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Abstract

In this paper, we show that the Away-step
Stochastic Frank-Wolfe (ASFW) and Pairwise
Stochastic Frank-Wolfe (PSFW) algorithms con-
verge linearly in expectation. We also show that
if an algorithm convergences linearly in expec-
tation then it converges linearly almost surely.
In order to prove these results, we develop a
novel proof technique based on concepts of em-
pirical processes and concentration inequalities.
As far as we know, this technique has not been
used previously to derive the convergence rates
of stochastic optimization algorithms. In large-
scale numerical experiments, ASFW and PSFW
perform as well as or better than their stochastic
competitors in actual CPU time.

1 INTRODUCTION

1.1 Motivation

The recent trend of using a large number of parameters
to model large datasets in machine learning and statistics
has created a strong demand for optimization algorithms
that have low computational cost per iteration and exploit
model structure. Regularized empirical risk minimiza-
tion (ERM) is an important class of problems in this area
that can be formulated as smooth constrained optimization
problems. A popular approach for solving such ERM prob-
lems is the proximal gradient method which solves a pro-
jection sub-problem in each iteration. The major drawback
of this method is that the projection step can be expen-
sive in many situations. As an alternative, the Frank-Wolfe
(FW) algorithm [Frank and Wolfe, 1956], also known as
the conditional gradient method, solves a linear optimiza-
tion sub-problem in each iteration, which is much faster
than the standard projection technique when the feasible set
is a simple polytope [Nesterov, 2015]. When the number
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of observations in ERM is large, calculating the gradient
in every FW iteration becomes a computationally intensive
task. The question of whether ‘cheap’ stochastic gradients
can be used as a surrogate in FW immediately arises.

1.2 Contribution

In this paper, we show that the Away-step Stochastic Frank-
Wolfe (ASFW) algorithm converges linearly in expectation
and each sample path of the algorithm converges linearly.
We also show that if an algorithm converges linearly in ex-
pectation then it converges linearly almost surely. To the
best of our knowledge, this is the first paper that proves
these results. The major technical difficulty of analyz-
ing the ASFW algorithm is the lack of tools that combine
stochastic arguments and combinatorial arguments. In or-
der to solve this problem and prove our convergence re-
sults, a novel proof technique based on concepts in empir-
ical processes theory and concentration inequalities is de-
veloped. This technique is then applied to prove the linear
convergence in expectation and almost sure convergence of
each sample path of another Frank-Wolfe variant, the Pair-
wise Stochastic Frank-Wolfe (PSFW) algorithm. We note
that this technique may be useful for analyzing the conver-
gence of other stochastic algorithms. In our large-scale nu-
merical experiments, the proposed algorithms outperform
their competitors in all different settings.

1.3 Related Work

The Frank-Wolfe algorithm was proposed sixty years ago
[Frank and Wolfe, 1956] for minimizing a convex function
over a polytope and is known to converge at an O(1/k)
rate. In Levitin and Polyak [1966] the same convergence
rate was proved for compact convex constraints. When
both objective function and the constraint set are strongly
convex, Garber and Hazan [2015] proved that the Frank-
Wolfe algorithm has an O(1/k?) rate of convergence with
a properly chosen step size. Motivated by removing the in-
fluence of “bad” visited vertices, the away-steps variant of
the Frank-Wolfe algorithm was proposed in Abadie [1970].
Later, Guelat and Marcotte [1986] showed that this vari-
ant converges linearly under the assumption that the objec-
tive function is strongly convex and the optimum lies in
the interior of the constraint polytope. Recently, Garber
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and Hazan [2013] and Lacoste-Julien and Jaggi [2014] ex-
tended the linear convergence result by removing the as-
sumption of the location of the optimum and Beck and
Shtern [2015] extended it further by relaxing the strongly
convex objective function assumption. Stochastic Frank-
Wolfe algorithms have been considered by Lan [2013] and
Lafond et al. [2015] in which an O(1/k) rate of conver-
gence in expectation is proved. Luo and Hazan [2016]
considered the Stochastic Varianced-Reduced Frank-Wolfe
method (SVRF) which also has convergence rate O(1/k)
in expectation. In addition, the Frank-Wolfe algorithm
has been applied to solve several different classes of prob-
lems, including non-linear SVM [Ouyang and Gray, 2010],
structural SVM [Lacoste-Julien et al., 2013] [Osokin et al.,
2016], and comprehensive principal component pursuit
[Mu et al., 2015] among many others. To compare FW vari-
ants and other useful algorithms such as the Prox-SVRG of
Lin and Zhang [2014] and the stochastic variance reduced
FW algorithm of Luo and Hazan [2016], we summarize the
theoretical performance in Table 1 which includes the re-
quired conditions for convergence and the given complex-
ity bounds, the number of exact and stochastic gradient or-
acle calls, the number of linear optimization oracle (LO)
calls and the number of projection calls in order to obtain
an e-approximate solution.

1.4 Problem Description

Consider the minimization problem

. 1\
mi {76 = 2 3 o . ®1)
where P is a polytope, i.e., a non-empty compact poly-
hedron given by P = {x € R? : Cx < d} for some
C ¢ R™*P, d € R™. Therefore, the set of vertices
V' of the polytope P has finitely many elements. Let
D = sup{||x — y| | x,y € P} be the diameter of P.
Foreveryi = 1,...,n, f; : R — R is a strongly convex
function with parameter o; with an L; Lipschitz continuous
gradient. From another point of view, P1 can be reformu-
lated as a stochastic optimization problem as below

min {% zn: £i(x) = Ef(E, x)} (SP1)

xeP =
where £ is a random variable that follows a discrete uni-
form distribution on {1,...,n}, f(i,x) = fi(x) for every
t=1,...,nand x € P. Furthermore, define V f(£,x) =
Vfg (X)

1.5 The Frank-Wolfe Algorithm And Its Variants

In contrast to the projected gradient algorithm, the Frank-
Wolfe algorithm (also known as conditional gradient algo-
rithm) calls a linear optimization oracle instead of a pro-
jection oracle in every iteration. The Frank-Wolfe Algo-

Algorithm 1 The Frank-Wolfe Algorithm

Input: x1) € P, F(-)
fork=1,2,...do
Set pt¥) = arg mingep (VF(x(F)), s).
Set d®) = p®) _ x(9),
Set x(*+t1) = x(#) 1 (k) (k) where v(*¥) = T or
obtain by line-search.
end for
Return: x(*+1),

rithm has become popular recently because it performs a
sparse update at each step. For a good review of what was
known about the FW algorithm until a few years ago, see
Jaggi [2013]. It is well-known that this algorithm con-
verges sub-linearly with rate O(1/k) because of the so-
called zig-zagging phenomenon [Lacoste-Julien and Jaggi,
2015]. Especially when the optimal solution x* does not
lie in the relative interior of P, the FW algorithm tends to
zig-zag amongst the vertices that define the facet contain-
ing x*. One way to overcome this zig-zagging problem is
to keep tracking of the “active® vertices (the vertices dis-
covered previously in the FW algorithm) and move away
from the “worst” of these in some iterations.

The Away-step Frank-Wolfe algorithm (AFW) and the
Pairwise Frank-Wolfe algorithm (PFW) are two no-
table variants based on this idea. After comput-
ing the vertex p*) = argmingep(VF(x®),x) by
the linear optimization oracle and the vertex u(®) =
arg max, .o (VF (xF)), x) where U*) is the set of ac-
tive vertices at iteration k, the AFW algorithm moves away
from the one that maximizes the potential increase in F'(x)
i.e. the increase in the linearized function, while the PFW
algorithm tries to take advantages of both vertices and
moves in the direction p(*) — u(*). Details of the algo-
rithms can be found in Lacoste-Julien and Jaggi [2015].

2 VARIANTS OF STOCHASTIC
FRANK-WOLFE ALGORITHM

When the exact gradients is expensive to compute and an
unbiased stochastic gradient is easy to obtain, it may be ad-
vantageous to use a stochastic gradient in AFW and PFW.
We describe the Away-step Stochastic Frank-Wolfe Algo-
rithm (ASFW) and the Pairwise Stochastic Frank-Wolfe
Algorithm(PSFW) below. The following algorithm up-
dates a vertex representation of the current iterate and is
called in Algorithms 2 and 3.
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Table 1: Summary of requirements and performance of algorithms for obtaining an e-approximate solution
Algorithm Extra conditions Exact gradients | Stochastic Gradients LO Projection
FW bounded constraint O(1/e) NA O(1/e) NA

Away-step polytope constraint
FW strongly convex objective O(log(1/¢)) NA O(log(1/¢)) NA
Pairwise polytope constraint
FW strongly convex objective O(log(1/e)) NA O(log(1/e)) NA
SVRF bounded constraint O(log(1/e)) O(1/€?) O(1/e) NA
Prox-SVRG | strongly convex objective log(1/€) O(mlog(1/e)) NA O(mlog(1/e))
ASFW polytope constraint NA O(1/€™),
strongly convex objective 0<n<1 O(log1/e) NA
PSFW polytope constraint NA O(1/€0IVIH2)0)
strongly convex objective 0<(<1 O(log1/e) NA

Comparisons of algorithms in terms of their requirements and the theoretical performances to get an e-approximate solu-

tion. LO denotes for linear optimizations and. In Prox-SVRG, m is the number of iterations in each epoch. In PSFW,

is the number of vertices of the polytope constraint.

Algorithm 2 Away-step Stochastic Frank-Wolfe algorithm
1: Input: x() € V, f; and L;
2: Set uil()l) =1, 4" = 0forany v € V/{x(M} and
UM = {x(M},

3: fork=1,2,...do -
4:  Sample &1,...,&,m b ¢ and set
m
gh) = ﬁzz'ﬂ Vif (&, x®)), LK) =

(k)
1 m
e Zi:l Léi-

5:  Compute p® € arg minx€p<g(k), x).

6:  Compute u®) € argmax,;;a) (g™, v).

7. if (g, p®) 4 u®) —2x(*)) < ( then

8: Set d®) = p¥) — x(*) and {8k = 1.

9: else *)

10: Setd® = x*) —u® and ix = ::‘f{l}k) :
11:  endif ’

. ) gk L
12 Sety(*) = mm{—éiﬁw, %(n}f&} or determine it

by line-search.
13:  Set x(F+1) = x(*) 4 (k) qk),
14:  Update U*+D and ;(*+1) by Procedure VRU.
15: end for
16: Return: x(F+1),

Algorithm 3 Pairwise Stochastic Frank-Wolfe algorithm

1: Replace line 7 to 11 in Algorithm 2 by: d(¥) = p(*) —

k k
u® and yﬁngx = ,ufl()k).

V|

Algorithm 4 Procedure Vertex Representation Update

(VRU)

1: Input: x®), (U®) 1, *)) d®), k) pF) and v+,

2: ifd® = x*) — ul® then
3:  Update us,k) = us,k)(l + 4®) for any v €
U(k)/{u(kr)}.

4 Update poh ! = i, (14 7®) = 4®),

5. if uHY = 0 then

6: Update U*+1) = y®) /{u(k)}

7. else

8 Update UF+1) = )

9: endif

10: end if

11: Update uS,kH) ,ug,k)(l — y®)) for any v €
Uk /{ph)1,

12: Update ul()k(:)l) = ug‘él) (1- A R)) 4 (k)

13: if ug‘(’;il) = 1 then

14:  Update U+ = {p(F)},

15: else

16:  Update U*+1) = k) y {p()],

17: end if

18: (Optional) Carathéodory’s theorem can be applied for
the vertex representation of x(**+1) so that |[U(**+1)| =
p+1and pF+D) € RPH,

19: Return: (U*+1) g (k+1)

3 CONVERGENCE PROOF

In this section, we will first introduce some lemmas and
notation and then state the main theorems in this paper.
Full proofs of the lemmas, theorems and corollaries can
be found in the supplementary material. Note that, at the
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k-th iteration of the algorithms, m*) i.i.d. samples of &
are obtained. Define F(")(x) = —i5; Zf;(:) fe, (x). Ttis
easy to see that F'(*) is Lipschitz continuous with Lipschitz
constant L) = —t Zﬁf) L

)
(k) — _1_ym
constant 0" = Tty Doict ¢,
problem is used in our analysis.

¢, and strongly convex with

The following ancillary

min F*® (x),

xeP (HD

Let xﬁk) denote the optimal solution of problem Hl, i.e.,
xM = argmin,cp F(*)(x). The lemma below plays an
important role in our proof. We refer to Beck and Shtern
[2015] for a detailed proof of this lemma.

Lemma 1. For any x € P/{kak)} that can be repre-
sented as X = )y vV for some UR c V where
> ey My = Land py > 0 for every v € U®), it holds
that,

Qp (VF®)(x),x — X(k)>
k) _p)> P 2 *
W2 VET R 2 g T

where |U¥)| denotes the cardinality of U®), V is the set of
extreme points of P and

- €
for
= i di — Giv),
¢ vEV,iE{lm,lTIrIL}'a7->C-v( V)
= C;
e S 1Csl]-

Next, we introduce some definitions and lemmas that are
common in the empirical processes literature but rarely
seen in the optimization literature.

Definition [Bracketing Number] Let F be a class of
functions. Given two functions [ and u, the bracket [, u]
is the set of all function f with [ < f < u. An e-bracket
in Ly is a bracket [I,u] with Elu — [| < e. The brack-
eting number Njj(e, 7, L1) is the minimum number of
e-brackets needed to cover F. (The bracketing functions !
and v must have finite L, -norms but need not belong to F).

The bracketing number measures the complexity of a func-
tion class. The lemma below provides an upper bound for
a function class indexed by a finite dimensional bounded
set. This result can be found in any empirical processes
textbook such as van der Vaart and Wellner [1996]. See the
supplementary material for a proof.

Lemma 2. Let F = {fy | 0 € O} be a collection of mea-
surable functions indexed by a bounded subset © C RP.

Denote Dg = sup{||61 — 02| | 61,02 € O}. Suppose that
there exists a measurable function g such that

[f0.(€) = fo. (&) < g(&)[|01 — 02| (D

for every 01,05 € ©. If [g(&), = [ g(¢
the bracketing numbers satisfy

)|dP < oo, then

pDe
Nyelgl, 7, La) < (V22

forevery 0 < € < Dg.

Remark: The bracketing number has a very close relation-
ship with the covering number, which is a better known
quantity in machine learning. Let N (¢, F, L) be the cov-
ering number of the set F; that is, the minimal number of
balls of L;-radius € needs to cover the set /. Then the
relation, N (e, F, L1) < Nj(2¢, F, L1), between covering
number and bracketing number always holds. Moreover,
this concept is also closely related to the VC-dimension.
Usually, constructing and counting the number of brackets
for a class of functions is easier to do than computing the
minimum number of balls that covers the class.

Based on the bounds on the bracketing number for a func-
tion class with bounded index set, we can provide a con-
centration bound for sup, . |F*)(x) — F(x)|.

Lemma 3. Forany 6 > 0and 0 < e < min{D,d/(2LF)}
we have

P{sup |F®)(x) - F(x)| > 6}

D m*)(§ — 2L pe)?
<2Kp(—)? _—
= P( 6 )” exp{ 2up — lp)? h
where Ly = min{Lq,.. Ln} Kp = (V)P
up = max{Supyep fi(x) | 2 = L,...,n} and lp =
min{infxep fi(x) |i=1,...,n}
Corollary 1. When m®) > 3,
1 (k)
Esup |F®) (x) — F(x)| < 1) —22
xEP m(*)
and
)
) () . log m(*
where

ur —lny,

C1 = 4(|lup| + |lp|)KpDP e lo
1= 4(lur| + |Ir|) Kp DP exp{—p( ngLF

+ (UF — lp)\/p—i- 1.

Lemma 4. Let¢; > 0and b; € {0,1} fori =1,...,n
Assume that Z;;l bj = m < n. Then for 0 < a < 1 we
have

m

E a~—i=k JCk E k+1C + E Ck-

=1 k=m+1
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With the developments of the above lemmas and corollary
we are ready to state and prove the main results.

Theorem 1. Let {x¥)};~ be the sequence generated by
Algorithm 2 for solving Problem (P1), N be the number
of vertices used to represent x*) (if VRU is implemented
by using Carathéodory’s theorem, N = p + 1, otherwise

= |V|) and F* be the optimal value of the problem. Let

p = min{}, b e} where op = min{oy,....0,),
Lr = max{Li,...,L,}. Set m® = [1/(1 — p)?+2].
Then for every k > 1

E{F(x"HD) - F*} < Oy(1 — B)E-D/2, 3)

where Cy is a deterministic constant and 0 < 3 < p <
1/2.

Proof. At iteration k, let x(¥) denote the current solution,
&1, ..., &k denote the samples obtained in the algorithm,
d*) denote the direction that the algorithm will take at this
step and 7( ) denote the step length. Define F*)(x) =

m(k) Zz 1 f(fza )7 * =

¥ = &) (x™). Note that F*) is Lipschitz continu-
()

ous with Lipschitz constant L) = ﬁ Yooy Le, and
*)

strongly convex with constant (¥) = —15 5" "5 . In

addition, the stochastic gradient g(*) = VF(*)(x). Using

the arguments in Beck and Shtern [2015], we can separate
our analysis into the following four cases at iteration k

arg mingep F*)(x) and

A®)  AE > Tandy® <1,

B®) A8 > 1andy®) > 1.

@®y B < 1and y® < 4L

D®) A < 1andy® =),

Let d 4x), Ogw)» Ok and d px) be the indicator functions,
Beck and Shtern [2015] gives

FMY

8 4tk {F(k) (X(k+1)) _

Q2 op
< Samd(l = ——PF
< 00 il = fgar 2

5B(k){F(k)(X(k+1)) . F*(’f)}

L) o (k) (k)
§5B<k){§(F x") = F)}
50“"){];(1@) (X(k+1)) _
Q%O’F
16N2LpD?
P *D) — R

™y,

)(F® (x*)) — FM)}

%y

)(F® (x*)) — M)}

< dom{(l -

Spuw {(F
< 5D(k){p(k (X(k)) _

Details of the proof of above inequalities can be found in
the supplementary material.

2
Define p = min{1, TJ&%}. Note that p is a determin-

istic constant between 0 and 1. Therefore we have
F(k)(x(k+1)) _ F*(k)

<(f1-p ~ F®)

= (1= p)-9pw (=1 (x(k)y — pk=1))
+ (1= p) 0w F®E xRy - p(x®)) + F(x*)
F(k 1)(x(k:)) 4+ F*— ka) +F£k_1) _ F*}

<(1- p){l—st(k)}(F(k—l)(x(k)) _ F*(kfl))_i_

(1= ) P00 H{IF® M) = FM)| 4 [P~ |

+FED W) = W)+ (R8T

< (1— p)Zim =050} (PO (x(My — Oy

Y=0pm () (x(k)

k

> (1= p) =i HIFO () — F(x!

i=1

— F*| 4+ |FOD(x") — F(x

N+ [FD

O+ |FY — o)y,

At iteration k, there are at most (k + 1)/2 drop steps, i.e.,
atmost (k+1)/2 0 p)’s equal to 1. Then by Lemma 4, we
have

k
Z(l — p)Zi= 100 | PO (xD) — F(x®)| + |F*
i=1
= FO 4+ [FED (@) = Fx)| + [EEY — B}
k
< Z {|F(i)(X() _ F(X(i))‘ + |F(“1)(x(i))
i=k/2
— FxD)| + R — F*| + [FY - F*}
k/2—1 ‘
+ 2 W= EOC) - PO I
— P4 POV D) - )]+ B — ).
Therefore
FO) (xk+D) - pk)
<(1-p)7 (up—lp) + Z {[FO (=) = P(x)
i=k/2
+ POV (xD) — FaO)| 4 |FY — P+ [FEY — Fo))
k/2—1
2 W= IEOCE) - Px)
+ |F<H><x ) = F)| | FY = Fr| 4 [FED — ).

In addition, F(® (x++1)) — F%) = p(xk+D) — pr 4
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(F®) (x(k+Dy — p(x®E+DY)) + (F* — F*). Thus
F(xF+Dy — pr
- k+1
<(U=p) 7 (up —1p) + Y AIFOED) — Fx))
i=k/2
FIFED D) = )] 4+ (B — |4 [P
k/2—1
+ 2 0= HIFOO) — FOx)
PO 0) PO 1 ] D

Note that for any deterministic x € P, we have
EF®)(x) = F(x). In addition, by Corollary 1, the fol-
lowing bound holds for every iteration k

BIF) (<) - F(x)
log m()
®) (x) —
SEigg‘F (x) — F(x)| < Cy )
and
y log m(¥)
Combining all above bounds and use m() = [1/(1 —
0)%2], we have
]E{F( (lc+1)) . F*}
<(L=p)F (up —lp)
k+1 -
log m( ) log m(i—1)
+201{ ) \/ ey
i=k/2
k/2—1 ,
log m(9 log m(i—1)
_ k/2 i
+Z 1 \/m(z) + mz 1) )}

k-1 N logm (D
<(1=p) = (up —1p) +4CH{ D\ =2

i=k/2
k/2—1 ,
log m(i—1)
k/2 7
-+Z —
(log”” decreases for z > e)

1 1
< (1=p)"% (up —1p) +4C1 [2log 7=

k41 k/2—1
Yo (=pVi+ > (1—p)tViy
i=k/2 i=1
<Co(1- )T
for some constant C and 0 < 5 < p < 1. O

Remark: The proof of Theorem 1 does not use any
stochastic arguments until the very end, where it uses

-}

— F|}.

Lemma 4 to get rid of the indicator function for the ‘drop-
steps’ so that the stochastic arguments based on concentra-
tion inequalities can be applied. Note that we cannot take
expectation on the stochastic gradients and utilize their un-
biasedness property because of the presence of the indica-
tor functions. This proof technique is specifically designed
for the ‘drop-step’ in ASFW and can be useful in analyzing
other similar algorithms.

Corollary 2. Let {X(k)}k21 be the sequence generated by
Algorithm 2 for solving Problem (P1). Then

F(x®) — F*

(1-w)=

— 0

almost surely as k tends to infinity for some 0 < w < f.
Therefore F’ (x(k)) linearly converges to F'* almost surely.

Proof. For every € > 0, let E(®) denotes the event that
(F(x®)—F*)/(1—w)*=1/2 > ¢, By Markov inequality

ZPH“:ZMwwaWMP

L E{F(2®) - F*}

w)FD/2 5 ¢)

<

= —  \(k—1)/2
2 (1 —w) D)
e 1 —f k1

< 2 -~

S k5=2(17w) T < 00

Therefore Y p- , P(E®)) < oo and the Borel-Cantelli
lemma implies that P(lim sup;,_, .. F*)) = 0 which im-
plies (F(x*))— F*) /(1 —w)*=1/2 converges to 0 almost
surely. This implies that every sequence generates by Al-
gorithm 2 linearly converges to the optimal function value
almost surely. O

Remark: Note that the result in Corollary 2 only relies
on the property that an algorithm converges linearly in ex-
pectation. Therefore, we can apply exactly the same ar-
gument to show that every sequence generated by the al-
gorithm in Johnson and Zhang [2013] converges linearly
almost surely.

Corollary 3. To obtain an e-accurate solution, Algorithm
2 requires O((1/€)*") of stochastic gradient evaluations,
where 0 < n =log(l —p)/log(l1 —p) < 1.

Theorem 2. Let {x*)};~, be the sequence generated by
Algorithm 3 for solving Problem (P1), N be the number
of vertices used to represent x\¥) (if VRU is implemented
by using Carathéodory’s theorem, N = p + 1, otherwise
N = |V|) and F* be the optimal value of the problem. Let

_ : 1 32 OF
£ = min{z, SNZL D2

Lr = max{Ly,...,L,}. Set m® = [1/(1
Then for every k > 1

where op = min{oy,...,0,},
K)242).

E{Fx*Y) — F*} < C3(1 = @)/ V1D (4
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where C3 is a deterministic constant and 0 < ¢ < Kk <
1/2.

Proof of Corrolary 3 and Theorem 2 are given in the sup-
plementary material.

Corollary 4. Let {x\¥)},~, be the sequence generated by
Algorithm 3 for solving Problem (P1). Then

F(x®) — p*
(1 - )t

almost surely as k tends to infinity for some 0 < ¥ < ¢.
Therefore F’ (x(k)) linearly converges to F'* almost surely.

—0

Corollary 5. To obtain an e-accurate solution, Algorithm
3 requires O((1/¢)CIVI'T2)8) of stochastic gradient evalu-
ations, where 0 < ¢ =log(1 — p)/log(1 — ¢) < 1.

Proof of Corollary 5 is the same as the proof of Corollary 3
and proof of Corollary 4 is almost the same as the proof of
Corollary 2.

Remark: If we implement step 18 (Carathéodory’s theo-
rem), there will be additional computational cost of O(p?)
operations per iteration. Details can be found in Beck and
Shtern [2015].

Remark: The proof technique also works for general
stochastic optimization problems with appropriate assump-
tions.

4 NUMERICAL EXPERIMENTS

4.1 Simulated Data

We apply the proposed algorithms to the synthetic problem
below:

1
minimize [|Ax — b3 + §HxH2

suchthat [ <z <o <--- <z <
where A € R"™P, b € R™ and x € RP. We gen-
erated the entries of A and b from standard normal dis-
tribution and set n = 105, p = 1000, I = —1 and
u = 1. This problem can be viewed as minimizing a sum of
strongly convex functions subject to a polytope constraint.
Such problems can be found in the shape restricted regres-
sion literature. We compared ASFW and PSFW with two
variance-reduced stochastic methods, the variance-reduced
stochastic Frank-Wolfe (SVRF) method [Luo and Hazan,
2016] and the proximal variance-reduced stochastic gradi-
ent (Prox-SVRG) method [Johnson and Zhang, 2013] [Lin
and Zhang, 2014]. Both Prox-SVRG and SVRF are epoch
based algorithms. They first fix a reference point and com-
pute the exact gradient at the reference point at the begin-
ning of each epoch. Within each epoch, both algorithms
compute variance reduced gradients in every step using the

Simulated Data
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Figure 1: Loss vs cpu time for the synthetic problem.

technique of control variates based on the reference point.
The major difference between them is that in every itera-
tion, the Prox-SVRG takes a proximal gradient step and the
SVREF takes a Frank-Wolfe step. For detailed implementa-
tions of SVRF, we followed Algorithm 1 in Luo and Hazan
[2016] and chose the parameters according to Theorem 1 in
Luo and Hazan [2016]. For the Prox-SVRG, we followed
the Algorithm in Lin and Zhang [2014] and set the number
of iterations in each epoch to be m = 2n and set the step
size to be v = 0.1/L found by Lin and Zhang [2014] to
give the best results for Prox-SVRG, where n is the sample
size and L is the Lipschitz constant for the gradient of the
objective function. For the ASFW and PSFW implementa-
tions, we followed Algorithm 2 and Algorithm 3 and used
adaptive step sizes since we know the Lipschitz constant
of the gradient of the objective function. The number of
samples that we used to compute stochastic gradients for
ASFW and PSFW was set to be 1.04% + 100 at iteration k.
The linear optimization sub-problems in Frank-Wolfe algo-
rithms and the projection step in Prox-SVRG were solved
by using the GUROBI solver. We summarize the param-
eters that were used in the algorithms at iteration k& and
epoch ¢ in Table 2.

To make fair comparisons, we used the same starting point
for all four algorithms. The loss functions for all four algo-
rithms are plotted against CPU time. From the plot, we can
see that ASFW and PSFW performed as well as or slightly
better than their stochastic competitors. At the very begin-
ning, Prox-SVRG has a more rapid descent, while ASFW
and PSFW obtains smaller function values later on. We
also observed big jumps in SVRF periodically. This is be-
cause at the beginning of each epoch, SVRF proceeds with
noisy gradients and very large step sizes. According to
Theorem 1 in Luo and Hazan [2016], the step size of the
first step in every epoch can be as large as 1.



Linear Convergence of Stochastic Frank Wolfe Variants

Table 2: Parameters used in all four algorithms

step-size batch-size  #iterations
ASFW | min{—(g®,d®)/(L®|[d®|?), ymax} 100 + 1.04* N/A
PSEW | min{—(g®,d®)/(L®||[d®)||*), ymax} 100 4 1.04* N/A
SVRF 2/(k+1) 96(k +1) 243 -2
SVRG 0.1/L 1 2n

In ASFW and PSFW, g(k) is the stochastic gradient, L®*) is the Lipschitz constant of the stochastic gradient at iteration k,
d() is the direction the algorithms take at iteration k& and Y.y is the maximum of the possible step sizes (see Algorithm
2 and 3). In Prox-SVRG, L is the Lipschitz constant of the gradient of the objection function and n is the sample size.

4.2 Million Song Dataset

We implemented ASFW and PSFW for solving least
squares problems with elastic-net regularization and tested
them on the Million Song Dataset (YearPredictionMSD)
[Lichman, 2013][Bertin-Mahieux et al., 2011], which is a
dataset of songs with the goal of predicting the release year
of a song from its audio features. There are n = 463,715
training samples and p = 90 features in this dataset. The
dataset is the one with largest number of training sam-
ples available in the UCI machine learning data repository.
Therefore it is interesting to examine the actual perfor-
mance of stochastic algorithms on such a massive dataset.
The least squares with elastic-net regularization model that
we used was,

.1 2 2
min —[|Ax = bll; + Allx]l; + ullx|;

where A € R*"? and b € R". u > 0and A > 0 are
regularization parameters. In the numerical experiments,
we considered the constrained version of the problem, that
is,

1
minimize —|Ax — bH; + u||X||§
n

subjectto  ||x||; < «

where o > 0 is inversely related to A\. We also compared
the ASFW and PSFW with SVRF and Prox-SVRG. We
followed the same settings in this real data experiment as
that in the simulated data experiment except that we used
explicit solutions for solving linear optimizations over an
l1-balls in FW algorithms and we used the algorithm in
Duchi et al. [2008] for the solving projections onto [ -balls
in the Prox-SVRG algorithm instead of using GUROBI for
solving linear optimizations and projections. To make fair
comparisons, we used the same starting point for all four
algorithms. The logarithm of the loss functions obtained
by ASFW, PSFW and Prox-SVRG and the running mini-
mum obtained by SVRF are plotted against CPU time. The
figures show that ASFW and PSFW performed better than
Prox-SVRG and SVREF for all different regularization pa-
rameters. Please find more plots in the supplementary ma-
terial. We also observed huge swings in SVRF in these

Million Song Datawith =1, a=05

Million Song Datawith =1, a=1

Figure 2: Logarithmic loss vs number of iterations on the
elastic net problem with different parameter choices for
Million Song dataset.

experiments. Therefore we plotted the running minimums
instead of the most recent function values for SVRF. We
also note that SVRF appears unable to reduce the function
to its minimum value for o« > 1.

S CONCLUSION AND FUTURE WORK

In this paper, we proved linear convergence almost surely
and in expectation of the Away-step Stochastic Frank-
Wolfe algorithm and the Pairwise Stochastic Frank-Wolfe
algorithm by using a novel proof technique. We tested
these algorithms by training a least squares model with
elastic-net regularization on the million song dataset and on
a synthetic problem. The proposed algorithms performed
as well as or better than their stochastic competitors for var-
ious choice of the regularization parameters. Future work
includes extending the proposed algorithms to problems
with block-coordinate structures and non-strongly convex
objective functions and using variance reduced stochastic
gradients to reduce the number of stochastic gradient ora-
cle calls.
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