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a b s t r a c t

This paper presents a general framework for the design of linear controllers for linear systems subject
to time-domain constraints. The design framework exploits sums-of-squares techniques to incorporate
the time-domain constraints on closed-loop signals and leads to conditions in terms of linear matrix
inequalities (LMIs). This control design framework offers, in addition to constraint satisfaction, also the
possibility of including an optimization objective that can be used to minimize steady state (tracking)
errors, to decrease the settling time, to reduce overshoot and so on. The effectiveness of the framework is
shown via a numerical example.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The transient response to reference commands or disturbance
inputs is an important performance qualifier in many control
systems. Unfortunately, most control design strategies cannot
cope directly with requirements on time-domain signals such as
actuator amplitude or rate limits, no output signal overshoot or
undershoot, trajectory planning constraints and so on. Especially
in the continuous-time case, there are hardly any systematic
controller design methods to enforce time-domain constraints on
e.g. tracking errors and control inputs.

In the discrete-time case, model predictive control (MPC)
(see e.g. the surveys Garcia, Prett, & Morari, 1989; Mayne,
Rawlings, Rao, & Scokaert, 2000; Qin & Badgwell, 2003) is a
widely used technique to cope with constraints on inputs and
states. In MPC a control action is prescribed that is obtained
by solving a finite or infinite horizon optimization problem that
can incorporate input, state and output constraints in a direct
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manner. A drawback of predictive control concepts and online
optimization-based methods in general is that they require a high
computational effort with the consequence that they cannot be
implemented on fast motion systems where high sampling rates
are required, typically in the order of several kHz. Explicit MPC
(Bemporad, Heemels, & De Schutter, 2002; Bemporad, Morari,
Dua, & Pistikopoulos, 2002; Borrelli, 2003; Tøndel, Johansen,
& Bemporad, 2003) might offer an appealing solution as it
precomputes a piecewise affine state feedback for discrete-time
systems off-line. Still, the explicit control law often leads to a
complex description consisting of many affine feedbacks, which
also cannot realize the high sampling rates typically needed for
motion systems of considerable size, although recent research is
focused on decreasing the implementation complexity of MPC; see
for instance Grancharova, Johansen, and Tøndel (2005), Grieder,
Kvasnica, Baotić, and Morari (2005), Johansen, Jackson, Schreiber,
and Tøndel (2006), Kvasnica, Christophersen, Herceg, and Fikar
(2008) and Lazar, Heemels, Roset, Nijmeijer, and Bosch (2008) and
the references therein. An alternative approach with strong ties to
MPC is based on so-called reference governors; see e.g. Bemporad,
Casavola, and Mosca (1997) and Gilbert and Kolmanovsky (2002)
and the references therein. A reference governor is a nonlinear
device that is added to a primal controller, which functions well
in the absence of constraints. The reference governor modifies
the reference signal supplied to the primal controller in order to
enforce the input and state constraints. This approach suffers from
the mentioned drawbacks in MPC to some extent as well, but has
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the advantage that the referencemodifications are often needed at
a lower sampling frequency than the updates of the primal control
loop. A major difference with the method presented in this paper
is that the overall control systems in case of reference governors
become nonlinear devices modifying the supplied reference, while
the method in this paper aims at designing linear controllers that
satisfy the time-domain constraints without any modification of
the references or disturbances.

Besides these predictive control methods, that are typically
suited for a discrete-time context, there are only a few methods
available in the literature that can directly synthesize controllers
incorporating time-domain constraints in the continuous-time
setting. For instance in the case of input constraints, Goebel and
Subbotin (2007) and Heemels, van Eijndhoven, and Stoorvogel
(1998) consider the linear quadratic regulator problem with
positivity constraints on the input, while various control problems
with amplitude and rate constraints on the input signal are
solved in Saberi, Stoorvogel, and Sannuti (2000). The latter line
of work has also been extended to stabilization and output
regulation problems with amplitude and rate constraints on
certain output variables, see, e.g., Saberi, Han, and Stoorvogel
(2002). Other methods exist that actually allow the control output
to saturate such as, for instance, the usage of anti-windup schemes
(Franklin, Powell, & Emami-Naeini, 2002; Tarbouriech, Garcia,
& Glattfelder, 2007; Tarbouriech & Turner, 2009) or LQR/LQG
control methods (Ching, Kabamba, & Meerkov, 2010; Gokcek,
Kabamba, & Meerkov, 2001). These methods, however, do not
enforce constraint satisfaction but rather guarantee stability or
recover performance despite the saturation nonlinearity in the
loop. The abovementioned techniques cannot handle time-varying
constraints, and, except for Saberi et al. (2002), state or output
constraints are not considered either. In addition, all the above
mentioned techniques result in general in nonlinear controllers.

As already briefly mentioned, in this paper the objective is to
derive a design method for linear controllers that incorporate pos-
sibly time-varying time-domain constraints on all closed-loop sig-
nals (inputs, states and outputs). Within this context, a commonly
used method to capture the essence of time-domain specifications
is the reformulation into frequency domain requirements (Doyle,
Francis, & Tannenbaum, 1992). Unfortunately, such reformulations
are in general either approximate, conservative or both.

Amethodology to enforce time-domain constraints on the input
and output of a continuous-time linear control system is presented
recently in Henrion, Tarbouriech, and Kučera (2005), where linear
matrix inequality (LMI) techniques are used to synthesize a
fixed order linear controller that satisfies the constraints. This
is done in a polynomial setting in the sense that a controller is
designed according to the well-known pole placement method
using the Diophantine equation. This method allows the design
of a controller that results in a closed-loop transfer function with
prescribed pole locations, either exact, or within an admissible
region of the complex plane. In Henrion et al. (2005), all controllers
with the prescribed pole locations are characterized using the
Youla–Kučera parametrization (Kučera, 1994). Next the degrees
of freedom of the Youla–Kučera parametrization are used to
enforce certain time-domain constraints, such as bounds on the
input amplitude and output overshoot, exploiting sums-of-squares
techniques. Unfortunately, the approach in Henrion et al. (2005)
is limited to the assignment of distinct strictly negative real
closed-loop poles, which is a severe restriction in the case of
many practical situations such as, for instance, lightly damped
systems. As a consequence, there is a strong need for a general
framework encompassing arbitrary closed-loop pole placement.
The development of such a framework is the main purpose of this
paper.

In particular,we propose an extension to themethod inHenrion
et al. (2005), which leads to a general design framework based
on sums-of-squares LMI techniques and we show indeed that the
resulting linear controller satisfies the time-domain constraints
on closed-loop signals, even when complex conjugate poles are
assigned. This framework is based on two relaxations. One of these
relaxations, of which a preliminary version was presented by the
authors in Aangenent, Heemels, van de Molengraft, and Steinbuch
(2009), can solve the constrained control problem at hand with
arbitrary accuracy and still lead to LMIs. In addition to constraint
satisfaction, we will also include an objective function in the
convex programming problem that can be used tominimize steady
state (tracking) errors, to decrease the settling time, to reduce the
overshoot and so on. As a consequence, the ideas presented in this
paper will lead to a general design framework for optimized linear
controllers with guarantees regarding constraint satisfaction.

The organization of the paper is as follows. The proposed
methodology from Henrion et al. (2005) is briefly reviewed in
Section 2. The extension to complex conjugate poles is treated in
Section 3, which includes the main results. Section 4 discusses
the proposed control design method, and Section 5 provides an
illustrative example. Finally, the conclusions are stated in Section 6.

2. Methodology involving real poles

In Henrion et al. (2005) a method is presented to incorporate
time-domain constraints on input and output signals of a linear
system. It is shown that finding a controller of fixed order that
satisfies these constraints boils down to solving a set of LMIs. In
this section, we shortly review this procedure for completeness
and self-containedness.

2.1. Youla–Kučera parametrization

Consider the control system depicted in Fig. 1 with a linear
single-input–single-output plant P given by the strictly proper
transfer function

P(s) =
b(s)
a(s)

, (1)

where a(s) and b(s) are polynomials in the Laplace variable s. The
controller C , which is to be designed, is described accordingly by

C(s) =
d(s)
c(s)

, (2)

resulting in the complementary sensitivity given by

T (s) =
y(s)
r(s)

=
b(s)d(s)

a(s)c(s)+ b(s)d(s)
. (3)

If a(s) and b(s) are coprime (i.e., their greatest common divisor is
1), then arbitrary pole placement can be achieved by designing the
corresponding controller polynomials. This is done by solving the
polynomial Diophantine equation

a(s)c(s)+ b(s)d(s) = z(s), (4)

where z(s) = (s + p1)(s + p2) . . . (s + pn) is the polynomial
with given roots −p1, . . . ,−pn, which are the desired poles of the
closed-loop system. There are infinitelymany solutions (c(s), d(s))
to (4), but there is a unique solution pair (c0(s), d0(s)) such that
deg d0(s) < deg a(s). In this case we have that d0(s) is of minimal
degree and as such, (c0(s), d0(s)) is called the d-minimal solution
pair. All possible solutions to the Diophantine equation can then be
written as

c(s) = c0(s)+ b(s)q(s),
d(s) = d0(s)− a(s)q(s),

(5)

where q(s) is an arbitrary polynomial such that c0(s) + b(s)q(s)
is non-zero. This polynomial, called the Youla–Kučera parameter
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Fig. 1. Block diagram of the closed-loop system with controller C , plant P , and
reference signal r , control output signal u, and output signal y.

(Francis, 1987), creates extra freedom in the design of the
controller. While the closed-loop poles are invariant for any choice
of the Youla–Kučera parameter, the Youla–Kučera parameter
enables placement of closed-loop zeros to alter the response. Only
proper controllers are considered and therefore there is a degree
constraint on q(s). Since the plant was assumed to be strictly
proper, and under the additional assumption that deg z(s) ≥

2 deg a(s) − 1 (to enable arbitrary pole placement with proper
controllers), this constraint is given as inKučera andZagalak (1999)
by

deg q(s) ≤ deg z(s)− 2 deg a(s). (6)

The extra freedom in the control design parameterized by q(s)
satisfying (6) can now be used to satisfy additional time-domain
constraints as will be explained in the next section.

2.2. A positive polynomial formulation of time-domain constraints

We will explain the procedure in Henrion et al. (2005) using
the typical example of constraints on the step response. Hence, we
consider the response y to a step input (r(s) =

1
s ). The Laplace

transformof the closed-loop system’s output (assuming zero initial
conditions) is then given by

y(s) =
1
s
b(s)d(s)
z(s)

=
1
s
b(s)d0(s)

z(s)
−

1
s
a(s)b(s)
z(s)

q(s). (7)

At this point of the control design a restrictive assumptionwasmade
(Henrion et al., 2005), namely

Assumption 2.1. All the assigned poles −p1, . . . ,−pn are distinct
strictly negative rational numbers.

Using this assumption and z(s) =
n

i=1(s+pi) the partial fractional
decomposition of (7) leads to

y(s, q) =

n
i=0

yi(q)
s + pi

, (8)

where p0 = 0 and yi(q), i = 1, . . . , n are appropriate coefficients
following from the decomposition, which are influenced by
the choice of the design parameter q(s) =

dq
i=0 qis

i. The
coefficients yi(q) depend in an affine manner on the parameter
q = (q0, q1, . . . , qdq) in the sense that there exist matrices A ∈

R(n+1)×(n+1), B ∈ R(n+1)×(qd) and a vector b ∈ Rn+1 such that

A


y0(q)
y1(q)
...

yn+1(q)

 = BqT + b. (9)

This follows directly by comparing (7) and (8), and equating the
coefficients of the powers of s in the resulting numerator poly-
nomials (see also (46) below for an example). The corresponding
time-domain signal is given by

y(t, q) =

n
i=0

yi(q)e−pit . (10)
Let pi =
ni
di

be the ratios of the integers ni and di, and let m denote
the smallest positive number1 of the denominators such that pi =
p̄i
m for some positive integers p̄i, i = 0, 1, . . . , n. This means that
the time-domain output signal at time t ∈ R+ := [0,∞) can now
be expressed as the polynomial

y(λ, q) =

n
i=0

yi(q)λp̄i (11)

in the indeterminate λ = e−t/m. Obviously, λ lies in the interval
[0, 1] as t ∈ R+. Suppose that the output y(t, q) of the system
needs to be bounded according to

ymin ≤ y(t, q) ≤ ymax ∀ t ∈ R+. (12)

Formulation (12) is equivalent to enforcing the polynomial bound
constraints
P1(q, λ) := y(λ, q)− ymin ≥ 0
P2(q, λ) := ymax − y(λ, q) ≥ 0 ∀ λ ∈ [0, 1], (13)

where P1 and P2 are polynomials in both λ and q. This problem is a
special case of the followingmore general problemofminimizing a
polynomialwith polynomial constraints over a basic semialgebraic
set.

Definition 2.1. A set D is called a basic semialgebraic set if it can
be described as

D = {x ∈ Rn
| ei(x) ≥ 0, i = 1, . . . ,Me and

fj(x) = 0, j = 1, . . . ,Mf } (14)

for certain polynomials ei : Rnx → R, i = 1, . . . ,Me and fj :

Rnx → R, j = 1, . . . ,Mf .

Problem 2.1 (Polynomial Optimization Problem). Consider two
variables z ∈ Rnz and x ∈ Rnx and let polynomials gi : Rnz ×Rnx →

R, i = 1, . . . ,Mg , and p : Rnz → R be given. Moreover, let a
collection of basic semialgebraic sets Dl ⊆ Rnx , l = 0, . . . ,N
be given. A (robust) polynomial optimization problem according
to this data is given by

min
z

p(z)

s.t. gi(z, x) ≥ 0, i = 1, . . . ,Mg ∀ x ∈

N
l=0

Dl.
(15)

Indeed, (13) can now be written in the form of Problem 2.1
by taking z = q, x = λ,Mg = 2, N = 0, p(z) = 0,
g1(z, x) = P1(q, λ), g2(z, x) = P2(q, λ), and D0 = {λ ∈ R |

0 ≤ λ ≤ 1}. Although the bounds ymin and ymax in (13) are
chosen to be constants for illustrating purposes, they can also be
selected as polynomials in λ, i.e., in the form ymin(λ) and ymax(λ)
without any complications. In this case the bounds in (12) become
time-varying. Univariate positive polynomial constraints (meaning
polynomials in only one variable), such as (13) with λ ∈ D0 =

[0, 1] ⊆ R, can be transformed into LMI conditions, see Henrion
et al. (2005) for the details. Once we transformed the design
problem into a polynomial optimization problem as formulated in
Problem 2.1, there are appropriate tools available for solving the
problem. Therefore, we restrict ourselves to the transformation of
the constrained control problems at hand into manifestations of
Problem 2.1.

1 In principle m can be chosen to be any positive number that results in integer
values of p̄i . However, it turns out that by choosing m as the smallest possible
positive number the order of the resulting polynomial optimization problem is the
lowest.
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The approach discussed in this section is not restricted to
bounding only the output of a system. Indeed, by using the
appropriate transfer functions, any signal in the loop can be
constrained. The control output u, for example, can be bounded
using

u(s) = r(s)
a(s)d0(s)

z(s)
− r(s)

a2(s)
z(s)

q(s) (16)

in addition to, or instead of (7). Also, other Laplace transformable
inputs or disturbances can be used as long as the poles of the
Laplace transform of the corresponding signal are distinct strictly
negative rational numbers and differ from the closed-loop poles
pi. In case the disturbance signal is a (filtered) random process,
the method cannot be applied as is. However, a possible extension
can be to bound the infinity- or 2-norm of the suitably weighted
process sensitivity (or other relevant transfer functions) via e.g.V (s) b(s)c(s)

a(s)c(s)+ b(s)d(s)
W (S)


2/∞

≤ 1. (17)

This way the knowledge of stochastic disturbances can be used
to shape the relevant sensitivity functions to achieve desired
disturbance reduction.

A combination of requirements on different reference signals
can easily be handled at the cost of increasing the size of the
set of LMIs. As for LMIs there are efficient solvers available, e.g.
Sturm (1999), transforming the problem at hand into Problem 2.1
provides an effective solution. The problem derived in this section
was only a feasibility problem (the cost criterion p(z)was chosen to
be 0). In Section 4, wewill also provide relevant choices for the cost
criterion that next to satisfaction of the time-domain constraints
also provides additional desirable properties of the constructed
controller.

3. Problem formulation: the complex pole case

The polynomial representation (10), as derived in Henrion
et al. (2005), of the time response of a linear system to a
Laplace transformable input is unfortunately only possible when
strictly negative rational closed-loop poles are assigned (see
Assumption 2.1). However, inmany cases the assignment of purely
real poles can be undesirable, especially in lightly damped systems
such asmostmotion systems. Furthermore,many reference signals
have Laplace transforms with complex poles. If, for instance, a
sinusoid is used as the reference signal instead of a step, the Laplace
transform is given by r(s) =

ω

s2+ω2 resulting in complex poles
in the system’s response. Therefore, such reference signals cannot
be handled by the approach from Henrion et al. (2005). The main
objective of this paper is to present a solution to the linear control
design problem for time-domain constrained systems of which
the Laplace transforms of the closed-loop responses may contain
complex roots.

When we allow both distinct real and complex poles to be
present in the closed-loop transfer function T (s) and/or the Laplace
transform of the reference signal r(s), the Laplace transform of
the system’s output can be decomposed as the partial fractional
decomposition

y(s) =

nr
i=0

yi
s + pi

+

nr+nc/2+1
i=nr+1

yi
s + αi + jβi

+
y∗

i

s + αi − jβi
, (18)

where nr and nc denote the number of real and complex poles,
respectively, −pi, i = 1, . . . , nr are the locations of the real
poles, −αi ± jβi, i = nr + nc/2 + 1 are the locations of
complex conjugate pairs of poles, and yi are the possibly complex
coefficients (with complex conjugate y∗

i ) that affinely depend on
the design parameter q, see (9) (we omitted this dependence on q
for ease of exposition). To enforce stability, we again assume that
the assigned closed-loop poles have strictly negative real part. The
corresponding time-domain signal is then described by

y(t) =

nr
i=0

yie−pit +

nr+nc/2+1
i=nr+1

(yie−jβit + y∗

i e
jβit)e−αit . (19)

As before, we use the following assumption

Assumption 3.1. pi, αi, and βi are rational numbers.

We denote pi =
p̄i
m , αi =

ᾱi
m , τ =

t
m where m is the smallest

positive number (not necessarily an integer) of pi and αi such that
p̄i and ᾱi can be taken as integers.We denoteβi =

θβ̄i
m for a number

θ (not necessarily an integer) such that β̄i can be taken as integer
as well. For guidelines how to choose θ , see Remark 3.1 below.
Furthermore, let

λ = e−τ . (20)

Using Euler’s formula ejφ = cos(φ)+ j sin(φ) and decomposing the
complex coefficients as yi = ai + jbi, y∗

i = ai − jbi, yields

y(t) =

nr
i=0

yiλpi

+

nr+nc/2+1
i=nr+1


ai2 cos(β iθτ)+ bi2 sin(β iθτ)


λαi . (21)

Obviously, the terms involving the complex poles are non-
polynomial in the indeterminate λ because of the presence of
cos(β iθτ) and sin(β iθτ), which make it impossible to directly use
the positive polynomial approach in Section 2 to bound the output
as in (12). Although the parametersαi, β i and pi are fixed as a result
of the pole placement (and the choice of m and θ ), there still is
freedom in the choice for the coefficients ai, bi, which depend on
the coefficients q = (q0, . . . , qdq) in the Youla–Kučera parameter
q(s). We propose two relaxations to determine the values yi, ai, bi
via polynomial optimization problems to shape the time response
y(t), thereby overcoming the limitations in Henrion et al. (2005).
The first approach is based on an exponential bound relaxation that
results in univariate polynomials. This method has the advantage
that it results in a simple polynomial optimization problem,
but introduces some conservatism. The second method proposes
a multivariate polynomial relaxation that leads to polynomial
problems as in Problem 2.1, while the conservatism can be made
arbitrarily small. Both methods result in polynomial optimization
problems of the type as in Problem 2.1 that can be solved using
LMIs.

3.1. Exponential bound relaxation

To resolve the problem induced by the presence of the products
cos(β iθτ)λ

αi and sin(β iθτ)λ
αi in (21) we relax the problem by

using the fact that

cos(β iθτ), sin(β iθτ) ∈ [−1, 1] ∀τ ∈ R, (22)

and instead of the exact time-response (21), we consider

yupper(λ) =

nr
i=0

yiλpi +
nr+nc/2+1
i=nr+1

(2|ai| + 2|bi|) λαi ,

ylower(λ) =

nr
i=0

yiλpi −
nr+nc/2+1
i=nr+1

(2|ai| + 2|bi|) λαi .

(23)
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In contrast to (21), these exponential bounds on the closed-loop
time response are univariate polynomials in the indeterminate
λ = e−τ (if q is fixed) and can be bounded by specified polynomials
gu(λ) and gl(λ) via the polynomial non-negativity constraints

P3(q, λ) := gu(λ)− yupper(λ) ≥ 0
P4(q, λ) := ylower(λ)− gl(λ) ≥ 0 ∀λ ∈ [0, 1], (24)

where we included the explicit dependence of yi, ai and bi on
q again. The constraints (24) cannot straightforwardly be cast
in the form Problem 2.1 because of the nonlinear operator | ·

|, which is present in these equations. However, each of the
two nonlinear inequality constraints P3 and P4 can be expressed
as 2nc+1 equivalent polynomial inequality constraints P̃3 and P̃4
(2 inequalities for each absolute value expression). Enforcing non-
negativity of (24) on the interval λ ∈ [0, 1] is then again a special
case of Problem 2.1 with z = q, x = λ,Mg = 2, Mh = 0,N = 0,
p(z, x) = 0, g1(z, x) = P̃3(q, λ), g2(z, x) = P̃4(q, λ), and D0 =

{λ ∈ R | 0 ≤ λ ≤ 1}. Therefore, it is possible to determine the
values q = (q0, . . . , qdq) such that the upper and lower bounds
(23) of the closed-loop time response are bounded by gu(λ) (e.g.
gu(λ) = ymax) and gl(λ) (e.g. gu(λ) = ymin) via a polynomial
optimization problem. The exponential bound relaxation does
introduce some conservatism by using relaxation (23) instead of
the exact time-response (21). The second method presented next
offers the possibility to render this conservatism arbitrary small.
In other words, the second method can approximate the original
time-domain constraints with arbitrary accuracy and still lead to
polynomial optimization problems.

3.2. Multivariate polynomial relaxation

The time response (21) is equivalent to

y(t) =

nr
i=0

yiλpi

+

nr+nc/2+1
i=nr+1


(ai + jbi)


cos(β iθτ)− j sin(β iθτ)


+ (ai − jbi)


cos(β iθτ)+ j sin(β iθτ)


λαi . (25)

DeMoivre’s formula,which is closely related to Euler’s formula and
(ejφ)n = ejnφ , states that for any φ ∈ R and any integer n ∈ Z

(cos(φ)+ j sin(φ))n = cos(nφ)+ j sin(nφ), (26)

and hence (25) is equal to

y(t) =

nr
i=0

yiλpi

+

nr+nc/2+1
i=nr+1


(ai + jbi) [cos(θτ )− j sin(θτ )]β i

+ (ai − jbi) [cos(θτ )+ j sin(θτ )]β i

λαi . (27)

Appropriate polynomial functions wi : R2
→ R and ri : R2

→

R, i = nr+1, . . . , nr+nc/2+1 in two variables can nowbe defined
such that (27), and thus the time response (21), can be written as

y(t) =

nr
i=0

yiλpi +
nr+nc/2+1
i=nr+1

(ai2wi(cos(θτ ), sin(θτ ))

+ bi2ri(cos(θτ ), sin(θτ ))) λαi . (28)

This proves the following theorem.
Theorem 3.1. Consider the closed-loop system (3) and let y be the
response to a reference input r and assume that the Laplace trans-
form y(s) of y has only distinct poles such that (18) and Assump-
tion 3.1 hold. Then we have that

{y(t) | t ∈ R+
} = {y(u, v, λ) | (u, v, λ) ∈ Foriginal}, (29)

where y(u, v, λ) is given by the multivariate polynomial

y(u, v, λ) =

nr
i=0

yiλp̄i

+

nr+nc/2+1
i=nr+1

(ai2wi(u, v)+ bi2ri(u, v)) λᾱi (30)

withwi : R2
→ R and ri : R2

→ R, i = nr + 1, . . . , nr + nc/2 + 1
polynomials as in (28) and

Foriginal :=

(u, v, λ) ∈ R3

| u = cos(θτ ), v = sin(θτ ),

λ = e−τ for some τ ∈ R+

. (31)

Proof. The reasoning before the formulation of the theorem
revealed that y(t) under the given assumptions is equal to (19),
which can equivalently be written as (28), where λ = e−τ and
τ =

t
m . �

Due to Theorem 3.1, bounding the output as in (12) to the
interval [ymin, ymax] is equivalent to enforcing the polynomial non-
negativity constraints

P5(q, u, v, λ) := y(u, v, λ)− ymin ≥ 0,
P6(q, u, v, λ) := ymax − y(u, v, λ) ≥ 0

(32)

for all (u, v, λ) ∈ Foriginal. Recall that y(u, v, λ) depends on q via
yi, ai and bi. As we mentioned before, it is of interest to transform
the linear constrained control problem into Problem 2.1. The
conditions (32) are not in this form due to the fact that Foriginal is
not a (finite union of) basic semialgebraic set(s) as in Definition 2.1.
However, this set can be overapproximated by a finite union of
basic semialgebraic sets in an arbitrarily close manner.

Definition 3.1. We call a set Fapprox an ε-close overapproximation
of Foriginal for some ε > 0, if it satisfies the following three
properties:

(1) Fapprox =
N

l=0 Fl for a finite collection of basic semialgebraic
sets F0, . . . ,FN ;

(2) Foriginal ⊆ Fapprox;
(3) Fapprox ⊆ Foriginal + Bε , where Bε := {(0, 0, z) | −ε ≤ z ≤ ε}.

Hence, an ε-close overapproximation ofForiginal contains the set
Foriginal as drawn by the white line in Fig. 2 (for θ = 1), but it is ε-
close in the sense of property (3). Hence, for small ε > 0, replacing
Foriginal by Fapprox only results in small errors and all guarantees
on Fapprox also apply to Foriginal due to property (2). Moreover,
due to property 1 an ε-close overapproximation Fapprox of Foriginal
can be used to embed the polynomial constraints in (32) for all
(u, v, λ) ∈ Foriginal into a version of the constraints in Problem 2.1,
where Dl = Fl, l = 0, . . . ,N .

The following algorithm provides an algorithm that constructs
for each desirable level of approximation ε an ε-close overap-
proximation of Foriginal. The basic idea of the algorithm is to over-
approximate the Foriginal-set by the union of basic semialgebraic
sets Fl, which are obtained by splitting the set Foriginal in the τ -
direction by considering intervals Il := [τl, τl+1), l = 0, . . . ,N ,
where 0 = τ0 < τ1 < · · · < τN+1 = ∞. On each of these
subintervals Il we approximate e−τ by ψl(cos(θτ ), sin(θτ )) using
Fourier series, where ψl : R2

→ R is a polynomial such that
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Fig. 2. Foriginal (white line) drawn inside the cylinder given by u2
+ v2 = 1 and

0 ≤ λ ≤ 1.

|e−τ
− ψl(cos(θτ ), sin(θτ ))| ≤ ε for all τ ∈ Il. Next to ε, the al-

gorithm uses another parameter 0 < T < 2π
θ
, which indicates the

desired length of the intervals Il, l = 0, . . . ,N − 1 (although it will
be modified such that all intervals have the same length).

Algorithm 1. Let 0 < ε < 1 and 0 < T < 2π
θ

be given.

Step 1: Define N := ⌈
− ln ε

T ⌉ and τN := − ln ε and τN+1 := ∞.

FN := {(u, v, λ) ∈ R3
| u2

+ v2 = 1 and 0 ≤ λ ≤ ε}. (33)

Step 2: Divide the remaining interval [0, τN) in N subintervals of
length T̄ :=

τN
N ≤ T < 2π

θ
. Il := [τl, τl+1) with τl = lT̄ , l =

0, . . . ,N − 1.
Step 3: For each l = 0, . . . ,N − 1 define a function φl : R → R

that satisfies:
• φl is at least continuously differentiable, but preferablym

times continuously differentiable (Cm) form ∈ N large;
• φl is periodic with period 2π

θ
;

• φl(τ ) = e−τ for all τ ∈ Il.
Step 4: For each l = 0, . . . ,N − 1 compute the Fourier series

approximation of φl of sufficiently high degree Kl such that

|φl(τ )−

Kl
k=0

[ak cos(kθτ)+ bk sin(kθτ)]| ≤ ε

for all τ ∈ Il, (34)

where ak, bk, k = 0, . . . , Kl are the Fourier coefficients of
φl.

Step 5: For each l = 0, . . . ,N − 1 use De Moivre’s formula to
rewrite

Kl
k=0[ak cos(kθτ) + bk sin(kθτ)] obtained in the

previous step as
Kl

k=0

k
i=0

cki(cos(θτ ))k(sin(θτ ))l =: ψl(cos(θτ ), sin(θτ )),

where ψl : R2
→ R is a polynomial of degree equal to the

degree of the Fourier series.
Step 6: For each l = 0, . . . ,N − 1, define

Fl := {(u, v, λ) ∈ R3
| −ε ≤ λ− ψl(u, v) ≤ ε

∧ u2
+ v2 = 1 ∧ (Sl − Sl+1)u + (Cl+1 − Cl)v

+ Sl+1Cl − Cl+1Sl ≤ 0}, (35)

where Cl := cos(θτl), Sl := sin(θτl).
Step 7: Take Fapprox =

N
l=0 Fl.

Theorem 3.2. For each 0 < ε < 1 and 0 < T < 2π
θ

Algorithm 1 produces an ε-close overapproximation Fapprox of
Foriginal in the sense of Definition 3.1.
Fig. 3. Top-view of the cylinder {(u, v, λ) ∈ R3
| u2

+ v2 = 1, 0 ≤ λ ≤ 1} (solid
grey), the hyperplane {(u, v, λ) ∈ R3

| (36)} (dashed), and the resulting part of the
cylinder given by {(u, v, λ) ∈ R3

| u2
+ v2 = 1, (37), 0 ≤ λ ≤ 1} (solid black).

Proof. First of all, we write Foriginal as
N

l=0 Foriginal,l with
Foriginal,l := {(cos θτ , sin θτ , e−τ ) | τ ∈ Il} for l = 0, 1, . . . ,N asN

l=0 Il = [0,∞). Step 1 considers the interval IN := [τN , τN+1) =

[− ln ε,∞) for which it holds that 0 ≤ e−τ
≤ ε. Hence, clearly

Foriginal,N ⊆ FN and FN ⊆ Foriginal,N + Bε . The construction
of functions φl in step 3 is possible as e−τ is continuous and the
fact that 0 < T̄ ≤ T < 2π

θ
. Hence, step 3 can always be

taken, while the function φl can still be made 2π
θ
-periodic and

continuously differentiable. Step 4 can be realized, because the
Fourier series converges uniformly to a continuously differentiable
periodic function, see, e.g., Asmar (2005) and Powers (2006).
Therefore, uniform convergence proves the existence of a finite
Kl such that (34) holds. Note now that for (u, v, λ) ∈ Foriginal,l

it holds that u2
+ v2 = 1. Obviously, (cos(θτ ), sin(θτ )) for

τ ∈ Il = [τl, τl+1) lies in one of the half spaces generated by
the straight line in R2 through the points (cos(θτl), sin(θτl)) and
(cos(θτl+1), sin(θτl+1)) given by

[sin(θτl)− sin(θτl+1)] cos(θτ )  
u

+ [cos(θτl+1)− cos(θτl)] sin(θτ )  
v

+ sin(θτl+1) cos(θτl)− cos(θτl+1) sin(θτl) = 0, (36)

see Fig. 3. In particular, for all (u, v, λ) ∈ Foriginal,l it holds that

(Sl − Sl+1)u + (Cl+1 − Cl)v + Sl+1Cl − Cl+1Sl ≤ 0 (37)

where Cl := cos(θτl), Sl := sin(θτl). Due to (34), step 5, and using
the above observations, it holds that Foriginal,l ⊆ Fl. Moreover,
similar reasoning using (34) shows that Fl ⊆ Foriginal,l + Bε .
Hence, by taking Fapprox as the union of the resulting sets, i.e.
Fapprox =

N
l=0 Fl, an ε-close overapproximationFapprox of Foriginal

is obtained. This completes the proof. �

For instance, for θ = 1, ε = e−1.5π
≈ 0.009 and T =

T̄ = 0.75π the ε-close overapproximation Fapprox of Foriginal can
be generated with τ0 = 0, τ1 = 0.75π, τ2 = 1.5π and τ3 = ∞

and polynomials

ψ0(u, v)

= 0.398u − 0.971v + 0.616u2
− 0.192uv + 1.179v2

− 0.015u3
+ 0.184u2v,

ψ1(u, v)

= 0.033u + 0.096v + 0.0760u2
+ 0.0534uv + 0.094v2

+ 0.013uv2 − 0.011v3.

(38)
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Fig. 4. Functions e−τ (solid black), ψ0 (solid grey), and ψ1 (dashed grey).

This overapproximation and the polynomials are illustrated in
Fig. 4. If one is satisfied with an overapproximation accuracy of
ε = e−1.5π

≈ 0.009, then one can use this precomputed
overapproximation (for the case θ = 1). If it is desired to have a
simpler overapproximation (with less regions and polynomials of
lower degree) or an even tighter approximation with ε < 0.009,
one can run Algorithm 1 to obtain it.

Remark 3.1. A few comments are in order:

• The reason to take the functions φl in step 3 as smooth as
possible (m in Cm as large as possible) is that a lower degree
Kl is needed to satisfy (34). Indeed, when φl ∈ Cm then the
Fourier coefficients satisfy kmak → 0, kmbk → 0 when k →

∞ and thus the approximation error |
Kl

k=0[ak cos(kθτ) +

bk sin(kθτ)] − e−τ
| = |


∞

k=Kl
[ak cos(kθτ)+ bk sin(kθτ)]| on Il

is smaller than ε for smaller values of Kl.
• A sufficiently high degree of Kl such that (34) holds can be

obtained by increasing Kl incrementally until (34) is satisfied.
If one is satisfied with an overapproximation accuracy of ε =

e−1.5π , then the precomputed overapproximation (38) with
N = 2 and Kl = 3 can be used in case θ = 1.

• Instead of selecting T a priori, we can also select a maximal
degree K of the approximation functions ψl in the sense that
Kl ≤ K for all l = 0, 1, . . . ,N − 1. Instead of increasing
the degrees of the approximation functions ψl, one now can
split the time interval [0,− ln ε) into smaller pieces until
|ψl(cos θτ , sin θτ) − e−τ

| ≤ ε for all τ ∈ Il is satisfied for the
fixed (low) degree K . This might lead to more regions (a larger
N). This indicates that there is a trade-off betweenN (number of
basic semialgebraic sets in the overapproximation Fapprox) and
K (themaximal degree of the Fourier series approximation). The
smaller N the higher K and vice versa. However, note that the
example of the overapproximation with N = 2 and K = 3
already provides a very tight approximation of ε = e−1.5π

≈

0.009 in case θ = 1.
• The reason for splitting the set Foriginal in the τ =

t
m direction

is that the exponential function λ = e−τ can generally not
be ε-close approximated with the basis functions cos(θτ ) and
sin(θτ ) in the interval [0,− ln ε] (unless ε is chosen relatively
large or θ is very small and thus T can be selected larger).
The additional scaling θ can be used to adjust the period of
cos(θτ ) and sin(θτ ) thereby offering a trade-off between the
required amount of intervals N and the order of the polynomial
y(u, v, λ) (provided the integer requirement on β i is fulfilled).
Indeed, N = 1 in Definition 3.1 can be obtained by choosing
θ sufficiently small such that e−τ can be ε-close approximated
using u = cos(θτ ) and v = sin(θτ ) in the interval [0,− ln ε]
for any ε. However, this implies that the polynomial order β i

(see (27)) increases due to the relation βi =
θβ̄i
m , which is

undesirable from a computational point of view. On the other
hand, if θ is chosen as large as possible (while respecting
the integer requirement on β i), the order of the polynomial
y(u, v, λ) in (27) is minimal but a large amount of regions N
could be required.

Using the ε-close overapproximation Fapprox, the conditions (32)
again are a special case of Problem 2.1 with z = q, x = (u,
v, λ), ℓ = 2, m = 0, p(z, x) = 0, g1(z, x) = P5(q, u, v, λ),
g2(z, x) = P6(q, u, v, λ), and Dl = Fl, l = 0, . . . ,N .
However, since the polynomial positivity constraints (32) are now
multivariate (meaning polynomials in more than one variable)
instead of univariate, the equivalent LMI expression from Henrion
et al. (2005) is not applicable. In general, checking positivity of
a multivariate polynomial on a basic semialgebraic set is a hard
problem, but it can often be approximated as closely as desired
by a hierarchy of convex relaxations (Lasserre, 2009; Laurent,
2009). In this case, to make Problem 2.1 computationally tractable,
the inequality conditions from (15) are replaced by stronger
conditions in terms of primal moment and dual sums-of-squares
(SOS) problems to formulate a hierarchy of upper bounds on the
minimum in Problem 2.1 that converge in the limit to the real
minimum. We refer the reader to Lasserre (2009) and Laurent
(2009)for the conversion techniques to obtain the LMIs and
further details. There exist software packages, such as GloptiPoly
(Henrion & Lasserre, 2003), SOSTOOLS (Prajna, Papachristodoulou,
& Parrilo, 2002) or YALMIP (Löfberg, 2004), that automatically build
up a hierarchy of LMI relaxations, whose associated monotone
sequence of optimal values converges to the global optimum.
Numerical certificates of optimality are also available, in terms
of ranks of embedded moment matrices, see Lasserre (2009) and
Laurent (2009).

4. Control design procedure

To summarize the previous design setup, suppose that the
d-minimal controller (2) for system (1) has been designed via
the Diophantine equation (4) such that the desired closed-loop
pole locations are achieved. Also suppose that more closed-loop
poles are assigned than twice the number of poles of the plant.
Then, according to (6) there is additional control design freedom
parameterized in the form of the Youla–Kučera parameter, which
can be used to shape the closed-loop time response. Time-domain
constraints can be imposed using one of the proposed relaxations
in Section 3, which yield the polynomial constraints in (15). Next
to constraint satisfaction, (15) allows also the minimization of
an objective function p(z). This minimization can be exploited to
obtain additional desired properties of the response in terms of
the design parameters q and thus yi, ai and bi. Consider the step
response for example, which can be written as (18) with p0 = 0
and where y0 is the steady-state solution. Desirable properties of
the unit step response are, for instance, a zero steady-state error,
a small settling-time and small overshoot. These properties can be
accommodated in p(z) as follows

Small steady-state error: Set p(z) = (1 − y0)2 to minimize the
steady-state error.

Short settling-time: Set p(z) = a2i + b2i , where index i corre-
sponds to a slow mode in (21), to minimize the contri-
bution of this mode, which improves the settling time.
Alternatively, exponentially decreasing constraints can
be specified that directly impose a certain desired settling
behaviour.

Overshoot minimization: In case one is interested in constraining
the response by a fixed constant, e.g. constraining the
overshoot, the exponential bound relaxation is not suit-
able. This is due to the fact that the peak values of the
systems response often occur in the time interval where
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the exponential upper and lower bounds are still very
far from the actual signal. As opposed to the exponential
bound relaxation, themultivariate polynomial relaxation
from Section 3.2 is typically suited to minimize the over-
shoot of a step response by constraining the response (30)
as y(u, v, λ) ≤ γ and specify p(z) = γ to minimize the
overshoot.

Of course, one can combine the above objectives in p(z) using
suitable weighting factors. Furthermore, the proposed relaxations
enable the incorporation of the extensions that were mentioned
in Section 2.2 (e.g. related to responses to disturbances) in case
the poles of the Laplace transform of the corresponding signal are
complex. Setting up the optimization problem (15) by including
the time-domain constraints on closed-loop signals using one of
the proposed relaxations and defining the objective function p(z)
provides a systematic manner for obtaining linear controllers with
desirable properties. This design framework will be illustrated in
the next section.

5. Numerical example

We start with a simple simulation example to illustrate the
efficiency of the proposed design method. Consider the simple
model given by

P(s) =
y(s)
u(s)

=
1

s + 1
. (39)

The control objective is to let y track a step reference from 0 to 1
as close as possible. Moreover, the controller (2) will be designed
such that the assigned complex closed-loop poles are p1,2 = −1±

2j, p3,4 = −2±4j. This is done by solving theDiophantine equation
(4) leading to the d-minimal controller

C(s) =
d0(s)
c0(s)

=
68

s3 + 5s2 + 28s + 32
, (40)

resulting in the closed-loop system given by the complementary
sensitivity function

T (s) =
68

s4 + 6s3 + 33s2 + 60s + 100
. (41)

Using the Youla–Kučera parameter q(s) and realizing that accord-
ing to (6) we have deg q(s) ≤ 2, i.e., q(s) = q0 + q1s+ q2s2, the set
of allowable controllers assigning the specified closed-loop poles
is parameterized as

C(s) =
d(s)
c(s)

=
d0(s)− a(s)q(s)
c0(s)+ b(s)q(s)

=
68 − (q0 + (q0 + q1)s + (q1 + q2)s2 + q2s3)
s3 + 5s2 + 28s + 32 + (q0 + q1s + q2s2)

, (42)

resulting in the set of closed-loop transfer functions

T (s) =
68 − (q0 + (q0 + q1)s + (q1 + q2)s2 + q2s3)

s4 + 6s3 + 33s2 + 60s + 100
. (43)

The Laplace transform of the time response of (43) to a step input
is then parameterized as

y(s) =
1
s
T (s)

=
68 − (q0 + (q0 + q1)s + (q1 + q2)s2 + q2s3)

s(s + 1 + 2j)(s + 1 − 2j)(s + 2 + 4j)(s + 2 − 4j)
. (44)

The corresponding partial fractional decomposition is equal to

y(s) =
y0
s

+
a1 + jb1
s + 1 + 2j

+
a1 − jb1
s + 1 − 2j

+
a2 + jb2
s + 2 + 4j

+
a2 − jb2
s + 2 − 4j

(45)
where y0, a1, b1, a2, b2 can be solved from the linear system of
equations

100 0 0 0 0
60 40 80 20 40
33 48 16 18 16
6 10 4 8 8
1 2 0 2 0



y0
a1
b1
a2
b2



=


68
0
0
0
0

 +


−1 0 0
−1 −1 0
0 −1 −1
0 0 −1
0 0 0


q0
q1
q2


, (46)

where q0, q1, q2 are the free variables in the Youla–Kučera
parameter to shape the time response. The goal is to determine
values of y0, a1, b1, a2, b2 (via q0, q1, q2) such that the closed-loop
time response to the step input has a favourable shape. The LMI
problems were modelled with YALMIP (Löfberg, 2004) and solved
with SeDuMi (Sturm, 1999).

5.1. Using the exponential bound relaxation

The exponential bounds on the step response of the closed-loop
system (43) are given by

ȳupper(t) = y0 + (2|a1| + 2|b1|)e−t
+ (2|a2| + 2|b2|)e−2t ,

ȳlower(t) = y0 − (2|a1| + 2|b1|)e−t
− (2|a2| + 2|b2|)e−2t ,

(47)

where y0, a1, b1, a2, b2 are related to q0, q1, q2 via (46). The goal of
this relaxation is to determine q0, q1, q2 such that

P3(λ) = gu(λ)− yupper(λ) ≥ 0,
P4(λ) = ylower(λ)− gl(λ) ≥ 0,

(48)

for appropriately chosen time-varying bounds related to gu(λ) and
gl(λ). Note that λ = e−t and

yupper(λ) = y0 + (2|a1| + 2|b1|)λ+ (2|a2| + 2|b2|)λ2,

ylower(λ) = y0 − (2|a1| + 2|b1|)λ− (2|a2| + 2|b2|)λ2.
(49)

To define the time-varying bounds, we first consider suitable
upper and lower bounds on the step response that correspond to
the d-minimal controller (40) (with q = 0). These are given by

guoriginal(λ) = 0.68 + 1.58λ+ 0.38λ2,

gloriginal(λ) = 0.68 − 1.58λ− 0.38λ2,
(50)

respectively. Based on these bounds, we nowdefine tighter bounds
gu(λ) and gl(λ) that are specified to be

gu(λ) = guoriginal(λ)+ cu = 1.01 + 1.58λ+ 0.38λ2

gl(λ) = gloriginal(λ)+ cl = 0.99 − 1.58λ− 0.38λ2
(51)

where cu = 0.33 and cl = 0.31 to guarantee a small steady-
state error (smaller than 0.01). The dominant term in the upper
and lower bound in (49) corresponds to the slow mode e−t with
coefficient (2|a1| + 2|b1|). To minimize the contribution of this
term and to bring the steady-state error close to zero, we specify
the objective function according to Section 4 as

p(q0, q1, q2) = 10(1 − y0)2 + 2(a21 + b21), (52)

where y0, a1 and b1 depend on q0, q1, q2 as in (46). This results in
the optimization problem

min
q0,q1,q2

p(q0, q1, q2)

s.t. (46)
(48) ∀ λ ∈ [0, 1].

(53)
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Fig. 5. Results of exponential bound relaxation. (a) New (solid black) and original
(solid grey) step responses, original bounds (dashed grey), and new bounds (dashed
black), (b) bode diagrams of the original (grey) and the new (black) controller.

The Youla–Kučera parameter resulting from the minimization
problem (53) is

q(s) = −32.0 − 23.0s − 3.0s2, (54)

which yields the controller and closed-loop

C(s) =
3s3 + 26s2 + 55s + 100

s3 + 2s2 + 5s
, (55)

T (s) =
3s3 + 26s2 + 55s + 100

s4 + 6s3 + 33s2 + 60s + 100
, (56)

together with the new bounds

gunew(t) = 1.00 + 1.25e−2t ,

glnew(t) = 1.00 − 1.25−2t .
(57)

This shows that the steady-state error is zero and the contribution
of the slow mode has been completely eliminated. The step
responses together with their bounds of the original closed-loop
system (41) and of the new, optimized closed-loop system (56)
are depicted in Fig. 5(a), while the Bode diagrams of the original
controller (40) and the new controller (55) are shown in Fig. 5(b).
From Fig. 5(a) it is obvious that the step response of the designed
closed-loop system satisfies the specified bounds and additionally
results in zero steady-state tracking error. Upon examination of
Fig. 5(b) this can be explained by the fact that controller (55)
exhibits an overall higher gain and hence results in a higher
bandwidth of the closed-loop system resulting in a faster response,
while it also implements integrating action providing the steady-
state accuracy. Although there is some conservatism introduced
by the fact that upper and lower bounds are used, this example
demonstrates that a significant increase of the performance can be
obtained using this method.

Remark 5.1. In this example the ability of themethod tominimize
the contribution of the slow mode using an additional objective
function p(z) in Problem 2.1 was demonstrated. Because of the
specific objective function (52) the slow mode was completely
cancelledwithin the controller. Therefore, for this specific example
another way to arrive at controller (55) is to specify only two
closed-loop poles p3,4 = −2 ± 4j (without p1,2 = −1 ± 2j),
resulting in C(s) =

3s+20
s , which indeed is theminimal formof (55).

Interestingly, the optimization problem results in this controller in
an automated and systematic manner.

5.2. Using the multivariate polynomial relaxation

In this section, the multivariate polynomial relaxation from
Section 3.2 is used to obtain suitable values of q0, q1, q2 to improve
the step response of closed-loop system (43). We have that m =

1, nr = 0, nc = 2, α1 = −1, α2 = −2, β1 = 2 and β2 = 4. Let
θ = 1 such that u = cos(τ ) and v = sin(τ ) so that (27) yields

y(t) =

(a1 + jb1) (u + jv)2 + (a1 − jb1) (u + jv)2


λ

+

(a2 + jb2) (u + jv)4 + (a2 − jb2) (u + jv)4


λ2

=

2a1


u2

− v2

+ 2b12uv


λ

+

2a2


u4

+ v4 − 6u2v2

+ 2b1


4vu3

− 4uv3

λ2. (58)

As a consequence, for this example we obtain

w1(u, v) = u2
− v2, r1(u, v) = 2uv

w2(u, v) = u4
+ v4 − 6u2v2, r2(u, v) = 4vu3

− 4uv3
(59)

yielding the time response

y(u, v, λ) = y0 + (2a1(u2
− v2)+ 4b1uv)λ

+ (2a2(u4
+ v4 − 6u2v2)+ 8b2(vu3

− uv3))λ2, (60)

which is a multivariate polynomial with 3 independent variables
(u, v, λ) and three decision variables (q0, q1, q2). Note that
(u, v, λ) ∈ Foriginal. Since Foriginal is not the finite union of
a basic semialgebraic set, we can use Algorithm 1 or use the
precomputed overapproximation in Section 3.2 to obtain an
ε-close overapproximation Fapprox of Foriginal. We use here the
precomputed overapproximationFapprox with ε = e−1.5π

≈ 0.009.
In accordance with Section 4, we formulate the problem as to find
q such that the overshoot γ is small and that the steady-state error
of the step response is minimized. Therefore, the problem is posed
as

min
q0,q1,q2

10(1 − y0)2 + γ

s.t. (46)
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ Fapprox.

(61)

Rewriting this optimization problem gives

min
q0,q1,q2

10(1 − y0)2 + γ

s.t. (46)
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F0
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F1
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F2,

(62)

with F0,1 as in (35) and F2 as in (33). This optimization problem
is then solved with a hierarchy of LMI relaxations, as explained
at the end of Section 3.2. The size of the resulting LMI problem
depends on the order of the relaxation, and this can be used as a
tuning knob to adjust the trade-off between the desired accuracy
and the computational complexity, see Section 2. Although it is
a priori not clear what is the order of the relaxation to arrive at
the global minimum of γ , a heuristic method is to increase the
order until not much improvement in the relaxed optimum γ̃ is
observed anymore or until one is satisfied with the obtained value
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Table 1
Upper bound γ̃ for various orders of LMI relaxation.

Order of LMI relaxation
1 2 3 4 5 10

γ̃ 297.170 1.235 1.235 1.0718 1.0718 1.0718

Fig. 6. New (black) and original (grey) step responses.

of γ̃ . The obtained minimum values of γ̃ for various orders of
relaxation are given in Table 1. We used this heuristic approach
for illustration purposes only. It is recommended to use the more
systematic approach that is implemented in GloptiPoly (Henrion
& Lasserre, 2003) to arrive at the global minimum, and certify it
numerically. Based on the figures in this table we expect that the
global minimum of γ is equal to 1.0718, representing an overshoot
of 7.18%. The corresponding Youla–Kučera parameter is given by

q(s) = −32.0 − 17.0607s − 3.0227s2, (63)

which yields the controller

C(s) =
3.0s3 + 20.0s2 + 49s + 100

s3 + 2.0s2 + 10.9s
. (64)

The step responses of both the original closed loop with the
d-minimal controller (40) and of the closed loop with controller
(64) are depicted in Fig. 6, which shows a significant improvement
as expected. Themaximum of the step response y(t) equals 1.0714
(i.e., 7.14% overshoot), which indeed is ε-close to γ̃ = 1.0718.

This example showed that after controller design by pole
placement it is possible to shape the transient time response of
the system by assigning zeros to the closed-loop system through
a suitable extension of the controller under pole invariance.

6. Conclusions

In this paper we provided a generally applicable design
framework to obtain linear controllers for linear systems subject
to time-domain constraints. In order to arrive at this design
framework we extended recent results in Henrion et al. (2005)
that applied only in case of real closed-loop poles and external
signals (e.g. references or disturbances) having Laplace transforms
with real poles. The design method is based on synthesizing linear
controller via a closed-loop pole placement method in which the
additional design freedom in terms of the Youla–Kučera parameter
is used to satisfy time-domain constraints on the closed-loop
signals based on sum-of-square techniques. In order to extend the
method to the practically relevant case where both inputs and
closed-loop systemswith complex conjugate poles are allowed,we
proposed two relaxations.

The first relaxation, called the exponential bound relaxation, ex-
ploited exponential upper and lower bounds on the response to
any Laplace transformable input. Although this gives rise to poten-
tial conservatism, an example showed that by prescribing poly-
nomial time-domain bounds, the system’s performance to a step
input can be improved with respect to the settling-time and the
steady-state error. The second relaxation, themultivariate polyno-
mial relaxation, removed the potential conservatism completely
as we formally proved that it can approximate the original prob-
lem with arbitrary accuracy. Using these relaxations, we indicated
how a polynomial optimization problem could be set up, in which
next to constraint satisfaction, we could also optimize certain im-
portant closed-loop properties such as overshoot, settling-time
and steady-state error. The resulting optimization problem can be
solved using sum-of-squares and convex programming methods.
As a consequence, the provided design framework is systematic in
nature, as was also illustrated using a numerical example.
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