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Abstract

For smooth and strongly convex optimizations, the optimal iteration complexity of
the gradient-based algorithm is O(

√
κ log 1/ǫ), where κ is the condition number.

In the case that the optimization problem is ill-conditioned, we need to evaluate a
large number of full gradients, which could be computationally expensive. In this
paper, we propose to remove the dependence on the condition number by allowing
the algorithm to access stochastic gradients of the objective function. To this end,
we present a novel algorithm named Epoch Mixed Gradient Descent (EMGD) that
is able to utilize two kinds of gradients. A distinctive step in EMGD is the mixed
gradient descent, where we use a combination of the full and stochastic gradients
to update the intermediate solution. Theoretical analysis shows that EMGD is
able to find an ǫ-optimal solution by computing O(log 1/ǫ) full gradients and
O(κ2 log 1/ǫ) stochastic gradients.

1 Introduction

Convex optimization has become a tool central to many areas of engineering and applied sciences,
such as signal processing [20] and machine learning [24]. The problem of convex optimization is
typically given as

min
w∈W

F (w),

where W is a convex domain, and F (·) is a convex function. In most cases, the optimization algo-
rithm for solving the above problem is an iterative process, and the convergence rate is characterized
by the iteration complexity, i.e., the number of iterations needed to find an ǫ-optimal solution [3,17].
In this study, we focus on first order methods, where we only have the access to the (stochastic)
gradient of the objective function. For most convex optimization problems, the iteration complexity
of an optimization algorithm depends on the following two factors.

1. The analytical properties of the objective function. For example, is F (·) smooth or strongly
convex?

2. The information that can be elicited about the objective function. For example, do we have
access to the full gradient or the stochastic gradient of F (·)?

The optimal iteration complexities for some popular combinations of the above two factors are sum-
marized in Table 1 and elaborated in the related work section. We observe that when the objective
function is smooth (and strongly convex), the convergence rate for full gradients is much faster than
that for stochastic gradients. On the other hand, the evaluation of a stochastic gradient is usually
significantly more efficient than that of a full gradient. Thus, replacing full gradients with stochastic
gradients essentially trades the number of iterations with a low computational cost per iteration.
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Table 1: The optimal iteration complexity of convex optimization. L and λ are the moduli of
smoothness and strong convexity, respectively. κ = L/λ is the condition number.

Lipschitz continuous Smooth Smooth & Strongly Convex

Full Gradient O
(

1
ǫ2

)
O
(

L√
ǫ

)
O
(√

κ log 1
ǫ

)

Stochastic Gradient O
(

1
ǫ2

)
O
(

1
ǫ2

)
O
(

1
λǫ

)

In this work, we consider the case when the objective function is both smooth and strongly convex,
where the optimal iteration complexity is O(

√
κ log 1

ǫ ) if the optimization method is first order
and has access to the full gradients [17]. For the optimization problems that are ill-conditioned, the
condition number κ can be very large, leading to many evaluations of full gradients, an operation that
is computationally expensive for large data sets. To reduce the computational cost, we are interested
in the possibility of making the number of full gradients required independent from κ. Although the
O(

√
κ log 1

ǫ ) rate is in general not improvable for any first order method, we bypass this difficulty by
allowing the algorithm to have access to both full and stochastic gradients. Our objective is to reduce
the iteration complexity from O(

√
κ log 1

ǫ ) to O(log 1
ǫ ) by replacing most of the evaluations of full

gradients with the evaluations of stochastic gradients. Under the assumption that stochastic gradients
can be computed efficiently, this tradeoff could lead to a significant improvement in computational
efficiency.

To this end, we developed a novel optimization algorithm named Epoch Mixed Gradient Descent
(EMGD). It divides the optimization process into a sequence of epochs, an idea that is borrowed
from the epoch gradient descent [9]. At each epoch, the proposed algorithm performs mixed gra-
dient descent by evaluating one full gradient and O(κ2) stochastic gradients. It achieves a constant
reduction in the optimization error for every epoch, leading to a linear convergence rate. Our analy-
sis shows that EMGD is able to find an ǫ-optimal solution by computing O(log 1

ǫ ) full gradients and

O(κ2 log 1
ǫ ) stochastic gradients. In other words, with the help of stochastic gradients, the number

of full gradients required is reduced from O(
√
κ log 1

ǫ ) to O(log 1
ǫ ), independent from the condition

number.

2 Related Work

During the last three decades, there have been significant advances in convex optimization [3,15,17].
In this section, we provide a brief review of the first order optimization methods.

We first discuss deterministic optimization, where the gradient of the objective function is available.
For the general convex and Lipschitz continuous optimization problem, the iteration complexity
of gradient (subgradient) descent is O( 1

ǫ2 ), which is optimal up to constant factors [15]. When
the objective function is convex and smooth, the optimal optimization scheme is the accelerated
gradient descent developed by Nesterov, whose iteration complexity is O( L√

ǫ
) [16, 18]. With slight

modifications, the accelerated gradient descent algorithm can also be applied to optimize the smooth
and strongly convex objective function, whose iteration complexity is O(

√
κ log 1

ǫ ) and is in general
not improvable [17, 19]. The objective of our work is to reduce the number of accesses to the full
gradients by exploiting the availability of stochastic gradients.

In stochastic optimization, we have access to the stochastic gradient, which is an unbiased estimate
of the full gradient [14]. Similar to the case in deterministic optimization, if the objective function
is convex and Lipschitz continuous, stochastic gradient (subgradient) descent is the optimal algo-
rithm and the iteration complexity is also O( 1

ǫ2 ) [14, 15]. When the objective function is λ-strongly

convex, the algorithms proposed in very recent works [9, 10, 21, 26] achieve the optimal O( 1
λǫ ) it-

eration complexity [1]. Since the convergence rate of stochastic optimization is dominated by the
randomness in the gradient [6,11], smoothness usually does not lead to a faster convergence rate for
stochastic optimization. A variant of stochastic optimization is the “semi-stochastic” approximation,
which interleave stochastic gradient descent and full gradient descent [12]. In the strongly convex
case, if the stochastic gradients are taken at a decreasing rate, the convergence rate can be improved
to approach O( 1

λ
√
ǫ
) [13].
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From the above discussion, we observe that the iteration complexity in stochastic optimization is
polynomial in 1

ǫ , making it difficult to find high-precision solutions. However, when the objective
function is strongly convex and can be written as a sum of a finite number of functions, i.e.,

F (w) =
1

n

n∑

i=1

fi(w), (1)

where each fi(·) is smooth, the iteration complexity of some specific algorithms may exhibit a loga-
rithmic dependence on 1

ǫ , i.e., a linear convergence rate. The two very recent works are the stochastic

average gradient (SAG) [22], whose iteration complexity is O(n log 1
ǫ ), provided n ≥ 8κ, and the

stochastic dual coordinate ascent (SDCA) [23], whose iteration complexity is O((n + κ) log 1
ǫ ).

1

Under approximate conditions, the incremental gradient method [2] and the hybrid method [5] can
also minimize the function in (1) with a linear convergence rate. But those algorithms usually treat
one pass of all fi’s (or the subset of fi’s) as one iteration, and thus have high computational cost per
iteration.

3 Epoch Mixed Gradient Descent

3.1 Preliminaries

In this paper, we assume there exist two oracles.

1. The first one is a gradient oracle Og , which for a given input point w ∈ W returns the
gradient ∇F (w), that is,

Og(w) = ∇F (w).

2. The second one is a function oracle Of , each call of which returns a random function f(·),
such that

F (w) = Ef [f(w)], ∀w ∈ W,

and f(·) is L-smooth, that is,

‖∇f(w)−∇f(w′)‖ ≤ L‖w −w′‖, ∀w,w′ ∈ W. (2)

Although we do not define a stochastic gradient oracle directly, the function oracle Of allows us to
evaluate the stochastic gradient of F (·) at any point w ∈ W .

Notice that the assumption about the function oracle Of implies that the objective function F (·) is
also L-smooth. Since ∇F (w) = Ef∇f(w), by Jensen’s inequality, we have

‖∇F (w)−∇F (w′)‖ ≤ Ef‖∇f(w)−∇f(w′)‖
(2)

≤ L‖w −w′‖, ∀w,w′ ∈ W. (3)

Besides, we further assume F (·) is λ-strongly convex, that is,

‖∇F (w)−∇F (w′)‖ ≥ λ‖w −w′‖, ∀w,w′ ∈ W. (4)

From (3) and (4), it is obvious that L ≥ λ. The condition number κ is defined as the ratio between
them. i.e., κ = L/λ ≥ 1.

3.2 The Algorithm

The detailed steps of the proposed Epoch Mixed Gradient Descent (EMGD) are shown in Algo-
rithm 1, where we use the superscript for the index of epoches, and the subscript for the index of
iterations at each epoch. We denote by B(x; r) the ℓ2 ball of radius r around the point x.

Similar to the epoch gradient descent (EGD) [9], we divided the optimization process into a sequence
of epochs (step 3 to step 10). While the number of accesses to the gradient oracle in EGD increases
exponentially over the epoches, the number of accesses to the two oracles in EMGD is fixed.

1In order to apply SDCA, we need to assume each function fi is λ-strongly convex, so that we can rewrite
fi(w) as gi(w) + λ

2
‖w‖2, where gi(w) = fi(w)− λ

2
‖w‖2 is convex.
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Algorithm 1 Epoch Mixed Gradient Descent (EMGD)

Input: step size η, the initial domain size ∆1, the number of iterations T per epoch, and the number
of epoches m

1: Initialize w̄1 = 0

2: for k = 1, . . . ,m do
3: Set wk

1 = w̄k

4: Call the gradient oracle Og to obtain ∇F (w̄k)
5: for t = 1, . . . , T do
6: Call the function oracle Of to obtain a random function fk

t (·)
7: Compute the mixed gradient as

g̃k
t = ∇F (w̄k) +∇fk

t (w
k
t )−∇fk

t (w̄
k)

8: Update the solution by

wk
t+1 = argmin

w∈W∩B(w̄k;∆k)

η〈w −wk
t , g̃

k
t 〉+

1

2
‖w −wk

t ‖2

9: end for
10: Set w̄k+1 = 1

T+1

∑T+1
t=1 wk

t and ∆k+1 = ∆k/
√
2

11: end for

Return w̄m+1

At the beginning of each epoch, we initialize the solution wk
1 to be the average solution w̄k obtained

from the last epoch, and then call the gradient oracle Og to obtain ∇F (w̄k). At each iteration t
of epoch k, we call the function oracle Of to obtain a random function fk

t (·) and define the mixed

gradient at the current solution wk
t as

g̃k
t = ∇F (w̄k) +∇fk

t (w
k
t )−∇fk

t (w̄
k),

which involves both the full gradient and the stochastic gradient. The mixed gradient can be divided
into two parts: the deterministic part ∇F (w̄k) and the stochastic part ∇fk

t (w
k
t ) −∇fk

t (w̄
k). Due

to the smoothness property of fk
t (·) and the shrinkage of the domain size, the norm of the stochastic

part is well bounded, which is the reason why our algorithm can achieve linear convergence.

Based on the mixed gradient, we update wk
t by a gradient mapping over a shrinking domain (i.e.,

W ∩B(w̄k; ∆k)) in step 8. Since the updating is similar to the standard gradient descent except for
the domain constraint, we refer to it as mixed gradient descent for short. At the end of the iteration
for epoch k, we compute the average value of T + 1 solutions, instead of T solutions, and update

the domain size by reducing a factor of
√
2.

3.3 The Convergence Rate

The following theorem shows the convergence rate of the proposed algorithm.

Theorem 1. Assume

δ ≤ e−1/2, T ≥ 1152L2

λ2
ln

1

δ
, and ∆1 ≥ max

√
2

λ
(F (0)− F (w∗)). (5)

Set η = 1/[L
√
T ]. Let w̄m+1 be the solution returned by Algorithm 1 after m epoches that has m

accesses to oracle Og and mT accesses to oracle Of . Then, with a probability at least 1−mδ, we
have

F (w̄m+1)− F (w∗) ≤ λ[∆1]2

2m+1
, and ‖w̄m+1 −w∗‖2 ≤ [∆1]2

2m
.

Theorem 1 immediately implies that EMGD is able to achieve an ǫ optimization error by computing
O(log 1

ǫ ) full gradients and O(κ2 log 1
ǫ ) stochastic gradients.
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Table 2: The computational complexity for minimizing 1
n

∑n
i=1 fi(w)

Nesterov’s algorithm [17] EMGD SAG (n ≥ 8κ) [22] SDCA [23]

O
(√

κn log 1
ǫ

)
O
(
(n+ κ2) log 1

ǫ

)
O
(
n log 1

ǫ

)
O
(
(n+ κ) log 1

ǫ

)

3.4 Comparisons

Compared to the optimization algorithms that only rely on full gradients [17], the number of full
gradients needed in EMGD is O(log 1

ǫ ) instead of O(
√
κ log 1

ǫ ). Compared to the optimization
algorithms that only rely on stochastic gradients [9,10,21], EMGD is more efficient since it achieves
a linear convergence rate.

The proposed EMGD algorithm can also be applied to the special optimization problem considered
in [22, 23], where F (w) = 1

n

∑n
i=1 fi(w). To make quantitative comparisons, let’s assume the

full gradient is n times more expensive to compute than the stochastic gradient. Table 2 lists the
computational complexities of the algorithms that enjoy linear convergence. As can be seen, the
computational complexity of EMGD is lower than Nesterov’s algorithm [17] as long as the condition

number κ ≤ n2/3, the complexity of SAG [22] is lower than Nesterov’s algorithm if κ ≤ n/8, and
the complexity of SDCA [23] is lower than Nesterov’s algorithm if κ ≤ n2.2 The complexity of

EMGD is on the same order as SAG and SDCA when κ ≤ n1/2, but higher in other cases. Thus, in
terms of computational cost, EMGD may not be the best one, but it has advantages in other aspects.

1. Unlike SAG and SDCA that only work for unconstrained optimization problem, the pro-
posed algorithm works for both constrained and unconstrained optimization problems, pro-
vided that the constrained problem in Step 8 can be solved efficiently.

2. Unlike the SAG and SDCA that require an Ω(n) storage space, the proposed algorithm
only requires the storage space of Ω(d), where d is the dimension of w.

3. The only step in Algorithm 1 that has dependence on n is step 4 for computing the gradient
∇F (w̄k). By utilizing distributed computing, the running time of this step can be reduced
to O(n/k), where k is the number of computers, and the convergence rate remains the
same. For SAG and SDCA , it is unclear whether they can reduce the running time without
affecting the convergence rate.

4. The linear convergence of SAG and SDCA only holds in expectation, whereas the linear
convergence of EMGD holds with a high probability, which is much stronger.

4 The Analysis

In the proof, we frequently use the following property of strongly convex functions [9].

Lemma 1. Let f(x) be a λ-strongly convex function over the domain X , and x∗ =
argmin

x∈X f(x). Then, for any x ∈ X , we have

f(x)− f(x∗) ≥ λ

2
‖x− x∗‖2. (6)

4.1 The Main Idea

The Proof of Theorem 1 is based on induction. From the assumption about ∆1 in (5), we have

F (w̄1)− F (w∗)
(5)

≤ λ[∆1]2

2
, and ‖w̄1 −w∗‖2

(5), (6)

≤ [∆1]2,

2In machine learning, we usually face a regularized optimization problem minw∈W
1

n

∑n
i=1

ℓ(yi;x
⊤
i w)+

τ
2
‖w‖2, where ℓ(·; ·) is some loss function. When the norm of the data is bounded, the smoothness parameter

L can be treated as a constant. The strong convexity parameter λ is lower bounded by τ . Thus, as long as

τ > Ω(n−2/3), which is a reasonable scenario [25], we have κ < O(n2/3), indicating our proposed EMGD
can be applied.
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which means Theorem 1 is true for m = 0. Suppose Theorem 1 is true for m = k. That is, with a
probability at least 1− kδ, we have

F (w̄k+1)− F (w∗) ≤ λ[∆1]2

2k+1
, and ‖w̄k+1 −w∗‖2 ≤ [∆1]2

2k
.

Our goal is to show that after running the k+1-th epoch, with a probability at least 1− (k+1)δ, we
have

F (w̄k+2)− F (w∗) ≤ λ[∆1]2

2k+2
, and ‖w̄k+2 −w∗‖2 ≤ [∆1]2

2k+1
.

4.2 The Details

For the simplicity of presentation, we drop the index k for epoch. Let w̄ be the solution obtained
from the epoch k. Given the condition

F (w̄)− F (w∗) ≤ λ

2
∆2, and ‖w̄ −w∗‖2 ≤ ∆2, (7)

we will show that after running the T iterations in one epoch, the new solution, denoted by ŵ,
satisfies

F (ŵ)− F (w∗) ≤ λ

4
∆2, and ‖ŵ −w∗‖2 ≤ 1

2
∆2, (8)

with a probability at least 1− δ.

Define

g = ∇F (w̄), F̂ (w) = F (w)− 〈w,g〉, and gt(w) = ft(w)− 〈w,∇ft(w̄)〉. (9)

The objective function can be rewritten as

F (w) = 〈w,g〉+ F̂ (w). (10)

And the mixed gradient can be rewritten as

g̃k = g +∇gt(wt).

Then, the updating rule given in Algorithm 1 becomes

wt+1 = argmin
w∈W∩B(w̄,∆)

η〈w −wt,g +∇gt(wt)〉+
1

2
‖w −wt‖2. (11)

Notice that the objective function in (11) is 1-strongly convex. Using the fact that w∗ ∈ W ∩
B(w̄; ∆) and Lemma 1 (with x∗ = wt+1 and x = w∗), we have

η〈wt+1 −wt,g +∇gt(wt)〉+
1

2
‖wt+1 −wt‖2

≤η〈w∗ −wt,g +∇gt(wt)〉+
1

2
‖w∗ −wt‖2 −

1

2
‖w∗ −wt+1‖2.

(12)

For each iteration t in the current epoch, we have

F (wt)− F (w∗)

(4)

≤〈∇F (wt),wt −w∗〉 − λ

2
‖wt −w∗‖2

(10)
= 〈g +∇gt(wt),wt −w∗〉+

〈
∇F̂ (wt)−∇gt(wt),wt −w∗

〉
− λ

2
‖wt −w∗‖2,

(13)

and

〈g +∇gt(wt),wt −w∗〉
(12)

≤ 〈g +∇gt(wt),wt −wt+1〉+
‖wt −w∗‖2

2η
− ‖wt+1 −w∗‖2

2η
− ‖wt −wt+1‖2

2η

≤〈g,wt −wt+1〉+
‖wt −w∗‖2

2η
− ‖wt+1 −w∗‖2

2η

+max
w

(
〈∇gt(wt),wt −w〉 − ‖wt −w‖2

2η

)

=〈g,wt −wt+1〉+
‖wt −w∗‖2

2η
− ‖wt+1 −w∗‖2

2η
+

η

2
‖∇gt(wt)‖2.

(14)
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Combining (13) and (14), we have

F (wt)− F (w∗)

≤‖wt −w∗‖2
2η

− ‖wt+1 −w∗‖2
2η

− λ

2
‖wt −w∗‖2

+ 〈g,wt −wt+1〉+
η

2
‖∇gt(wt)‖2 +

〈
∇F̂ (wt)−∇gt(wt),wt −w∗

〉
.

By adding the inequalities of all iterations, we have

T∑

t=1

(F (wt)− F (w∗))

≤‖w̄ −w∗‖2
2η

− ‖wT+1 −w∗‖2
2η

− λ

2

T∑

t=1

‖wt −w∗‖2 + 〈g, w̄ −wT+1〉

+
η

2

T∑

t=1

‖∇gt(wt)‖2

︸ ︷︷ ︸
,AT

+

T∑

t=1

〈∇F̂ (wt)−∇gt(wt),wt −w∗〉
︸ ︷︷ ︸

,BT

.

(15)

Since F (·) is L-smooth, we have

F (wT+1)− F (w̄) ≤ 〈∇F (w̄),wT+1 − w̄〉+ L

2
‖w̄ −wT+1‖2,

which implies

〈g, w̄ −wT+1〉 ≤ F (w̄)− F (wT+1) +
L

2
∆2

(7)

≤ F (w∗)− F (wT+1) +
λ

2
∆2 +

L

2
∆2 ≤ F (w∗)− F (wT+1) + L∆2.

(16)

From (15) and (16), we have

T+1∑

t=1

(F (wt)− F (w∗)) ≤ ∆2

(
1

2η
+ L

)
+

η

2
AT +BT . (17)

Next, we consider how to bound AT and BT . The upper bound of AT is given by

AT =

T∑

t=1

‖∇gt(wt)‖2 =

T∑

t=1

‖∇ft(wt)−∇ft(w̄)‖2
(2)

≤ L2
T∑

t=1

‖wt − w̄‖2 ≤ TL2∆2. (18)

To bound BT , we need the Hoeffding-Azuma inequality stated below [4].

Lemma 2. Let V1, V2, . . . be a martingale difference sequence with respect to some sequence
X1, X2, . . . such that Vi ∈ [Ai, Ai + ci] for some random variable Ai, measurable with respect
to X1, . . . , Xi−1 and a positive constant ci. If Sn =

∑n
i=1 Vi, then for any t > 0,

Pr[Sn > t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Define
Vt = 〈∇F̂ (wt)−∇gt(wt),wt −w∗〉, t = 1, . . . , T.

Recall the definition of F̂ (·) and gt(·) in (9). Based on our assumption about the function oracle
Of , it is straightforward to check that V1, . . . is a martingale difference with respect to g1, . . .. The
value of Vt can be bounded by

|Vt| ≤
∥∥∥∇F̂ (wt)−∇gt(wt)

∥∥∥ ‖wt −w∗‖
≤ 2∆ (‖∇F (wt)−∇F (w̄)‖+ ‖∇ft(wt)−∇ft(w̄)‖)

(2), (3)

≤ 4L∆‖wt − w̄‖ ≤ 4L∆2.
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Following Lemma 2, with a probability at least 1− δ, we have

BT ≤ 4L∆2

√
2T ln

1

δ
. (19)

By adding the inequalities in (17), (18) and (19) together, with a probability at least 1− δ, we have

T+1∑

t=1

(F (wt)− F (w∗)) ≤ ∆2

(
1

2η
+ L+

ηTL2

2
+ 4L

√
2T ln

1

δ

)
.

By choosing η = 1/[L
√
T ], we have

T+1∑

t=1

(F (wt)− F (w∗)) ≤ L∆2

(
√
T + 1 + 4

√
2T ln

1

δ

)
(5)

≤ 6L∆2

√
2T ln

1

δ
, (20)

where in the second inequality we use the condition δ ≤ e−1/2 in (5). By Jensen’s inequality, we
have

F (ŵ)− F (w∗) ≤ 1

T + 1

T+1∑

t=1

(F (wt)− F (w∗))
(20)

≤ ∆2 6L
√

2 ln 1/δ√
T + 1

,

and therefore

‖ŵ −w∗‖2
(6)

≤ 2

λ
F (ŵ)− F (w∗) ≤ ∆2 12L

√
2 ln 1/δ

λ
√
T + 1

.

Thus, when

T ≥ 1152L2

λ2
ln

1

δ
,

with a probability at least 1− δ, we have

F (ŵ)− F (w∗) ≤ λ

4
∆2, and ‖ŵ −w∗‖2 ≤ 1

2
∆2.

5 Conclusion and Future Work

In this paper, we consider how to reduce the number of full gradients needed for smooth and strongly
convex optimization problems. Under the assumption that both the gradient and the stochastic gra-
dient are available, a novel algorithm named Epoch Mixed Gradient Descent (EMGD) is proposed.
Theoretical analysis shows that with the help of stochastic gradients, we are able to reduce the num-
ber of gradients needed from O(

√
κ log 1

ǫ ) to O(log 1
ǫ ). In the case that the objective function is in

the form of (1), i.e., a sum of n smooth functions, EMGD has lower computational cost than the full

gradient method [17], if the condition number κ ≤ n2/3.

In practice, a drawback of EMGD is that it requires the condition number κ is known beforehand.
We will interstage how to find a good estimation of κ in future. When the objective function is
a sum of some special functions, such as the square loss (i.e., (yi − x⊤

i w)2), we can estimate
the condition number by sampling. In particular, the Hessian matrix estimated from a subset of
functions, combined with the concentration inequalities for matrix [7], can be used to bound the
eigenvalues of the true Hessian matrix and consequentially κ. Furthermore, if there exists a strongly
convex regularizer in the objective function, which happens in many machine learning problems [8],
the knowledge of the regularizer itself allows us to find an upper bound of κ.
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