ − 1. (24)

Writing the solution as a power series expansion [31,88,106]
around the origin :

H(r) =
∞∑

i=0

ci r
i . (25)

Substituting the series expansion into the Eq. (23), we obtain
the following recurrence relation:

cn+2 = (2 n − η)

(n + 1)(n + 2)
cn + δ0

n + 2
cn+1. (26)

By starting with c0 = 1 using Eq. (26), one can calculate
other co-efficients of the power series expansion. As exam-
ples, the coefficients c2 and c3 are given by

c2 = 1

2
(δ0 c1 − η) , c3 =

(
δ2

0 + 2 − η

6

)

c1 − δ0 η

6
. (27)

The power series expansion becomes a polynomial of rn by
imposing the following two conditions:

cn+1 = 0, η = 2 n, (28)

where n = 1, 2, 3... is the quantum number. By analysing
the condition η = 2 n, one can obtain the following energy
eigenvalues equation :

E2
n − (2 n + 1) α En − (An + m2 + p2

z ) = 0, (29)
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where

An =
(
n + 1

2

) (

1 + k2
L

2 ω2

)
k2
L

ω
+ (p2

y − m2)
k2
L

ω2

−2m kL py

(

1 − k2
L

2 ω2

)

, kL < ω. (30)

Therefore the relativistic energy eigenvalues of the system
under linear scalar potential are

En =
(
n + 1

2

)
α +

√(
n + 1

2

)2

α2 + m2 + p2
z + An

= (2 n + 1)Ω +
√

(2 n + 1)2 Ω2 + m2 + p2
z + An .

(31)

The different coefficients of power series expansion under
the condition (28) are

n = 1, c2 = 0 ⇒ c1 = 2

δ0
c0,

n = 2, c3 = 0 ⇒ c1 =
(

4 δ0

δ2
0 − 2

)

c0,

c2 =
(

4

δ2
0 − 2

)

c0. (32)

A special case is for pz = 0 = m, we get the follow-
ing energy eigenvalues of the system under a linear scalar
potential

En = (2 n + 1)Ω

+
√√√
√(2 n + 1)2 Ω2 +

(
n + 1

2

) (

1 + k2
L

2 ω2

)
k2
L

ω
+ p2

yk
2
L

ω2 .

(33)

For kL = 0, that is, no linear scalar confining potential, Eq.
(33) the energy eigenvalues of the system are same the energy
eigenvalues obtained in [1]. Thus we see that the presence of
a linear scalar confining potential, and the vorticity parameter
modifies the energy levels of the system. An important note
that Eq. (31) the energy eigenvalues for nth degree polyno-
mial of the system under a linear scalar potential is different
from the result obtained in [28]. Even though the consid-
ering space-times are of the same cateory, that is, the flat
Gödel-type space-times, the result obtained in [28] is for the
cylindrical symmetry system whereas the cartesian coordi-
nates system for the present one.

Case B: The scalar potential of Coulomb-type is given by

S(x) = kc
x

, (34)

where kc characterizes the Coulomb-type interaction. Con-
sidering the ansatz Eq. (16) into the KG-equation Eq. (15)

with potential (34), we obtain the following differential equa-
tion for ψ(x):

ψ ′′(x)

−
[
α2 E2 x2 + k2

c

x2 + 2 α E py x + 2m kc
x

+ β

]
ψ(x) = 0.

(35)

Let us define r = √
α E x , we have obtained the Schrödinger

form

ψ ′′(r) −
[
r2 + k2

c

r2 + Θ r + ξ

r
+ β0

]
ψ(r) = 0, (36)

where

Θ = 2 py√
α E

, ξ = 2m kc√
α E

, β0 = β

α E
. (37)

Let the solution of Eq. (36) is

ψ(r) = rγ e− r2
2 e− Θ r

2 H(r), γ = 1

2

[
1 +

√
1 + 4 k2

c

]
.

(38)

Substituting Eq. (38) into Eq. (36), we obtained the following
second order differential equation :

r H ′′(r) +
[
2 γ − Θ r − 2 r2

]
H ′(r)

+
[
r

(
Θ2

4
− 2 γ − β0 − 1

)
− (γ Θ + ξ)

]
H(r) = 0,

(39)

which corresponds to the biconfluent Heun equation (BHE)
[88,107,108] and the function H(r) is the biconflent Heun
function :

H(r) = HB

(
2 γ,Θ,

Θ2

4
− β0, ξ ; r

)
. (40)

Let us proceed with the search for bound states solutions,
therefore we use the Frobenius method and the solution to
equation (38) is a power series expansion (25) around the
origin. We obtain the following recurrence relation :

cn+2 = 1

(n + 2)(n + 2 γ + 1)

[
cn+1 {ξ + Θ (n + γ + 1)}

+
(

2 n − Θ2

4
+ 2 γ + β0 + 1

)
cn

]
, n ≥ 1.

(41)

The coefficients of the power series expansion, for examples,
c1 and c2 are
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c1 =
(

Θ

2
+ ξ

2 γ

)
c0,

c2 = 1

2 (2 γ + 1)

[
c1 {ξ + Θ (γ + 1)}

+
(

−Θ2

4
+ 2 γ + β0 + 1

)
c0

]
. (42)

For the bound states solutions, we assume that the function
ψ(r) vanishes at r → 0 and r → ∞. Since we have written
the function H(r) as a power series expansion around the
origin in Eq. (25), then, the relativistic bound state solutions
can be achieved by imposing that the power series expansion
(25) or the biconfluent Heun series becomes a polynomial of
degree n. Through the recurrence relation (41), we can see
that the power series expansion (25) becomes a polynomial of
degree n by imposing two conditions [31,89,107,109–111]:

cn+1 = 0,

(
Θ2

4
− 2 γ − β0 − 1

)
= 2 n, (43)

where n = 1, 2, 3.... Substituting various term into the Eq.
(43) and analysing the energy quantization condition, we
obtain the following eigenvalue equation:

E2
n −

(
2 n + 2 +

√
1 + 4 k2

c

)
α En − (p2

z + m2) = 0.

(44)

Therefore the relativistic energy eigenvalues of the system
under a scalar potential of Coulomb-type are

En =
(
n + 1 + 1

2

√
1 + 4 k2

c

)
α

+
√(

n + 1 + 1

2

√
1 + 4 k2

c

)2

α2 + p2
z + m2

= 2

(
n + 1 + 1

2

√
1 + 4 k2

c

)
Ω

+
√

4

(
n + 1 + 1

2

√
1 + 4 k2

c

)2

Ω2 + p2
z + m2.

(45)

And the corresponding eigenfunctions are

Ψn(t, r, y, z) = Cn e
−i (En t−py y−pz z) ψn(r), (46)

where ψn(r) is given by Eq. (38), andCn is the normalization
constant. Thus the presence of Coulomb-type scalar poten-
tial, and the vorticity parameter modifies the levels of the
system.

Note that the Eq. (45) does not represent the general
expression for eigenvalue problem. One can obtain the eigen-
values one by one, that is, E1, E2 by imposing the additional

condition cn+1 = 0 in the recurrence relation. The solu-
tion with Heun’s Equation makes it possible to obtain the
eigenvalues one by one as done in Refs. [109,110] and not
explicited in general form by all eigenvalues n. To obtain
the eigenvalues and corresponding eigenfunctions explicitly,
two special cases corresponding to n = 1, 2 are study below
in some details similar to that in [109,110]. The remaining
cases corresponding to n > 2 can be studied in the same way.

(1) For n = 1, the conditions (43) are

(
Θ2

4
− 2 γ − β0 − 1

)
= 2 , c2 = 0 (47)

which implies

c1 = 2

{ξ + Θ (γ + 1)} c0 =
(

Θ

2
+ ξ

2 γ

)
c0, (48)

with the relation (Θ
2 + ξ

2 γ
) (ξ + Θ (γ + 1)) = 2 and the

corresponding eingenvalue and eigenfunction are

E1 = 2

(

2 +
√

1

4
+ k2

c

)

Ω

+
√√√
√4

(

2 +
√

1

4
+ k2

c

)2

Ω2 + p2
z + m2,

Ψ1 = C1 e
−i (E1 t−py y−pz z) ψ1(r),

ψ1 = rγ e− r
2 (r+Θ) (c0 + c1 r)

= rγ e− r
2 (r+Θ)

[
1 + 2

ξ + Θ (γ + 1)
r

]
c0. (49)

(2) For n = 2, the conditions (43) are

(
Θ2

4
− 2 γ − β0 − 1

)
= 4 , c3 = 0 (50)

which implies

c1 = 2

[ξ + Θ (γ + 1)] c0,

c2 = 2

[ξ + Θ (γ + 2)] c1

= 4

[ξ + Θ (γ + 2)][ξ + Θ (γ + 1)] c0, (51)

and the corresponding eingenvalue and eigenfunction are

E2 = 2

(

3 +
√

1

4
+ k2

c

)

Ω

+
√√√√4

(

3 +
√

1

4
+ k2

c

)2

Ω2 + p2
z + m2,

Ψ2 = C2 e
−i (E2 t−py y−pz z) ψ2(r),
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ψ2 = rγ e− r
2 (r+Θ) (c0 + c1 r + c2 r

2)

= rγ e− r
2 (r+Θ)

[
1

+ 2

(ξ + Θ (γ + 1))

{
1 + 2

(ξ + Θ (γ + 2))
r

}
r

]
c0.

(52)

Equation (36) can be transformed to the compact Liou-
ville’s normal form

(
d2

dr2 −
2∑

i=−2

ai r
i

)

ψ(r) = 0, (53)

where the coefficients are given by

a−2 = k2, a−1 = ξ, a0 = β0, a1 = Θ, a2 = 1.

(54)

In this stage, to solve Eq. (53), one can use the generalized
series method by Eshghi et al. [99,112,113], and the param-
eters a0, a1, a2, a−1 and a−2 are given in Eq. (54), and by a
little algebraic calculation, one can evaluate eigenvalues of
the problem.

3.2 Spin-0 particle with vector and scalar potentials of
Coulomb-type in flat Gödel-type metric

Here we study solutions of the Klein–Gordon equation with
vector and scalar potentials of Coulomb-type.

We have considered the Coulomb-type vector potential
A0 = V = κ0

x and the Coulomb-type scalar potential S = kc
x ,

where κ0 and kc are constants. Using the space-time (9), we
obtain the following equation from (8)

∂μ (gμν ∂ν Ψ ) − i e [∂μ (gμν Aν Ψ ) + Aμ gμν ∂ν Ψ ]
−e2 gμν Aμ Aν Ψ = (m + S)2 Ψ

⇒ [−∂2
t + (α x ∂t − ∂y)

2 + ∂2
x + ∂2

z

+ 2 i e
{κ0

x
(1 − α2 x2) ∂t + α κ0 ∂y

}
] Ψ

+ κ2
0 e2 (

1

x2 − α2) Ψ = (m + kc
x

)2 Ψ. (55)

The equation (55) is independent of t, y, z, so it is appropriate
to choose the ansatz given in (16), we obtain the following
differential equation :

ψ ′′(x) −
(

α2 E2 x2 + 2 α E py x + k2
c

x2 + 2m kc
x

)
ψ(x)

+2 e

[
κ0 E

x
(1 − α2 x2) − α κ0 py

]
ψ

+κ2
0 e2

(
1

x2 − α2
)

ψ = β ψ(x)

⇒ ψ ′′(x) −
[

α2 E2 x2 + 2 α E (py + α e κ0) x

+ k2
c − e2 κ2

0

x2 + 2 (m kc − e κ0 E)

x

]

ψ

= (β + κ2
0 e2 α2 + 2 e α κ0 py) ψ(x). (56)

Let us define r = √
α E x , then the Eq. (56) becomes

ψ ′′(r) −
[
r2 + L2

r2 + Φ r + ζ

r

]
ψ(r) = γ0 ψ(r), (57)

where

Φ = 2 (py + α e κ0)√
α E

, L =
√
k2
c − e2 κ2

0 ,

ζ = 2 (m kc − e κ0 E)√
α E

,

γ0 = (β + κ2
0 e2 α2 + 2 e α κ0 py)

α E
. (58)

The solution to Eq. (57) is

ψ(r) = rσ e− r2
2 e− Φ r

2 H(r), σ = 1

2

[
1 +

√
1 + 4 L2

]
,

(59)

where we have assumed k2
c > e2 κ2

0 . Substituting Eq. (59)
into Eq. (57), we obtain

r H ′′(r) + [2 σ − r Φ − 2 r2] H ′(r)

+
[
r

(
Φ2

4
− 2 σ − γ0 − 1

)
− (σ Φ + ζ )

]
H(r) = 0,

(60)

the biconfluent Heun equation (BHE) [88,107,108] and the
function H(r) is the biconflent Heun function :

H(r) = HB

(
2 σ,Φ,

Φ2

4
− γ0, ζ ; r

)
. (61)

The solution of Eq. (61) is a power series expansion (25)
around the origin. We obtain the following recurrence rela-
tion :

cn+2 = 1

(n + 2)(n + 2 σ + 1)

[
cn+1 {ζ + Φ (n + σ + 1)}

+
(

2 n − Φ2

4
+ 2 σ + γ0 + 1

)
cn

]
, n ≥ 1.

(62)
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The coefficients of the power series expansion, for examples,
c1 and c2 are

c1 =
(

Φ

2
+ ζ

2 σ

)
c0,

c2 = 1

2 (2 σ + 1)

[
c1 {ζ + Φ (σ + 1)}

+
(

−Φ2

4
+ 2 σ + γ0 + 1

)
c0

]
. (63)

The power series expansion becomes a polynomial of rn

by imposing the following two condition:

cn+1 = 0,

(
2 σ + γ0 − Φ2

4
+ 1

)
= −2 n. (64)

Substituting various terms into Eq. (64) and analysing the
condition, we get the energy eigenvalues equation:

E2
n −

(
2 n + 2 +

√
1 + 4 L2

)
α En − (p2

z + m2) = 0.

(65)

Therefore the relativistic energy eigenvalues of the system
are

En =
(
n + 1 + 1

2

√
1 + 4 L2

)
α

+
√(

n + 1 + 1

2

√
1 + 4 L2

)2

α2 + p2
z + m2

= 2 Ω

(
n + 1 + 1

2

√
1 + 4 L2

)

+
√

4 Ω2

(
n + 1 + 1

2

√
1 + 4 L2

)2

+ p2
z + m2,

(66)

where L =
√
k2
c − e2 κ2

0 . Thus the presence of scalar and
vector potentials of Coulomb-type, and the vorticity param-
eter modifies the levels. The corresponding eigenfunctions
are

Ψn = Bn e
−i (En t−py y−pz z) ψn(r), (67)

where ψn(r) is given by Eq. (59), and Bn is the normalization
constant. Note that if one takes κ0 = 0, that is, without any
vector potential of Coulomb-type, we get back Eq. (45) the
energy eignevalues of the system with only scalar potential
of Coulomb-type. On the other hand, for kc = 0, that is,
no scalar potential of Coulomb-type, we get the following

energy eigenvalues of spin-0 particles under a vector poten-
tial of Coulomb-type

En = 2 Ω

(

n + 1 +
√

1

4
− e2 κ2

0

)

+
√√√√4 Ω2

(

n + 1 +
√

1

4
− e2 κ2

0

)2

+ p2
z + m2.

(68)

Here also the Eq. (66) does not represent the general
expression for eigenvalue problem. One can obtain the eigen-
values one by one, that is, E1, E2 by imposing the additional
condition cn+1 = 0 in the recurrence relation. The solution
with Heun’s Equation makes it possible to obtain the eigen-
values one by one and but not explicited in general form
by all eigenvalues n. The eigenfunctions and corresponding
eigenvalues for two special cases corresponding to n = 1, 2
are studied below in some details (see Refs. [109,110]). The
remaining cases corresponding to n > 2 can be studied in
the same way.

(1) For n = 1, the conditions (64) are

(
Φ2

4
− 2 σ − γ0 − 1

)
= 2 , c2 = 0 (69)

which implies

c1 = 2

{ζ + Φ (σ + 1)} c0 =
(

Φ

2
+ ζ

2 σ

)
c0, (70)

with the relation (Φ
2 + ζ

2 σ
) (ζ +Φ (σ + 1)) = 2 and the cor-

responding eingenvalues and eigenfunctions from (66) and
(67) are

E1 = 2

(

2 +
√

1

4
+ k2

c − e2 κ2
0

)

Ω

+
√√
√√4

(

2 +
√

1

4
+ k2

c − e2 κ2
0

)2

Ω2 + p2
z + m2,

Ψ1 = B1 e
−i (E1 t−py y−pz z) ψ1(r),

ψ1 = rσ e− r
2 (r+Φ) (c0 + c1 r)

= rσ e− r
2 (r+Φ)

[
1 + 2

ζ + Φ (σ + 1)
r

]
c0. (71)

(2) For n = 2, the conditions (64) are

(
Φ2

4
− 2 σ − γ0 − 1

)
= 4 , c3 = 0 (72)
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which implies

c1 = 2

{ζ + Φ (σ + 1)} c0,

c2 = 2

{ζ + Φ (σ + 2)} c1

= 4 c0

[ζ + Φ (σ + 2)][ζ + Φ (σ + 1)] , (73)

and the corresponding eingenvalue and eigenfunction are

E2 = 2

(

3 +
√

1

4
+ k2

c − e2 κ2
0

)

Ω

+
√√√
√4

(

3 +
√

1

4
+ k2

c − e2 κ2
0

)2

Ω2 + p2
z + m2,

Ψ2 = B2 e
−i (E2 t−py y−pz z) ψ2(r),

ψ2 = rσ e− r
2 (r+Φ) (c0 + c1 r + c2 r

2)

= rσ e− r
2 (r+Φ)

[
1

+ 2

ζ + Φ (σ + 1)

{
1 + 2

ζ + Φ (σ + 2)
r

}
r

]
c0.

(74)

Eq. (57) can be transformed to the compact Liouville’s
normal form

(
d2

dr2 −
2∑

i=−2

ai r
i

)

ψ(r) = 0, (75)

where the coefficients are

a−2 = L2, a−1 = ζ, a0 = γ, a1 = Φ, a2 = 1. (76)

To solve Eq. (75), one can use the generalized series method
by Eshghi et al. [99,112,113], and by a little algebraic cal-
culation, one can evaluate eigenvalues of the problem.

4 Results

Before presenting our result, let us present the recent stud-
ies [28,58,77,78,107,114] on the problems involving Linear,
Coulomb-type and other interactions on the Klein–Gordon
equation and the Heun’s differential equation.

In Ref. [77], the second order Heun differential equation
is of the form

H ′′(r) +
[

2 |l| + 1

r
− δ − 2 r

]
H ′(r) + [g − h

r
] H(r) = 0.

(77)

The energy eigenvalues are

E2
n,l = m2 + 2m

√

ω2
n,l + μ2

m2 (n + |l| + 1) − m ωn,l

− μ2

(ω2
n,l + μ2

m2 )
, (78)

Equation (78) corresponds to the spectrum for spinless par-
ticle in the Klein–Gordon oscillator subject to a linear con-
fining potential in (2+1)-dimension.

In Ref. [78], the second order Heun differential equation
is of the form

H ′′(r) +
[

2 |γ | + 1

r
− 2 r

]
H ′(r)

+
[

β

m ω
− 2 − 2 γ + δ

r

]
H(r) = 0. (79)

The energy eigenvalues are

E2
n,l = m2 + m ωn,l (2 n + 2 |γ | + 1). (80)

Equation (80) corresponds to the spectrum of energy of the
Klein–Gordon oscillator under the influence of a Coulomb
potential.

In addition, the Klein–Gordon oscillator under the influ-
ence of a Coulomb potential and linear scalar potential in
Ref. [78], the second order Heun differential equation is of
the form

H ′′(ξ) +
[

2 |γ | + 1

ξ
− μ − 2 ξ

]
H ′(ξ) +

[
σ + ϕ

ξ

]
H(ξ) = 0.

(81)

The energy eigenvalues are

E2
n,l = m2 − m ωn,l + 2 Θn,l (n + |γ | + 1) − m2 ϕ2

Θ2
n,l

,

Θn,l =
√
m2 ω2

n,l + ϕ2. (82)

Equation (82) corresponds to the spectrum of energy of the
Klein–Gordon oscillator under the influence of a Coulomb
potential and the linear scalar potential.

In Ref. [107], the second order Heun differential equation
is of the form

H ′′(ξ) +
[

2 |l| + 1

ξ
− 2 ξ

]
H ′(ξ) +

[
g + d

ξ

]
H(ξ) = 0.

(83)

The energy eigenvalues are

En,l = ω (n + |l| + 1) + Q2 λ2
m

8m
+ k2

2m
. (84)
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Equation (84) is the energy levels of the two-dimensional
harmonic oscillator under the influence of Coulomb-type
potential induced by the interaction between the electric
quadrupole moment and magnetic field.

In Ref. [58], the second order Heun differential equation
is of the form

H ′′(ξ)+
[

Θ

ξ
− α − 2 ξ

]
H ′(ξ)+

[
g − α Θ + 2 δ

2 ξ

]
H(ξ) = 0.

(85)

The energy eigenvalues are

En,l = ω (n + |l| + 1) − η2

2m ω2 + μ2 λ2

8m
+ k2

2m
. (86)

Equation (86) corresponds to the spectrum of energy of a
moving atom with a magnetic quadrupole moment subject to
a harmonic potential and a linear confining potential under
the influence of an analogue of the Coulomb potential.

In Ref. [114], the second order Heun differential equation
is of the form

H ′′(r) +
[

2 |γ | + 1

r
− 2 r

]
H ′(r) +

[
v + ν

r

]
H(r) = 0.

(87)

The energy eigenvalues are

En,l =
√

ω2
n,l

4
+ Ω ωn,l (n + |γ | + 1) − 1

2
l ωn,l − Ω l.

(88)

Equation (88) corresponds to the energy levels obtained from
the effects of the Kratzer potential and rotating effects on the
Landau-type system for a neutral particle (atom, molecule)
with an induced electric dipole moment.

In Ref. [28], the linear confinement of a scalar particle
in Som-Raychaudhuri space-time with a cosmic string, the
second order Heun differential equation is of the form

H ′′(x) +
[

2 |γ |
α

+ 1

x
− θ − 2 x

]

H ′(x)

+
⎡

⎣β + θ2

4
− 2 − 2 |l| −

θ
(

2 |γ |
α

+ 1
)

2 x

⎤

⎦ H(x) = 0.

(89)

The energy eigenvalues equation is

E2
n,l − 2 Ω l

α
En,l − Cn,l = 0,

Cn,l = M2 + p2
z + 2 ωn,l (n + |l|

α
+ 1) − k2 M2

ω2
n,l

. (90)

Eq. (90) corresponds to the energy levels of polynomial of
degree n of a scalar particle in the Klein–Gordon equation
under the influence of linear scalar potential with a cosmic
string.

In the present work, the confinement of a scalar particle
in a topologically trivial flat Gödel-type space-time with a
linear scalar potential, the eigenvalues and eigenfunctions
corresponding to n = 1, 2 are

n = 1 : E1 = 3Ω +
√

9Ω2 + m2 + p2
z + A1,

A1 = 3

2

(

1 + k2
L

2ω2

)
k2
L

ω
+ (p2

y − m2)
k2
L

ω2

−2m kL py

(

1 − k2
L

2ω2

)

,

ψ1(r) = e− r
2 (r+δ0) (1 + 2

δ0
r) c0, (91)

n = 2 : E2 = 5Ω +
√

25Ω2 + m2 + p2
z + A2,

A2 = 5

2

(

1 + k2
L

2ω2

)
k2
L

ω
+ (p2

y − m2)
k2
L

ω2

−2m kL py

(

1 − k2
L

2ω2

)

,

ψ2(r) = e− r
2 (r+δ0)

[

1 + 4 (δ0 + r)

δ2
0 − 2

r

]

c0. (92)

The confinement of a scalar particle in a flat Gödel-type
space-time under Coulomb-type scalar potential, the second
order Heun differential equation is of the form

r H ′′(r) + [2 γ − Θ r − 2 r2] H ′(r)

+
[
r

(
Θ2

4
− 2 γ − β0 − 1

)
− (γ Θ + ξ)

]
H(r) = 0.

(93)

The relativistic energy eigenvalues for nth degree polynomial
are

En = 2 Ω

(

n + 1 +
√

1

4
+ k2

L

)

+
√√√
√4 Ω2

(

n + 1 +
√

1

4
+ k2

L

)2

+ p2
z + m2. (94)

The relativistic energy eigenvalues and eigenfunctions cor-
responding to n = 1, 2 has given in explicitly in Eq. (49),
Eq. (52) and others are in the same way.

The Confinement of spin-0 particles in flat Gödel-type
space-time under a vector and scalar potential of Coulomb-
type, the second order Heun differential equation is of the
form
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r H ′′(r) + [2 σ − r Φ − 2 r2] H ′(r)

+
[
r

(
Φ2

4
− 2 σ − γ0 − 1

)
− (σ Φ + ζ )

]
H(r) = 0.

(95)

The relativistic energy eigenvalues for nth degree polynomial
are

En = 2 Ω

(

n + 1 +
√

1

4
+ k2

c − e2 κ2
0

)

+
√√√√4 Ω2

(

n + 1 +
√

1

4
+ k2

c − e2 κ2
0

)2

+ p2
z + m2.

(96)

The relativistic energy eigenvalues and eigenfunctions corre-
sponding to n = 1, 2 has given more explicitly in Eqs. (71),
(74) and others are in the same way.

Note that for solutions investigated in this article, we do
not have a general expression for the eigenvalues of energy.
For solutions that have discussed in sub-section 3.1 and sub-
section 3.2, the Eqs. (45) and (66) are not represent the gen-
eral expression for eigenvalues of energy. By imposing the
additional condition cn+1 = 0 in the recurrence relation, one
can get solutions for each level individually as done in Refs.
[109,110]. We have evaluated these levels corresponding to
n = 1, 2 by Eq. (49), Eq. (52) and Eq. (71), Eq. (74) for exam-
ples. Similarly, the Eq. (91), Eq. (92) are the eigenvalues for
each level due to the imposition of the additional condition
cn+1 = 0.

5 Conclusions

The relativistic energy levels of a scalar and spin-0 parti-
cles with linear scalar potential in Gödel universe, Gödel-
type solutions in flat, spherical and hyperbolic spaces with or
without cosmic string, were investigated by several authors.
In Ref. [28], authors have shown that the vorticity and the
topological defect stem from a particular Gödel-type solu-
tion called the Som-Raychaudhuri space-time with a cosmic
string. By analysing the energy associated with the radial
mode, they have shown that both the vorticity and the topol-
ogy of the cosmic string modifies the energy eigenvalues
and give rise to the allowed energies. Note that the line ele-
ment considered for the Som-Raychaudhuri space-time in
[28] is for the cylindrical symmetry system and by solving the
Klein–Gordon equation they obtained the energy eigenval-
ues. In Ref. [99], authors considered the cylindrical symme-
try Som-Raychaudhuri space-time in the presence of a topo-
logical defect, and analyze the Yukawa-like confinement of
a relativistic scalar particle. They have calculated the energy
eigenvalues and wave-functions by using the generalized

series method. In Ref. [94], spin-0 equation in the presence
of a vector and a scalar potential, were investigated. They
examined the wave equation on the Klein–Gordon oscillator
in a cosmic string space-time and have shown that the poten-
tials allow the formation of bound states, and the topological
defect modifies the energy levels of the system. In Ref. [23],
the obtained energy eigenvalues of flat Gödel-type space-
time (Som-Raychaudhuri metric) is reduced to the energy
levels obtained in [21,30] and to the Landau levels in the
presence of cosmic string [31].

We have analysed the influence of a linear scalar poten-
tial on the Klein–Gordon equation in a topologically trivial
flat Gödel-type space-time. The flat Gödel-type space-time
considered here is in cartesian coordinates system and we
have solved the Klein–Gordon equation in this spac-time
with a linear scalar potential. We have seen that Eq. (31)
the energy eigenvalues of the system get modified by the
presence of the confining potential, and the vorticity param-
eter Ω characterising the space-time. In the energy eigenval-
ues, the ground state is determined by the quantum number
n = 1 instead of the quantum number n = 0. Observe that
the present result is different from the one obtained in Ref.
[28] because of the cylindrical symmetry Som-Raychaudhuri
space-time whereas, the present Gödel-type flat solution is
in the cartesian coordinates system. Similarly, the obtained
result is different from the one presented in Ref. [99]. Mod-
els with confining potentials have been used to describe the
spectrum of quarkonia-type systems. In the case of linear
confining potential, this would be the confining potential of
quarks. This type of potential has been used to investigate
quarkonia in heavy quark-model. Thereby, the study of the
linear confinement of relativistic scalar particle in the studied
space-time can be used as Quarkonia-type systems to inves-
tigate heavy quarkonia where, the rotation plays the role of
external uniform magnetic field. We have also considered the
Coulomb-type scalar potential on the Klein–Gordon equation
and seen that the presence of Coulomb-like scalar poten-
tial modifies the energy levels and Eq. (45) the nth degree
polynomial of energy spectrum associated with this equation
depends on the confining scalar potential, and the vorticity
parameter and Eq. (46) the corresponding eigenfunctions.
We have evaluated the eigenvalues and eigenfunctions for
the special cases corresponding to n = 1, 2 more explicitly
Eqs. (49), (52). Furthermore, we have obtained Eq. (66) the
energy eigenvalues for nth degree polynomial with vector
and scalar potentials of Coulomb-type by solving the rela-
tivistic Klein–Gordon equation of spin-0 particles. We have
seen that the energy eigenvalues of the system get modifies
and depend on the vorticity parameter, and the vector (κ0)
and scalar potential (kc) of Coulomb-type. We have evalu-
ated the energy eigenvalues and eigenfunction for the special
cases corresponding to n = 1, 2 in more details Eq. (71), Eq.
(74) more explicitly. Note that the Eq. (45) and Eq. (66) are
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not represent the general expression for eigenvalues prob-
lem. One can obtain the eigenvalues one by one, that is,
E1, E2 by imposing the condition cn+1 = 0 in the recur-
rence relation. The solution with Heun’s Equation makes it
possible to obtain the eigenvalues one by one as done in
Refs. [109,110] and not explicited in general form by all
eigenvalues n. We have evaluated solution for each level
individually corresponding to n = 1, 2 by Eq. (49), Eq.
(52), Eq. (71), Eq. (74) and Eq. (91), Eq. (92) for exam-
ples.

So, in this paper, we have shown some results about
quantum systems where general relativistic effects are taken
into account, that in addition with the previous results
[21,22,28,35,94,98,99] the present may possess some inter-
esting effects.
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