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ABSTRACT 

In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differential inclu-
sions and research the optimal time problems for it. 
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1. Introduction 

The first study of differential equations with multivalued 
right-hand sides was performed by A. Marchaud [1] and 
S. C. Zaremba [2]. In early sixties, T. Wazewski [3,4], A. 
F. Filippov [5] obtained fundamental results on existence 
and properties of the differential equations with multi-
valued right-hand sides (differential inclusions). One of 
the most important results of these articles was an estab-
lishment of the relation between differential inclusions 
and optimal control problems, that promoted to develop 
the differential inclusion theory [6–9]. 

Considering of the differential inclusions required to 
study properties of multivalued functions, i.e. an elab- 
oration the whole tool of mathematical analysis for mul-
tivalued functions [6,10,11]. 

In works [12,13] annotate of an R-solution for differ-
ential inclusion is introduced as an absolutely continuous 
multivalued function. Various problems for the R-solu-
tion theory were regarded in [14–18]. The basic idea for 
a development of an equation for R-solutions (integral 
funnels) is contained in [19]. 

In the last years there has been forming new approach 
to control problems of dynamic systems, which founda-
tion on analysis of trajectory bundle but not separate tra-
jectories. The section of this bundle in any instant is 
some set and it is necessary to describe the evolution of 
this set. Obtaining and research dynamic equations of 
sets there is important problem in this case. The metric 
space of sets with the Hausdorff metric is natural space 
for description dynamic of sets. In theory of multivalued 
maps definitions on derivative as for single-valued maps 
is impossible because space of sets is nonlinear. This 
bound possibility description dynamic sets by differential 
equations. Therefore, the control differential equations with 

set of initial conditions [20–22] and the control differen-
tial inclusions [8,23–34] use for it. 

In recent years, the fuzzy set theory introduced by 
Zadeh [35] has emerged as an interesting and fascinating 
branch of pure and applied sciences. The applications of 
fuzzy set theory can be found in many branches of re-
gional, physical, mathematical, differential equations, 
and engineering sciences. Recently there have been new 
advances in the theory of fuzzy differential equations 
[36–47] and inclusions [43,48–52] as well as in the the-
ory of control fuzzy differential equations [53–55] and 
inclusions [56,57]. 

In this article we consider the some properties of the 
fuzzy R-solution of the control linear fuzzy differential 
inclusions and research the optimal time problems for it. 

2. The Fundamental Definitions and  
Designations 

Let     nn RconvRcomp  be a set of all nonempty (con-

vex) compact subsets from the space R
n
, 

   ABSBASBAh rrr



)(,)(min,

0
 

be Hausdorff distance between sets A and B, Sr(A) is 
r -neighborhood of set A.  

Let E
n
 be the set of all u: R

n
→[0,1] such that u satisfies 

the following conditions: 

1) u is normal, that is, there exists an  such 

that u(x0)=1;  

nRx 0

2) u is fuzzy convex, that is, 

   )(),(min)1( yuxuyxu    ; 

3) For any  and nRyx , 10   ; 

4) u is upper semicontinuous; 
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5)  is compact.    0)(:
0

 xuRxclu n

If , then u is called a fuzzy number, and E
n
 is 

said to be a fuzzy number space. For 

nEu
10   , denote  

     )(: xuRxu n . 

Then from 1)-4), it follows that the α-level set 

 for all    nRconvu  10   . 

Theorem 1. (Negoita and Ralescu [58]). If , 
then 

nEu

1)  for all    nRconvu   ]1,0[ ; 

2)  for     uu  10   ; 

3) If   ]1,0[k  is a decreasing sequence converg-

ing to 0  then 

   
1


k

kuu   

Conversely, if  is a family of convex 

compact subsets of  satisfying 1)-3), then 

 10:  A
nR


   Au   

for 10   and 

  0

10

0 AAu 




 . 

If  is a function, then using Zadeh’s 

extension principle we can extend g

nnn RRRg :
~  to  

by the equation 

nnn EEE 

 )(),(minsup))(,(~
),(

yvxuzvug
yxgz

 . 

It is well known that  

       vugvug ,),(~   

for all  and continuous function 10,,  nEvu g . 

Further, we have  

      vuvu  , ,     ukku 

where . Rk 
Define  by the relation  ),0[:  nn EED

    


vuhvuD ,sup),(

10 
 , 

where h is the Hausdorff metric defined in comp(R
n
). 

Then D is a metric in E
n
. 

Further we know that [59] 
1) (E

n
,D) is a complete metric space; 

2)  for all ;    vuDwvwuD ,,   nEwvu ,,

3)    vuDvuD ,,     for all  and nEvu ,

R . 
It can be proved that  

  ),(),(, zvDwuDzwvuD   

for . nEzwvu ,,,

Definition 1. A mapping  is strongly 
measurable if for all 

nETF ],0[:
]1,0[  the set-valued map 

 nRconvTF ],0[:  defined by  )(tF )(tF   is 

Lebesgue measurable.  
Definition 2. A mapping  is said to be 

integrably bounded if there is an integrable function 
 such that 

nETF ],0[:

)(th )()( thtx   for every . )(0 tF)(tx

Definition 3. The integral of a fuzzy mapping 

  nETF ,0:


T

dttF
0

)(

nRTf ],0[:

is defined levelwise by  

The set of all such that 

 is a measurable selection for  for all 









T

dttF
0

)(
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T

dttf
0

)(

 1,0 . 
Definition 4. A strongly measurable and integrably 

bounded mapping   nETF ,0:  is said to be inte-

grable over  T,0  if .   
T

nEdttF
0

)(

Note that if   nETF ,0:  is strongly measurable 
and integrably bounded, then F is integrable. Further if 

  nETF ,0:  is continuous, then it is integrable. 

Theorem 2. [36]. Let  be integrable 

and 

  nETGF ,0:,

 Tc ,0 , R . Then 

1)   
T T

c

c

dttFdttFdttF
0 0

;)()()(

2) ;  
TTT

dttGdttFdttGtF
000

)()()()(

3) ;  
TT

dttFdttF
00

)()( 

4)  GFD ,  is integrable; 

5)   dttGtFDdttGdttFD
TT T






  

00 0

)(),()(,)(

Consider the following control linear fuzzy differential 
inclusions 

,)(),,()( 00 xtxwtGxtAx             (1) 

and the following nonlinear fuzzy differential inclusions 

,)(),,,( 00 xtxwxtFx              (2) 

where  means x dt
dx ; Rt  is the time;  is 

the state;  is the control;  is 

nRx

mRw )(tA  nn -di-

mensional matrix-valued function; , 

 are the set-valued functions. 

n
m ER RG :

nERF : mn R R
Let  
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)(: mRconvRW            (3) 

be the measurable multivalued map. 
Definition 5. Set  of all single-valued branches 

of the multivalued map  is the set of the possible 

controls.  

LW
W  

Obviously, the control fuzzy differential Inclusion (2) 
turns into the ordinary fuzzy differential inclusion 

  ,)(,, 00 xtxxtx           (4) 

if the control   LWw ~  is fixed and    xt,  

 )(~,, twxtF . 

The fuzzy differential Inclusions (3) has the fuzzy 
R-solution, if right-hand side of the fuzzy differential 
Inclusion (3) satisfies some conditions [52]. 

Let  denotes the fuzzy R-solution of the differ-

ential Inclusion (3), then  denotes the fuzzy 

R-solution of the control differential Inclusion (2) for the 
fixed . 

)(tX

 w 

),( wtX

LW

Definition 6. The set  

    LWwwTXTY  :,)(  

be called the attainable set of the fuzzy System (2). 

3. The Some Properties of the R-Solution 

In this section, we consider the some properties of the 
R-solution of the control fuzzy differential Inclusion (1). 

Let the following condition is true. 
Condition A: 
A1.  is measurable on  A  Tt ,0 ; 

A2. The norm  tA  of the matrix  is inte-

grable on ; 

 tA

 Tt ,0

A3. The multivalued map    mRconvTtW ,: 0  is 

measurable on ;  Tt ,0

A4. The fuzzy map  satisfies the 

conditions  

nm ERRG :

1) measurable in t; 
2) continuous in w; 
A5. There exist    TtLv ,02  and    TtLl ,02  

such that 

       tlwtGtvtW  ,,  

almost everywhere on ;  Tt ,0

A6. The set  is compact 

and convex for almost every , i.e. 

. 

      LWwtwtGtQ  :)(,

t ,0

)n






T

()( EconvtQ 
Theorem 3. Let the condition A is true. 
Then for every  there exists the fuzzy 

R-solution  such that 

  LWw 
 wX ,

1) the fuzzy map  wX ,  has form 

     
0

1
0, Φ Φ Φ ( ) ( , ( ))

t

t

X t w t x t s G s w s ds   , 

where  Ttt ,0 ;  t  is Cauchy matrix of the differ-

ential equation xtA )(x  ; 

2)  for every ; nEwtX ),(  Ttt ,0

3) the fuzzy map  wX ,  is the absolutely continuous 

fuzzy map on  . Tt ,0

Proof. The proof is easy consequence of the 
[31,34,52,54] and Theorem 1.  

Theorem 4. Let the condition A is true. 
Then the attainable set  is compact and convex.  TY

Proof. The proof is easy consequence of the 
[31,34,52,54] and Theorem 1.  

We obtained the basic properties of the fuzzy 
R-solution of System (1). Now, we consider the some 
control fuzzy problems. 

4. The Optimal Time Problems 

Consider the control linear fuzzy differential Inclusion 
(1), when  

)()(),( tFwtBwtG  ,        (4) 

where 
B1.  B  is measurable on  ; Tt ,0

B2. The norm  tB  of the matrix  is inte-

grable on 

 tB

 Tt ,0 ; 

B3. The fuzzy map F: [t0,T]→En is measurable on 
[t0,T];   

B4. There exists    TtLf ,02   such that 

   tftF   

almost everywhere on [t0,T].  
Consider the following optimal control problem: it is 

necessary to find the minimal time T  and the control 

  LWw *  such that the fuzzy R-solution of Systems 

(1),(4) satisfies one of the conditions: 

  kSwTX *, ,           (5) 

  kSwTX *, ,               (6) 

  kSwTX *, ,               (7) 

where  is the terminal set. n

k ES 
Clearly, these time optimal problems are different from 

the ordinary time optimal problem by that here control 
object has the volume. 

Definition 6. We shall say that the pair     ** ,, wXw 


 

satisfies the maximum principle on , if there exists 

the vector-function 

 Tt ,0

  , which is the solution of the 
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system 
  )0(,)( 1STtAT    

and the following conditions are true 
1) the maximum condition 

   )(,)(max)(),()(
)(

* twtBCttwtBC
tWw




  

almost everywhere on ;  Tt ,0

2) the transversal condition: 
a) in the case (5): 

    1 1*( , ) , ( ) , ( )kC X T w ψ T C S ψ T      ; 

b) in the case (6): for all  1,0  

      *( , ) , ( ) ,
α α

kC X T w ψ T C S ψ T     

and there exists  1,0  such that 

       *( , ) , ,
β β

kC X T w ψ T C S ψ T    ; 

c) in the case (6): for all  1,0  

    *( , ) , ( ) , ( )
α α

kC X T w ψ T C S ψ T       

and there exists  1,0  such that 

    *( , ) , ( ) , ( )
β β

kC X T w ψ T C S ψ T      . 

Clearly, that there cases of the transversal condition of 
the maximum principle correspond to the three cases of 
the time optimal problems. 

Theorem 5. (necessary optimal condition). Let the 
condition A are true and the pair   *,wT  is optimality. 

Then the pair     ** ,, wXw   satisfies the maximum 

principle on .  Tt ,0

Proof. Let  is the optimal control and  *w  *,wX   

is the optimal R-solution of the Systems (1),(4), i.e. 
1)    ;, * TYwTX   

2)   ., * kSwTX   

From 1) and 2) we have 

 
    1

1
max , ,k

X Y T
C X ψ C S ψ

  

   

for all )0(1S . 

Consequently 

   
    1

1

1

0
max min , , 0.kψ SX Y T

p C X ψ C S ψ
  

     

From    
1 1*, kX T w S       we have  

       1 1*, , , ,kq T ψ C X T w ψ C S ψ   

for all  01S . 

From Theorem 1 we have that the function  ,Tq  is 

continuous on )0(1SR  . 

If   0, Tq  for all  01S  then we have 

 
 

 0 ,q T T ψ γ
1 0

min
ψ S

q


0   . Hence there exists T  

such that   00 q . Consequently we have  

     1 1*, , ,kC X τ w ψ C S ψ     0  

for all  01S , i.e. .     
1 1*, kX τ w S     

It contradicts that  is optimal time. T
If , 0p

   
    

    
1

1

1

0( )

1

max min , ,

, ,

kψ SX Y T

k

C X ψ C S ψ

C X ψ C S ψ


 

    
 

and    XwTX
~

,
1*  , than we have a contradiction. 

Hence there exist  0~
1S  such that  

  
 

 
1

1
*, , max ,

X Y T
C X T w ψ C X ψ

  

      ,  

     1*, , ,kC X T w ψ C S ψ       
1

.  

Consequently 

       1 *

0

Φ Φ ,
T

T s B s w s ds ψ 
 
 
   

 
       1

0

max Φ Φ ,
T

w LW
T s B s w s ds ψ

 

 
  

 
   

Then we have  

        1 *Φ Φ ,T s B s w s ψ   

 
        1max Φ Φ ,

w LW
T s B s w s ψ

 
   

for almost everywhere  Tts ,0 . If  

      
    

1

1

Φ Φ

Φ Φ

T

T

T t ψ
ψ t

T t ψ









, 

than the theorem is proved. 
Example. Consider the following control linear fuzzy 

differential inclusions 

,0)0(,
01

10











 xFwxx  

0   
where  Txxx 21,  is the state;  

is the control; 

  1 2 1, 0
T

w w w W S   
2EF   is the fuzzy set, where 
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Consider the following optimal control problem: it is 
necessary to find the minimal time T  and the control 

 such that the fuzzy R-solution of system 

satisfies of the conditions: 

  LWw *

  kSwTX *,  

where  is the terminal set such, that 2ESk 
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Obviously, the optimal pair 2T  and * ( )w t   

 satisfy of the conditions of the Theo-

rem 5: 

   cos , sint  t

1)  for a.e.       )(,,* tWCttw    2,0t ; 

2) ,        1 1*, , ( ) ,kC X T w ψ T C S ψ T     

where  for a.e.       Tttt sin,cos   2,0t , 

        
1

*, cos , sin 2 ,
T T

X T w T T T T π      0 ,



 

   1

1 2 1 2, : 2 , 1 1
T

kS x x x π x    . 

5. Conclusions 

In the last decades, a number of works devoted to prob-
lems of optimal control of multiple-valued trajectories 
(fuzzy trajectories, trajectory bundles or an ensemble of 
trajectories) appeared; these works fall into a subdivision 
of the optimal control theory, namely, the theory of 
process control under uncertainty and fuzzy conditions. 
This is conditioned by the fact that, in actual problems 
arising in economy and engineering in the course of con-
struction of a mathematical model, it is practically im-
possible to exactly describe the behavior of an object. 
This is explained by the following fact. First, for some 
parameters of the object, it impossible to specify exact 
values and laws of their change, but it is possible to de-
termine the domain of these changes. Second, for the 
sake of simplicity of the mathematical model being con-
structed, the equations that describe the behavior of the 
object are simplified and one should estimate the conse-

quences of such a simplification. Therefore, if is possible 
to divide the articles devoted to this direction into two 
types characterized by the following distinctive features: 

1) There exists an incomplete or fuzzy information on 
the initial data; 

2) The equations describing the behavior of the object 
to be controlled are assumed to be inexact, for example, 
they can contain some parameters whose exact values 
and laws of variation are unknown but the domain of 
their values is fuzzy. 

In the second case, fuzzy differential inclusions are 
frequently used to describe behavior of objects. The rea-
son is that, first this approach is most obvious and, sec-
ond, theory of fuzzy and ordinary differential inclusions 
is well found and is rapidly developed at the present 
time.  

In the present paper, the necessary conditions of opti-
mal of control for a system of the latter form of equations 
with the fuzzy R-solutions are formulated and proved. 
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