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Abstract. In this paper we re-visit distinguishing attacks. We show
how to generalize the notion of linear distinguisher to arbitrary sets. Our
thesis is that our generalization is the most natural one. We compare it
with the one by Granboulan et al. from FSE’06 by showing that we can
get sharp estimates of the data complexity and cumulate characteristics
in linear hulls. As a proof of concept, we propose a better attack on their
toy cipher TOY100 than the one that was originally suggested and we
propose the best known plaintext attack on SAFER K/SK so far. This
provides new directions to block cipher cryptanalysis even in the binary
case. On the constructive side, we introduce DEAN18, a toy cipher which
encrypts blocks of 18 decimal digits and we study its security.

1 Introduction and Mathematical Background

In the digital age, information is always seen as a sequence of bits and, naturally,
most practical block ciphers and cryptanalytic tools assume that the text space
is made of binary strings. In the literature, a block cipher over a finite set M is
commonly defined as a set of permutations Ck : M → M indexed by a key k ∈ K,
with M = {0, 1}ℓ [36]. This restriction is quite questionable though, as it is easy
to think of specific settings in which it could be desirable to adapt the block size
to the data being encrypted. For example, when considering credit card numbers,
social security numbers, payment orders, schedules, telegrams, calendars, string
of alphabetical characters,... it seems that there is no reason what so ever to
restrict to binary strings. Whereas an apparently straightforward solution would
be to encode the data prior encryption, the loss in terms of simplicity (inevitably
affecting the security analysis) and of efficiency would be unfortunate.

Although most modern block ciphers (e.g., [1, 2, 9, 21, 48]) are defined on a
binary set, practical and efficient examples of block ciphers defined on a set
of arbitrary size exist (see for example Schroeppel’s “omnicipher” Hasty Pud-
ding [45]). Some others, although still defined on binary sets, use a mixture of
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group laws over the same set. For example, IDEA [30] combines three group
structures: exclusive bit or, addition modulo 216 and a tweaked multiplication
modulo 216 + 1. Designing a block cipher with an arbitrary block space can be
particularly challenging since the state of the art concerning alternate group
structures is very limited. Although differential cryptanalysis [5] (through the
theory of Markov ciphers [29]) can be specified over an arbitrary group, linear
cryptanalysis [34] is based on a metric (the linear probability) that sticks to
bit strings. Applying it to a non-binary block cipher would at least require to
generalize this notion. Although several generalizations of linear cryptanalysis
exist [15–20,23,24,28,37,42,46,47,50], to the best of our knowledge, none easily
applies to, say, modulo 10-based block ciphers. So far, only Granboulan et al. [13]
provide a sound treatment on non-binary cipher but mostly address differential
cryptanalysis. We show that, for linear cryptanalysis, their data complexity can-
not be precisely estimated. Furthermore, no cumulating effect of “linear hull”
seems possible. We propose another notion of nonlinearity which fixes all those
drawbacks and makes us believe that it is the most natural one.

Outline. In the three first sections of this paper, we re-visit distinguishing
attacks on random sources (like stream ciphers or pseudo-random generators)
and on random permutations (like block ciphers), in the spirit of Baignères et
al. [3], but without assuming that domains are vector spaces. Consequently, the
only structure we can consider on these sets is that of finite Abelian groups. In
particular, we reconsider linear, optimal, and statistical distinguishers against
random sources and linear distinguishers against block ciphers.

The following sections apply this theory to TOY100 and SAFER K/SK (on
which we devise the best known plaintext attack so far, showing that our gen-
eralization can be useful even in the binary case). On the constructive side, we
introduce DEAN18, a toy cipher which encrypts blocks of 18 decimal digits.

Notations. Throughout this paper, random variables X, Y, . . . are denoted by
capital letters, whilst their realizations x ∈ X , y ∈ Y, . . . are denoted by small
letters. The cardinal of a set X is denoted |X |. The probability function of a
random variable X following a distribution D is denoted Pr X∈DX [x], PD(x), or
abusively Pr X [x], when the distribution is clear from the context. A sequence
X1, X2, . . . , Xn of n random variables is denoted Xn. Similarly, a sequence
x1, x2, . . . , xn of realizations is denoted xn. We call support of a distribution
D the set of all x ∈ X such that PD(x) 6= 0. As usual, “iid” means “independent
and identically distributed”. 1A is 1 if the predicate A is true, 0 otherwise. The
distribution function of the standard normal distribution is denoted

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2u2

du .

Mathematical Background. Let G be a finite group of order n. We let L2(G)
denote the n-dimensional vector space of complex-valued functions f on G. The
conjugate f of f is defined by f(a) = f(a) for all a ∈ G. We define an inner
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product on L2(G) by (f1, f2) =
∑

a∈G
f1(a)f2(a). The Euclidean norm of f ∈

L2(G) is simply ‖f‖2 = (f, f)1/2 = (
∑

a |f(a)|2)1/2. Consequently, L2(G) is a
Hilbert Space. A character of G is a homomorphism χ : G → C×, where C×

is the multiplicative group of nonzero complex numbers. Then χ(1) = 1 and
χ(a1a2) = χ(a1)χ(a2) for all a1, a2 ∈ G. Clearly, χ(a) is a nth root of unity,
hence χ(a) = χ(a)−1. The product of two characters χ1 and χ2 is defined as
χ1χ2(a) = χ1(a)χ2(a) for all a ∈ G. The character 1 defined by 1(a) = 1 for all

a ∈ G is the neutral element for this operation. Clearly, χ−1 = χ. The set Ĝ of
all characters of G is the dual group of G and is isomorphic to G.

Lemma 1 (Theorems 4.6 and 4.7 in [40]). Let G be a finite Abelian group

of order n, and let Ĝ be its dual group. If χ ∈ Ĝ (resp. a ∈ G) then

∑

a∈G

χ(a) =

{
n if χ = 1,

0 otherwise,
resp.

∑

χ∈bG

χ(a) =

{
n if a = 1,

0 otherwise.

If χ1, χ2 ∈ Ĝ (resp. a, b ∈ G) then

∑

a∈G

χ1(a)χ2(a) =

{
n if χ1 = χ2,

0 otherwise,
resp.

∑

χ∈bG

χ(a)χ(b) =

{
n if a = b,

0 otherwise.

If χ1, χ2 ∈ Ĝ, we deduce (χ1, χ2) = n if χ1 = χ2 and 0 otherwise. Therefore, the

n characters of Ĝ is an orthogonal basis of the vector space L2(G).

Definition 2 (Fourier transform). The Fourier transform of f ∈ L2(G) is

the function f̂ ∈ L2(Ĝ) such that f̂(χ) = (f, χ) for all χ ∈ Ĝ.

If f̂ ∈ L2(Ĝ) is the Fourier transform of f ∈ L2(G), the Fourier inversion is

f =
1

n

∑
χ∈bGf̂(χ)χ.

Theorem 3 (Plancherel’s formula). If f̂ ∈ L2(Ĝ) is the Fourier transform

of f ∈ L2(G), then ‖f̂‖2 =
√

n‖f‖2.

Consider the particular case where G = {0, 1}k, χu(a) = (−1)u•a for all u, a ∈ G,
and where • denotes the inner dot product in G. The mapping u 7→ χu is an
isomorphism between G and Ĝ. Consequently, when G = {0, 1}k any character
χ of G can be expressed as χ(a) = (−1)u•a for some u ∈ G. In linear crypt-
analysis, u is called a mask and there is a one-to-one mapping between masks
and characters. So, it seems reasonable to generalize linear cryptanalysis on any
finite Abelian group by using characters instead of masks.

2 Distinguishing a Biased Source of Finite Support

We consider a source generating a sequence of d iid random variables Zd fol-
lowing a distribution Ds of finite support Z. We wonder whether Ds = U or
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Ds = D (where U is the uniform distribution over Z) knowing that these two
events are equiprobable and that one of them is eventually true. An algorithm
which takes a sequence of d realizations zd as input and outputs either 0 or 1 is
a distinguisher D limited to d samples. The ability to distinguish a distribution
from another is the advantage of the distinguisher and is defined by

Advd
D =

∣∣∣Pr Ud [D outputs 1] − Pr Dd [D outputs 1]
∣∣∣, (1)

which is a quantity an adversary would like to maximize. If the set Z has the
structure of an Abelian group, we denote it G and denote by n its cardinality.

2.1 Optimal Distinguishers

Due to the Neyman-Pearson lemma, the best distinguisher is based on the max-
imum likelihood strategy. It consists in comparing PrUd [zd] and PrDd [zd].

Definition 4 (Baignères et al. [3]). The Squared Euclidean Imbalance (SEI)
of a distribution D of finite support Z is defined by

∆(D) = |Z|
∑

z∈Z

(
PD(z) − 1

|Z|

)2

= |Z|
∑

z∈Z
PD(z)2 − 1 = |Z| 2−H2(D) − 1

where H2(D) is the Rényi entropy of order 2.

It was shown in [3] that when using d samples Z1, . . . , Zd ∈ Z the advantage of
the best distinguisher A is such that

Advd
D ≈ 1 − 2Φ(−

√
λ/2), (2)

where λ = d · ∆(D). When λ = 1 we obtain Advd
D ≈ 0.38. Note also that when

λ ≪ 1, the previous equation simplifies to Advd
D ≈

√
λ
2π , whereas, when λ ≫ 1,

it simplifies to Advd
D ≈ 1 − 4e−λ/8

√
2πλ

. This motivates the rule of thumb that the

data complexity for the best distinguisher should be d ≈ 1/∆(D).
Using Theorem 3, we obtain the following expression for the SEI.

Lemma 5. Given a distribution D whose support is a finite Abelian group G of

order n, we have ∆(D) = n‖PD − PU‖2
2 = ‖P̂D − P̂U‖2

2 =
∑

χ∈bG\{1}
∣∣P̂D(χ)

∣∣2.

2.2 Linear Probabilities

Typically, performing a linear cryptanalysis [34] against a source of bit-strings
of length ℓ consists in analyzing one bit of information about each sample zi, by
means of a scalar product between a (fixed) mask u ∈ {0, 1}ℓ. By measuring the
statistical bias of this bit, it is sometimes possible to infer whether Ds = U (in
which case, the bias should be close to 0) or Ds = D (in which case, the bias may
be large). Chabaud and Vaudenay [8] adopted the linear probability (LP) [35]
defined by LPD(u) = (2 PrX∈D{0,1}ℓ [u • X = 0] − 1)2 = (EX∈D{0,1}ℓ((−1)u •X))2

as a fundamental measure for linear cryptanalysis. Given the fact that the source
is not necessarily binary, it seems natural to generalize the LP as follows.
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Definition 6. For all group character χ : G → C×, the linear probability of a
distribution D over G with respect to χ is defined by

LPD(χ) = |EA∈DG (χ(A))|2 =
∣∣∑

a∈G
χ(a)PD(a)

∣∣2 =
∣∣P̂D(χ)

∣∣2.

The LP of χ is simply the square of magnitude of the discrete Fourier transform
of the probability distribution. In the particular case where G = {0, 1}ℓ, we
can see that for any u we have LPD(u) = LPD(χu), so that Definition 6 indeed
generalizes the notion of linear probability.

Granboulan et al. [13] adopted a different metric which can be expressed

by LPalt
D (χ) = maxz

(
PrA∈DG[χ(A) = z] − 1

m

)2
where m is the order of χ. When

m = 2, we easily obtain LPalt
D (χ) = 4·LPD(χ) but when m > 2, there is no simple

relation. Nevertheless, we have LPD(χ) ≤ m2

2 LPalt
D (χ) for m > 2. This bound

is fairly tight since the following distribution reaches LPD(χ) = m2

4 LPalt
D (χ): we

let G = Zm for m > 2, χ(x) = e
2iπ
m x, and PD(x) = 1

m + ε × cos 2πx
m . We have

LPalt
D (χ) = ε2 and we can easily compute LPD(χ) = m2

4 ε2. This shows that our

LPD(χ) maybe quite larger than LPalt
D (χ).

2.3 Linear Distinguisher

We construct a linear distinguisher as follows. Let

sa(zd; χ) =
1

d

d∑

j=1

χ(zj) and lp(zd; χ) =
∣∣sa(zd; χ)

∣∣2 .

The statistical average sa(zd; χ) over the sample vector zd can serve for distin-
guishing U from D. We define the order of the linear distinguisher as the order
m of χ in Ĝ. For example, linear distinguishers of order 2 correspond to clas-
sical linear distinguishers. Note that this order must be reasonable so that the
implementations can compute the complex number sa(zd; χ).

The law of large numbers tells us that lp(zd; χ) −−−→
d→∞

|EZ∈DG(χ(Z))|2 =

LPD(χ). Informally, when lp is large, it is likely that Ds = D, whereas when it
is close to 0, it is likely that Ds = U. Consequently, the advantage of a linear
distinguisher D can be defined by optimizing a decision threshold τ , i.e., we have

Advd
D(χ) = max

0<τ<1

∣∣PrUd [lp(Zd; χ) < τ ] − PrDd [lp(Zd; χ) < τ ]
∣∣ .

When the exact distribution of χ(Z) (for Z ∈D G) on the unit circle is known,
one can build a more powerful distinguisher. However, we will later show that the
best improvement factor that is achievable is not particularly large, due to the
fact that the order of χ must be small. Besides, one only knows in practice that
the distribution of χ(Z) belongs to a set of m possible distributions. For instance,
considering (regular) linear cryptanalysis (that is, using characters of order 2),
the expected value of the statistical average is ±ǫ and thus lies on circle of radius
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ǫ. The sign is unknown as it depends on an unknown key. This generalizes to
characters of higher order, for which the exact value of the mean of the statistical
average might allow to know which of the m possible distributions we are dealing
with and thus give more information about the key. As for the distinguishing
issue, we rather stick to the simpler statistical test based on lp(Zd; χ) only.

The following theorem allows to lower bound the advantage of a linear dis-
tinguisher in terms of the linear probability of the source with respect to D.

Theorem 7. Let G be a finite Abelian group and let χ ∈ Ĝ. Using heuristic
approximations, the advantage Advd

D of a d-limited linear distinguisher D trying
to distinguish the uniform distribution U from D is such that Advd

D(χ) � 1−
2 ·e− d

4 LPD(χ) (resp. Advd
D(χ) � 1−4 ·Φ

(
− 1

2

√
d · LPD(χ)

)
) for χ of order at least

3 (resp. of order 2), when d is large enough and under the heuristic assumption
that the covariance matrix of lp(Zd; χ) is the same for both distributions.3

Proof. Let m be the order of χ. We denote χ(Zj) = e
2iπ
m θj for all j = 1, . . . , d

and let Xj = cos(2π
m θj) and Yj = sin(2π

m θj), so that

lp(Zd; χ) =
∣∣ 1
d

∑d
j=1Xj + i · 1

d

∑d
j=1Yj

∣∣2 =
(

1
d

∑d
j=1Xj

)2
+
(

1
d

∑d
j=1Yj

)2
.

The law of large numbers gives 1
d

∑d
j=1Xj + i · 1

d

∑d
j=1Yj → EZ∈DsG

(χ(Z))
when d → ∞. Considering complex numbers as bidimensional vectors, we ob-
tain from the multivariate central limit theorem [11] that the distribution of√

d( 1
d

∑d
j=1(Xj + iYj) − EZ(χ(Z))) tends to the bivariate normal distribution

with zero expectation and appropriate covariance matrix Σ. We can show that

Σ =

(
1
2 0
0 1

2

)
for m ≥ 3 and Σ =

(
1 0
0 0

)
for m = 2.

We conclude that, when Ds = U and m ≥ 3, the sums 1√
d

∑
Xj and 1√

d

∑
Yj

are asymptotically independent and follow a normal distribution with zero ex-

pectation and standard deviation equal to 1/
√

2. Consequently, (
√

2√
d

∑
Xj)

2 and

(
√

2√
d

∑
Yj)

2 both follow a chi-square distribution with 1 degree of freedom and

2 ·d · lp(Zd; χ) = (
√

2√
d

∑
Xj)

2 +(
√

2√
d

∑
Yj)

2 follows a chi-square distribution with

2 degrees of freedom [44]. Hence,

PrUd [2 · d · lp(Zd; χ) < α] −−−→
d→∞

1

2

∫ α

0

e−u/2du = 1 − e−
α
2 . (3)

On the other hand, by making the heuristic approximation that the covariance
matrix is the same in the case where Ds = D, we similarly obtain that

PrDd

[
2·d·

∣∣1
d

∑d
j=1(Xj+iYj)−EZ(χ(Z))

∣∣2 < β
]
≈ 1

2

∫ β

0

e−u/2du = 1−e−
β
2 . (4)

3 We use the � symbol instead of ≥ to emphasize the heuristic assumptions.
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Moreover, assuming that τ < LPD(χ),

PrDd

[
lp(Zd; χ) < τ

]
≤PrDd

[∣∣ 1
d

∑d
j=1(Xj+iYj)−ED(χ(Z))

∣∣2≥(
√

LPD(χ)−
√

τ )2
]

so that for α ≤ 2dτ and β ≤ 2d(
√

LPD(χ) −√
τ )2,

Advd
D(χ) ≥ PrUd

[
2·d·lp(Zd; χ)<α

]
−PrDd

[
2d·
∣∣ 1
d

∑
(Xj +iYj)−EZ(χ(Z))

∣∣2≥β
]
.

Using Approximation (4) with τ = 1
4LPD(χ) we obtain for α ≤ d

2LPD(χ)

Advd
D(χ) ≥ 2 · Pr U

[
2 · d · lp(Zd; χ) ≤ α

]
− 1.

Taking (3) as a heuristic approximation with α = d
2LPD(χ) leads to the an-

nounced result for m ≥ 3.
For m = 2 and Ds = U, we have that 1√

d

∑d
j=1 Xj tends towards a stan-

dard normal distribution, so that
(

1√
d

∑d
j=1 Xj

)2
tends towards a chi-square

distribution. Consequently,

PrUd

[
d · lp(Zd; χ) < α

]
−−−→
d→∞

1√
2π

∫ α

0

e−x/2

√
x

dx = 1 − 2Φ(−
√

α).

Similar techniques than in the m ≥ 3 case lead to the announced result. ⊓⊔

Note that these lower bounds are only useful (otherwise too low) if the num-
ber of samples exceeds 4 ln 2

LPD(χ) in the large order case and 2
LPD(χ) in the order

2 case. For example, when d = 4/LPD(χ) the advantage is greater than 0.26
in the first case and greater than 0.36 in the second. They validate the rule
of thumb that the distinguisher works with data complexity d ≈ 1/LPD(χ). In
contrast, [13] claims without further justification that 1/LPalt

D (χ) samples are
sufficient to reach a large advantage. It appears that this approximation overes-
timates the data complexity, actually equal to 1/∆(χ(Z)), which lies in between
1

m2 (LPalt
D (χ))−1 (when all values of χ(z) are biased, like for the distribution exam-

ple in Section 2.2 for which we have LPD(χ) = m2

4 LPalt
D (χ)) and 1

2m (LPalt
D (χ))−1

(like when only two output values u1 and u2 of χ are biased and the others are
uniformly distributed, and for which LPD(χ) = |u1 − u2|2LPalt

D (χ)). The correct
estimate of the data complexity requires more than just the LPalt

D (χ) quantity.

2.4 Case Study: Zr

m
-based Linear Cryptanalysis.

We illustrate the theory with a concrete example, that is, linear cryptanalysis
over the additive group Zr

m. The mr characters of this group are called additive
characters modulo m and are the ϕm

a ’s for a = (a1, . . . , ar) where aℓ ∈ [0, m− 1]

for ℓ = 1, . . . , r defined by ϕm
a (x) = e

2πi
m

Pr
ℓ=1 aℓxℓ for x ∈ Zr

m (see [40]).
We revisit an example proposed in [3] where a source generating a random

variable X = (X1, . . . , Xn+1) ∈ Zn+1
4 is considered (n being any large odd inte-

ger). When the source follows distribution U, X is uniformly distributed. When
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the source follows distribution D, X1, . . . , Xn are uniformly distributed mutu-
ally independent random variables in Z4 and Xn+1 = B +

∑n
ℓ=1 Xℓ, where B

is either 0 or 1 with equal probability and where the addition is performed
modulo 4. Considering X as a bitstring of length 2n + 2, it was shown in
[3] that maxα LPD(ϕ2

α) = 2−(n+1) (the max being taken over classical lin-
ear masks), which means that the source cannot be distinguished from a per-
fectly random one using a classical linear distinguisher. On the other hand, let
a = (−1, . . . ,−1, 1) ∈ Zn+1

4 and consider the character ϕ4
a over Zn+1

4 . In this

case we have LPD(ϕ4
a) =

∣∣E
(
e

πi
2 (Xn+1−

Pn
ℓ=1 Xℓ)

)∣∣2 =
∣∣E
(
e

πi
2 B
)∣∣2 = 1

2 . Note that

LPalt
D (ϕ4

a) = 1
16 . Theorem 7 suggests that d = 8 would be enough for an advan-

tage greater than 0.26. More specifically, the distinguisher can eventually decide
that Ds = U as soon as ϕ4

a(X) 6∈ {1, i} (since 1 and i are the only possible
values for Ds = D) for some sample X and that Ds = D if all samples X return
ϕ4

a(X) ∈ {1, i}. For this distinguisher, Advd
D = 1− 1

2d , so that d = 1 is enough to

reach an advantage equal to 1
2 . We notice that there can be a huge gap between

linear distinguishers of order 2 and linear distinguishers of order 4.

2.5 A Dash of Differential Cryptanalysis

We can consider a natural (see [13]) generalization of the differential probability
(DP) and show the link between the LP and the DP (as in [8]). Let u ∈ G be
an arbitrary group element. The differential probability of distribution D over G

is defined by DPD(u) = Pr[A−1 · B = u] = Pr[A · u = B], where A and B are

independent random variables following the distribution D. We have D̂PD(χ) =

LPD(χ) for any χ ∈ Ĝ. Indeed, by definition, LPD(χ) = ED(χ(A))ED(χ(B)),
where A and B are independent random variable following distribution D. Suc-
cessively using the facts that A and B are independent, that the mean is linear,
and that χ is a homomorphism, we have for all u ∈ G

L̂PD(u) =
∑

χ∈bGED(χ(A)χ(B))χ(u) = ED

(∑
χ∈bGχ(A · u)χ(B)

)
,

which is an expression that can be further simplified using Lemma 1, finally
leading to L̂PD(u) = nED

(
1A·u=B

)
= nPrD[A ·u = B] = nDPD(u). Generalizing

the LP as we do in Definition 6 naturally leads to a real duality between linear
and differential cryptanalysis. We note that this is not the case when considering
the LPalt

D measurement suggested in [13].

2.6 Links between Linear and Optimal Distinguishers

Given Lemma 5 and the definition of LP we obtain the following result.

Theorem 8 (Generalization of Proposition 11 in [3]). Let D be a proba-
bility distribution of support G. The SEI of D and the linear probability of D are
related by

∆(D) =
∑

χ∈bG\{1}LPD(χ).
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This equation is pretty insightful when trying to improve linear distinguishers by
using the rule of thumb. If there is a character χ such that LPD(χ) overwhelms
all other linear probabilities in the previous equation, a single characteristic χ
can be used to approximate the linear hull (that is, the cumulative effect of all
the characteristics). In that case, one linear distinguisher becomes nearly optimal
in term of required number of samples. As another example we can look at the
problem of cumulating linear characteristics. In linear cryptanalysis, if we use
k independent characteristics of same bias we can best hope to decrease the
data complexity by a factor within the order of magnitude of k. This generalizes
results by Kaliski and Robshaw [23] and by Biryukov et al. [6].

We can easily deduce useful results for computing the SEI of combinations
of independent sources. Namely, for two independent random variables A and
B, ∆(A + B) ≤ ∆(A)∆(B) (Piling-up Lemma) and ∆(A||B) + 1 ≤ (∆(A) +
1)(∆(B) + 1) so ∆(A||B) is roughly less than ∆(A) + ∆(B) (cumulating effect).

Definition 9. Let D be a probability distribution over a group G and let LPmax
D

be the maximum value of LPD(χ) over χ ∈ Ĝ \ {1} of order dividing m, i.e.,

LPmax
D (m) = max

χ∈ bG\{1}
χm=1

LPD(χ).

We note that ∆(D) does not depend on the group structure whereas LPmax
D does.

We define a metric LPMAX
D which does not.

Definition 10. Let D be a probability distribution of support G and ♦ denote
an arbitrary group operation on G. We define

LPMAX
D (m) = max

♦
LPmax

D (m).

Corollary 11. Let D be a probability distribution whose support is the finite
group G of order n. For the exponent m of G, we have

∆(D) ≤ (n − 1) · LPmax
D (m) and ∆(D) ≤ (n − 1) · LPMAX

D (m).

This result says that the best distinguisher for D has a data complexity at least
n − 1 times less than the one of the best linear distinguisher.

Going back to the distinguisher based on χ(Z) for a given χ of order m, we
assume that the support of distribution D of χ(Z) matches the range of χ which
is a group G of order n = m. Assuming that χ is such that LPD(χ) = LPmax

D (m)
we deduce that the best distinguisher between χ(Z) and a uniformly distributed
random variable on its support needs at most m times less data than the linear
distinguisher that we proposed.

2.7 Optimal Distinguisher made Practical using Compression

From a computational point of view, the best distinguisher of Section 2.1 cannot
be implemented if the order of the group is too large. We consider this situation
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by denoting H a finite set of large cardinality N and compress the samples using
a projection

h : H −→ G,

where G is a set of cardinality n ≪ N . We assume that h is balanced. This
implies that n | N . This projection defines, for a random variable H ∈ H of

distribution D̃s (either equal to the uniform distribution Ũ or to D̃), a random
variable h(H) = Z ∈ G of distribution Ds (either equal to U or to D). We can
easily prove state the following (intuitive) result by using Cauchy’s inequality.

Lemma 12 (Projections reduce the imbalance). Let H and G be two finite
Abelian groups of order N and n respectively, such that n | N . Let h : H → G be a

balanced function. Let D̃ be a probability distribution of support H and let H ∈ H

be a random variable following D̃. Let D denote the distribution of h(H) ∈ G.

Then ∆(D) ≤ ∆(D̃).

The following theorem shows that, in the particular case where the projection
is homomorphic, bounding the linear probability of the source is sufficient to
bound the advantage of the best distinguisher on the reduced sample space.

Lemma 13 (Generalization of Theorem 13 in [3]). Let H and G be two
finite Abelian groups of order N and n respectively, such that n | N . Let h : H →
G be a surjective group homomorphism. Let D̃ be a probability distribution of
support H and let H ∈ H be a random variable following D̃. Let D denote the
distribution of h(H) ∈ G. Then ∆(D) ≤ (n − 1)LPmax

eD (n).

Proof. From Theorem 8, we have

∆(D) =
∑

χ∈bG\{1}LPD(χ) =
∑

χ∈bG\{1}LPeD(χ◦h) ≤ (n−1) max
χ∈bG\{1}

LPeD(χ◦h).

We note that κ = χ◦h is a group character of H such that κn = 1. Consequently,
maxχ∈bG\{1}LPeD(χ ◦ h) ≤ maxκ∈ bH\{1}

κn=1

LPeD(κ). ⊓⊔

We stress that the previous theorem only applies when the adversary reduces
the text space through a group homomorphism, i.e., in a linear way. Indeed,
there exists practical examples of random sources with a small LPmax

eDs
that are

significantly broken when the source space is reduced by a (well chosen) non-
homomorphic projection (see the example of Section 2.4 with h(x) = msb(ϕ4

a(x))
and G = Z2). Consequently, the previous result tells us nothing about the ad-
vantage of an adversary using an arbitrary projection. In what follows we show
a security criterion which is sufficient to obtain provable security against any
distinguisher using a balanced projection.

Theorem 14. Let H and G be two finite sets of cardinality N and n respectively,
such that n | N . Let h : H → G be a balanced projection. Let D̃ be a probability

distribution of support H and let H ∈ H be a random variable following D̃. Let
D denote the distribution of h(H) ∈ G. Then

∆(D) ≤ (n − 1)LPMAX
eD (n).
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Proof. We first define an arbitrary group structure on G. Given h, we can easily
construct a group structure on H such that h is a homomorphism. The final
result then follows from Lemma 13. ⊓⊔

Consequently, assuming there exists an “efficient” projective distinguisher on D̃

using a balanced h on a “small” set G, ∆(D) must be large and n must be small,
therefore, LPMAX

eDs
(n) is large. Thus, there exists a group structure on H and a

character of small order on this group that define an effective linear cryptanal-
ysis: if we can efficiently distinguish by compressing the samples, we can also
do it linearly. To the best of our knowledge, all widespread block ciphers prov-
ably secure against linear cryptanalysis consider in the proof a specific group or
field structure on the text space. Usually, the more convenient is the one used
to actually define the block cipher. Obviously, a potential adversary is not lim-
ited to the description considered by the designers. The previous theorem shows
that, provided that a known plaintext attack on the block cipher exists, then
some change to the group structure of the text space is sufficient to perform a
successful linear cryptanalysis of the cipher (note that finding the correct group
structure might be a non-trivial task). In other words, although the cipher is
stated to be provably secure against linear cryptanalysis, it might not be the
case when generalizing linear cryptanalysis to other group structures. This is
mainly due to the fact that the SEI does not depend on the group structure
given to the text space (only the distance of D from the uniform distribution is
relevant) whereas the linear probability is a measure that depends on the group
structure. Consequently, when proving the resistance against linear cryptanaly-
sis, one should ideally bound the value of LPMAX

eD (m) and not of LPmax
eD (m) (as

it is currently the case for most block ciphers).

3 Linear Cryptanalysis of Block Ciphers

The theory developed in the previous section can be applied as-is to study the
indistinguishability of a pseudo-random sequence (e.g., the output of a stream
cipher) from a perfectly random one. We show in this section how it can be
adapted to study the security of block ciphers.

3.1 Generalized Linear Cryptanalysis of Block Ciphers

We consider a block cipher defined on a finite group M and an adversary who
is given access to a generator G generating iid random variables (M, C(M)) ∈
M × M, where M is a uniformly distributed random variable, and where C is
a random permutation of M either equal to CK (a random instance of a block
cipher, the randomness coming from the secret key K ∈ K) or to C∗ (the perfect
cipher, that is, a uniformly distributed random permutation defined on M).
The objective of the adversary is to guess whether C = CK or C = C∗ (i.e.,
if the permutation implemented by G was drawn uniformly at random among
the set of permutations defined by the block cipher or among the entire set
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of permutations of M) after a limited number d of samples Si = (Mi, C(Mi))
for i = 1, . . . , d. In a classical linear cryptanalysis (i.e., when M = {0, 1}n),
the adversary would typically run over all plaintext/ciphertext pairs and add
the value of a • Mi ⊕ b • C(Mi) to a counter, where a and b are input/output
masks defined on the text space. The adversary eventually guesses whether the
generator is implementing an instance of the block cipher or not by measuring the
bias of the counter with respect to d/2. By choosing the masks with care, the bias
may be large when C = Ck for some key k. In this situation, the linear probability

LPCk(a, b) = (2 · PrM (a • M ⊕ b • Ck(M) = 0) − 1)2 =
∣∣E((−1)a•M⊕b•Ck(M))

∣∣2
estimates the efficiency of the attack against Ck. The following definition extends
this notion to non-binary linear cryptanalysis.

Definition 15. Let C : M → M be a permutation over a finite set M. Let G1

and G2 be two group structures over the same set M. For all group characters
χ ∈ Ĝ1 and ρ ∈ Ĝ2 the linear probability of C over M with respect to χ and ρ is
defined by

LPC(χ, ρ) =
∣∣EM∈UM

(
χ(M)ρ(C(M))

)∣∣2.

If C is a random permutation, we denote the expected linear probability by
ELPC(χ, ρ) = EC(LPC(χ, ρ)).

As direct computation of the linear probability on a realistic instance of a block
cipher is not practical, the cryptanalyst typically follows a bottom-up approach,
in which he first computes the linear probability of small building blocks of the
cipher and then extends the result to the whole construction. In the following
section, we study several typical building blocks on which block ciphers are often
based. We illustrate our results on a toy cipher in Appendix 6.

3.2 A Toolbox for Linear Cryptanalysis

We can look at a block cipher as a circuit made of building blocks and in which
every edge is attached to a specific group. From this point of view, a linear
characteristic is a family mapping every edge to one character of the attached
group. The building blocks we consider are represented on Figure 1. If χ1 and χ2

are characters on G1 and G2 respectively, we denote by χ1‖χ2 : G1 × G2 → C×

the character mapping (a, b) ∈ G1 × G2 on χ1(a)χ2(b). We assume that the
cryptanalyst constructs a linear characteristic in a reversed way [4] (i.e., starting
from the end of the block cipher towards the beginning), his objective being to

Fig. 1. Typical Building Blocks of Block Ciphers.
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carefully choose the characters in order to maximize the linear probability on
each individual building block.
Building Block (a): We consider a duplicate gate such that a, b, c ∈ G and
a = b = c. Let χ1, χ2 be two characters defined over G, we have (by definition)
χ1(b)χ2(c) = χ1(a)χ2(a) = χ1χ2(a). Simply denoting (a) the duplicate gate, we

have LP(a)(χ1χ2, χ1‖χ2) = 1, so that χ1‖χ2 is an appropriate character on the
input of the gate.
Building Block (b): We consider a layer that applies a group homomorphism
from G = G1 × · · · × Gm to H = H1 × · · · × Hn. We denote the homomorphism
by hom, the m inputs as a1, a2, . . . , am and the n outputs b1, b2, . . . , bn, so that
hom(a1, a2, . . . , am) = (b1, b2, . . . , bn). Given n characters χi on Hi, i = 1, . . . , n,
we have χ(b1, . . . , bn) = (χ ◦ hom)(a1, . . . , am) for χ = χ1‖ · · · ‖χn. As χ ◦ hom

is still a homomorphism from G to C× we obtain LP(b)(χ ◦ hom, χ) = 1. Note

that we do have χ ◦ hom = χ′1‖ · · · ‖χ′m for some (χ′1, . . . , χ
′
m) ∈ Ĝ1 × · · · × Ĝm,

so that χ′i is an appropriate character for ai.
Building Block (c): Given hom(a) = a+k on a given group G (adopting a more
traditional additive notation), we have χ(b) = χ(a)χ(k). Since k is constant,

LP(c)(χ, χ) = 1, so that χ is an appropriate character on the input.
Building Block (d): When considering a (non-homomorphic) permutation S,
LPS(χ, ρ) should be computed by considering the substitution table of S.

By piling all relations up on a typical substitution-permutation network
C, we obtain a relation of the form χ(M)ρ(C(M)) =

(∏
i χi(Xi)ρ(Si(Xi))

)
×(∏

j χj(kj)
)

where the first product runs over all building blocks of type (d)
and the second over building blocks of type (c). Hence, by making the heuristic
approximation of independence of all Xi’s (which is commonly done in classical
linear cryptanalysis), we obtain that

LPC(χ, ρ) ≈
∏

iLPSi(χi, ρi).

This is the classical single-path linear characteristic. Provided that we can lower
bound (e.g. using branch numbers) the number of active substitution boxes S to
b and that we have LPSi

max ≤ λ for all boxes we obtain that LPC
max is heuristically

bounded by λb for single-path characteristics.
For multipath characteristics, we easily obtain the linear hull effect [41].

Theorem 16. Given finite Abelian groups G0 . . . , Gr, let C = Cr ◦ · · · ◦ C1 be
a product cipher of independent Markov ciphers Ci : Gi−1 −→ Gi. For any

χ0 ∈ Ĝ0 and χr ∈ Ĝr we have

ELPC(χ0, χr) =
∑

χ1∈bG1
· · ·∑χr−1∈bGr−1

∏r
i=1ELPCi(χi−1, χi).

It is a common mistake to mix up this result with the hypothesis of stochastic
independence. This is a real equality which depends on no heuristic assumptions.

Proof (Sketch). Recall that a Markov cipher C : G −→ G
′ between two groups G

and G
′ is a random mapping such that for any δ ∈ G and δ′ ∈ G

′ the probability
Pr[C(x + δ) = C(x) + δ′] does not depend on x.
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A straightforward proof is provided in [51] for the binary case. We only have
to rephrase it using characters. As a classical result (see e.g. [29]) we easily obtain

EDPC(δ0, δr) =
∑

δ1∈G1
· · ·∑δr−1∈Gr−1

∏r
i=1EDPCi(δi−1, δi).

Then we simply apply r Fourier transforms. ⊓⊔

Given d plaintext/ciphertext pairs zi = (Mi, C(Mi)), this geometrically means
that the expected value of sa(zd; (χ, ρ)) lies on a circle of squared radius equal
to LPC(χ, ρ), its exact position on the circle depending on

∏
j χj(kj).

4 A Z16

100
Linear Cryptanalysis of TOY100

In [13], Granboulan et al. introduce TOY100, a block cipher that encrypts blocks
of 32 decimal digits. The structure of TOY100 is similar to that of the AES. An
r rounds version of TOY100 is made of r − 1 identical rounds followed by a
slightly different final round. Each block is represented as a 4 × 4 matrix A =
(ai,j)i,j∈{0,...,3}, the ai,j ’s being called subblocks. Round i (for i = 1, . . . , r − 1)
first adds modulo 100 a subkey to each subblocks (we do not describe the key
schedule here as we assume that the round keys are mutually independent),
then applies a fixed substitution box to each resulting subblocks, and finally
mixes the subblocks together by applying a linear transformation. The last round
replaces the diffusion layer by a modulo 100 subkey addition. The round key
addition, confusion and diffusion layers are respectively denoted σ[K], γ, and θ.
The diffusion layer can be represented as a matrix product M × A × M where

M =

(
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

)

and where all computations are performed modulo 100. The best attack against
TOY100 is based on the generalization of linear cryptanalysis suggested in [13]. It
breaks TOY100 reduced to 7 rounds with a data/time complexity of 0.66 · 1031.
We propose here a linear cryptanalysis that breaks up to 8 rounds. We first

Table 1. Complexities of the best linear cryptanalysis we obtained on reduced round
versions of TOY100.

r Lower bound on Data/Time Complexity of the attack

maxα0,αr−2
ELP(θ◦γ◦σ[K])r−2◦θ(α0, αr−2) against r rounds

4 0.37 · 10−9 0.27 · 1010

5 0.47 · 10−14 0.21 · 1015

6 0.66 · 10−19 0.15 · 1020

7 0.10 · 10−23 0.97 · 1024

8 0.18 · 10−28 0.55 · 1029

9 0.34 · 10−33 0.30 · 1034
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observe that any block

A(δ) =

(
δ 0 100 − δ 0
0 0 0 0

100 − δ 0 δ 0
0 0 0 0

)

where δ ∈ {1, . . . , 99} is such that M × A(δ) × M = A(δ), i.e., is not changed
by the diffusion layer. We let I = {A(δ), δ = 1, . . . , 99} be the set of these 99
blocks. Our attack against TOY100 reduced to r rounds first guesses 4 subblocks
of the first round key and 4 subblocks of the last (the positions of which exactly
correspond to the non-zero subblocks of A(δ)). This allows to peel-off the first
and last layers of substitution boxes, so that we now consider the transformation
(θ ◦ γ ◦ σ[K])r−2 ◦ θ (where it is understood that the round keys are mutually
independent). For any 4×4 input/output masks (i.e., blocks) α = (αi,j)i,j∈{1,...,4}
and β = (βi,j)i,j∈{1,...,4} we let, for any transformation C on Z16

100,

ELPC(α, β) =
∣∣EM

(
ϕα(M)ϕβ(C(M))

)∣∣2 where ϕα(M) = e
2πi
100

P4
i,j=1 αi,jmi,j .

Applying Theorem 16 and the observation on the diffusion layer of TOY100 we
obtain that the linear probability on (θ ◦ γ)r−2 ◦ θ with input (resp. output)
masks α0 ∈ I (resp. αr−2 ∈ I) is such that

ELP(θ◦γ◦σ[K])r−2◦θ(α0, αr−2) = ELP(θ◦γ◦σ[K])r−2

(α0, αr−2)

=
∑

α1∈Z4
100

· · ·
∑

αr−3∈Z4
100

r−2∏

i=1

ELPθ◦γ◦σ[K](αi−1, αi)

≥
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

ELPθ◦γ◦σ[K](αi−1, αi)

=
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

LPγ(αi−1, αi).

Practical computations of the previous equations are given in Table 1. Using an
8-round linear hull and guessing the necessary keys on an extra round, we can
thus break 9 rounds of TOY100 with data complexity 0.55 · 1029. We can prove
that the time complexity is similar by using classical algorithmic tricks from
linear cryptanalysis techniques.

5 A Generalized Cryptanalysis of SAFER K/SK

5.1 A Short Description of SAFER K/SK and Previous Cryptanalysis

The encryption procedures of SAFER K-64, SAFER K-128, SAFER SK-64, and
SAFER SK-128 are almost identical. They all iterate the exact same round func-
tion, the only difference being that the recommended number of iteration of this
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Fig. 2. The ith encryption round function of SAFER.

round function is 6 for SAFER K-64 [31], 8 for SAFER SK-64 [33], and 10 for
both 128-bit versions of SAFER [31, 33]. The round function is represented on
Figure 2. An r-round version of SAFER encrypts 8 bytes of text by applying the
round function r times followed by a final mixed key addition (whose structure
is identical to the first mixed key addition layer of the round function). Each
round is parameterized by two 8-byte round keys so that a 2r + 1 round keys
must be derived from the secret key.

The round function first applies a byte-wise key addition, mixing xor’s and
additions modulo 256. Then, each byte goes through a substitution box. Two
kinds of boxes are used on SAFER: x 7→ (45x mod 257) mod 256 and its inverse.
The output of the substitution box layer goes through another byte-wise key
addition before being processed by a diffusion layer made of boxes called 2-PHT
and defined by 2-PHT(a, b) = (2a+b, a+b), the addition being performed modulo
256. Denoting x ∈ Z8

256 the input of the linear layer, the output y ∈ Z8
256 can be

written as y = M × x where

M =

0

B

B

B

B

B

@

8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 2 1 1 2 2 1 1
4 2 4 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

1

C

C

C

C

C

A

.

Finally, we adopt a special notation to denote reduced-round versions of SAFER.
We consider each of the four round layers as one fourth of a complete round.
Consequently, a 2.5 reduced-round version of SAFER corresponds to two full
rounds followed by the first mixed key addition and substitution layer of the
third round. With these notations, the encryption procedure of SAFER K-64 is
actually made of 6.25 rounds. To be consistent with the notations of the original
publications, when we refer to a r-round version of SAFER, we actually mean a
r + 0.25 reduced-round version of SAFER.

For the sake of simplicity, we restrict to give the dependencies of each round
key bytes with respect to the main secret key instead of describing the key
schedules of the various versions of SAFER.
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Table 2. Cryptanalytic results on SAFER K/SK.

Type # rounds Type of the Attack Time Plaintexts Reference

SAFER K 2 KPA 229 213 This paper

SAFER SK 2 KPA 237 213 This paper

SAFER K-64 3 KPA/Weak keys 212 212 [39]

SAFER K/SK 3 KPA 236 236 This paper

SAFER K-64 4 KPA/Weak keys 228 228 [39]

SAFER K/SK 4 KPA 247 247 This paper

SAFER K-64 5 KPA/Weak keys 258 258 [39]

SAFER K 5 CPA 261 239 [26, 27]

SAFER K-64 5 CPA 249 244 [26, 27]

SAFER K/SK-64 5 CPA 246 238 [52]

SAFER K/SK 5 KPA 259 259 This paper

SAFER K/SK-64 6 CPA 261 253 [52]

• SAFER K-64: The jth round key byte (1 ≤ j ≤ 8) only depends on the jth
main secret key byte. For example, guessing the third byte of the main secret
key allows to derive the third byte of each round key.

• SAFER SK-64: The jth byte (1 ≤ j ≤ 8) of round key number i (1 ≤ i ≤ 2r+
1), depends on the ℓth byte of the secret key, where ℓ = (i+ j−2) mod 9+1
and where the 9th byte of the secret key is simply the xor of its previous 8
bytes.

In our analysis we assume that the key is a full vector of subkeys. When
studying the average complexity of our attack, we further assume that these
subkeys are randomly picked with uniform distribution.

Previous Cryptanalysis (see Table 2). Known attacks against SAFER are
summarized in Table 2. The resistance of SAFER against differential cryptanaly-
sis [5] was extensively studied by Massey in [32], where it is argued that 5 rounds
are sufficient to resist to this attack. It is shown by Knudsen and Berson [26,27]
that 5 rounds can actually be broken using truncated differentials [25], a re-
sult which is extended to 6 rounds by Wu et al. in [52]. In [15], Harpes et al.
apply a generalization of linear cryptanalysis [34] to SAFER K-64 but do not
manage to find an effective homomorphic threefold sum for 1.5 rounds or more.
Nakahara et al. showed in [39] that for certain weak key classes, one can find a
3.75-round non-homomorphic linear relation with bias ǫ = 2−29 (which leads to
a time/plaintext complexity of 1/ǫ2 = 258 known plaintexts on five rounds).

The diffusion properties of the linear layer of SAFER have also been widely
studied and, compared to the confusion layer, seem to be its major weakness.
In [38], Murphy proposes an algebraic analysis of the 2-PHT layer, showing
in particular that by considering the message space as a Z-module, one can
find a particular submodule which is an invariant of the 2-PHT transformation.
In [49], Vaudenay shows that by replacing the original substitution boxes in a
4 round version of SAFER by random permutations, one obtains in 6.1% of the
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cases a construction that can be broken by linear cryptanalysis. This also lead
Brincat and Meijer to explore potential alternatives of the 2-PHT layer [7]. The
other major weakness of SAFER K is indubitably its key schedule. The analysis
proposed in [26,38] lead Massey to choose the one proposed by Knudsen in [26]
for SAFER SK.

5.2 Linear Cryptanalysis of SAFER: from Z8
2 to Z28

A possible reason why linear cryptanalysis does not seem to be a threat for
SAFER is that Matsui’s linear characteristics (that fits so well the operations
made in DES) are in fact not linear when it comes to the diffusion layer of
SAFER except when they only focus on the least significant bit of the bytes. Yet,
those bits are not biased through the substitution boxes [49]. Indeed, whereas
a classical linear cryptanalysis combines text and key bits by performing xor’s
(i.e., additions in Z2), SAFER mostly relies on additions in Z28 . In other words,
the group structure that is classically assumed in linear cryptanalysis does not
fit when it comes to study SAFER. We will thus focus on the additive group
(Zr

256, +). As noted already in Section 2.4, the 256r characters of this group are
called additive character modulo 256 and are the χa’s for a = (a1, . . . , ar) ∈
[0, 255]r defined by χa(x) = e

2πi
256

Pr
ℓ=1 aℓxℓ for all x = (x1, . . . , xr) ∈ Zr

256. The
attack on SAFER will only involve additive characters modulo 256. To simplify
the notation (and to somehow stick to the vocabulary we are used to in classical
linear cryptanalysis), we denote in this section the linear probability of C with
respect to χa and χb by LPC(a, b) instead of LPC(χa, χb). We call it the linear
probability of C with input mask a and output mask b.

Hiding the Z8
2 Group. As the encryption procedure uses additions modulo 256

together with bit-wise exclusive or, we have to deal with two types of characters.
Nevertheless, one can notice that the mixture of group operations only occurs
within the confusion layer. To simplify the analysis we can think of the succession
of a round key xor and a fixed substitution box as a keyed substitution box (see
Figure 3). Using this point of view, we represent one round of SAFER in Figure 4.

Studying SAFER’s Building Blocks. Most of the building of blocks of SAFER

were already considered in Section 3.2. With the notations used in this section,

Fig. 3. Viewing key xor and fixed substitution boxes as keyed substitution boxes.
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Fig. 4. Another view of SAFER.

the study of the building block (c) can be written as LP·+k(a, a) = 1, where a and
k are arbitrary values of Z256. If the key K is random, the previous equation im-
plies that EK(LP·+K(a, a)) = 1. Building block (b) allows to deal with the 2-PHT

transformation (which is a homomorphism of Z2
256): denoting by a = (a1, a2) ∈

Z2
256 and b = (b1, b2) ∈ Z2

256 the input and output masks on this transformation,
and noting that the 2-PHT transformation is a symmetric linear operator (in
the sense that 2-PHTT = 2-PHT), LP2-PHT(a, b) = 1 ⇔ a = 2-PHT(b). Using
the same notations, it is easy to show that when considering the parallel com-
putation of two fixed substitution boxes S1 and S2 over Z256, LPS1‖S2(a, b) =
LPS1(a1, b1) · LPS2(a2, b2). When the boxes are random and independent, this

leads to ES1,S2(LPS1‖S2(a, b)) = ES1(LPS1(a1, b1)) · ES2(LPS2(a2, b2)).
Assuming that the key bits are mutually independent, we can now compute

the linear probability of one full round of SAFER. Indeed if an input/output
pair of masks a = (a1, . . . , a8), b = (b1, . . . , b8) are given, and letting b′ =
MT × b = (b′1, . . . , b

′
8) (where M is the matrix defined in Section 5.1), then the

linear probability on one full round, simply denoted Round, is given by

ELPRound(a, b) =
∏8

i=1ELPSi(ai, b
′
i)

where Si corresponds to a keyed E box for i = 1, 4, 5, 8 and to a keyed L otherwise.

5.3 Considering Several Rounds of SAFER: the Reduced Hull Effect

When several rounds are considered, Nyberg’s linear hull effect [41] applies just as
for classical linear cryptanalysis of Markov ciphers (see Theorem 16). Considering
a succession of r > 1 rounds with independent round keys, and denoting a0 and
ar the input and the output masks respectively, this leads to

ELPRoundr◦···◦Round1(a0, ar) =
∑

a1,...,ar−1

∏r
i=1ELPRoundi(ai−1, ai).

When cryptanalyzing a block cipher, it is often considered that one specific
characteristic (i.e., a succession of r + 1 masks a0, a1, . . . , ar) is overwhelming
(i.e., approximates the hull) so that

ELPRoundr◦···◦Round1(a0, ar) ≈
∏r

i=1ELPRoundi(ai−1, ai).
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This approach was taken by Matsui when cryptanalyzing DES. In that particular
case, the correctness of this approximation could be experimentally verified [34].
In this paper we do not consider the full linear hull effect nor restrict ourselves
to one specific characteristics. Instead, we consider the characteristics among the
hull following a specific pattern.

Definition 17. Let a ∈ Z8
256 be an arbitrary mask. The pattern corresponding

to the mask a is the binary vector of length eight, with zeroes at the zero position
of a and ∗ at the non-zero positions of a. The weight w(p) of a pattern p is
the number of ∗ in this pattern. We denote the fact that a mask a corresponds
to pattern p by a ∈ p. We denote by and the byte-wise masking operation, i.e.,
given an element m ∈ Z8

256 and a pattern p, m′ = m andp is such that m′i = 0
if pi = 0 and m′i = mi otherwise, for i = 1, . . . , 8. We denote by intp(m) the
integer representation of the concatenation of the bytes of m andp corresponding
to the non-zero positions of p, and by I(p) = {intp(m) : m ∈ Z8

256}. Finally,
for an arbitrary integer i ∈ I(p), we denote int−1

p (i) the element m ∈ p such
that intp(m) = i.

For example, the pattern corresponding to a = [0,128,0,0,0,255,7,1] is p =
[0*000***] (of weight 4). If m = [3,128,128,255,0,255,7,1], then m andp =
a, and intp(m) = 100000001111111100000111000000012. Note that for an
arbitrary element m ∈ Z8

256 and any pattern p, int−1
p (intp(m)) = m andp.

The fact that we only consider, among the hull, the characteristics following
a given sequence of pattern p0, p1, . . . , pr can be written as

ELPRoundr◦···◦Round1(a0, ar) ≈
∑

a1∈p1
...

ar−1∈pr−1

r∏

i=1

ELPRoundi(ai−1, ai). (5)

where a0 ∈ p0 and ar ∈ pr. We call this approximation the reduced hull effect.
Note that in any case, (5) actually underestimates the true linear hull.

5.4 Sketching the Construction of Reduced Hulls on Two Rounds

In order to construct such reduced hulls on SAFER, we start by enumerating
the possible sequences of patterns p1

n−→ p2 on the linear diffusion layer, where
n denotes the number of distinct pairs of input/output masks following the
pattern p1/p2.

4 We store these sequences in tables (that we do not report here
due to space constraints) that we order according to the input/output weights

4 For example, on the linear layer, the output mask [128,0,0,0,0,0,0,0] corresponds
to the input mask [0,0,0,0,0,0,0,128]. Moreover, there is no other possible mask

with the same input/output patterns, which is denoted [0000000*]
1
−→ [*0000000].

Two distinct pairs of masks on the linear layer following the input pattern input
pattern [0000000*] and the output pattern [***0*000] can be found (namely,
[0,...,0,64] corresponds to [192,128,128,0,128,0,0,0] and [0,...,0,192] to

[64,128,128,0,128,0,0,0]). This is denoted [0000000*]
2
−→ [***0*000].
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Fig. 5. The characteristics on two successive linear layers of examples 1 and 2.

w1 → w2 (1 ≤ w1, w2 ≤ 8) of the sequence p1 → p2. To reduce the size of the
list, we restrict it to patterns of weight sum 7 or less.

Next, we build characteristics on several rounds based on the lists of possible
succession of patterns on the linear layer. We proceed step-by-step, starting
with characteristics on two rounds. Two characteristics on full rounds can only
be concatenated if the output mask of the first one is equal to the input mask
of the second one. This translates for patterns as follows: two successions of
patterns on the linear layer can only be concatenated if the output pattern of
the first succession is equal to the input pattern of the second succession.

Example 1. We can concatenate [000*000*]
1−→[0*000000] and [0*000000]

1−→
[**00**00]. We denote this by [000*000*]

1−→ [0*000000]
1−→ [**00**00].

This means that succession of patterns of weights 2 → 1 → 4 on two rounds
exist. In this particular example, there is only one characteristic corresponding
to this succession of masks, which is represented on Figure 5(a).

Example 2. Similarly, we can obtain the succession [****0000]
252−−→[**000000]

254−−→ [**00**00] which is a succession of pattern of weights 4 → 2 → 4 on two
rounds. In this case, 252 × 254 = 64008 distinct characteristics correspond to
this succession (one of which is represented on Figure 5(b)).

Finally, it should be noted that the characteristic of Example 1 actually
leads to an ELP equal to 0, as both input and output masks on the substitution
box are equal to 128, which is equivalent to computing the traditional linear
probability by only considering the least significant bit. In the second example,
the computation of the reduced hull leads to a non-zero linear probability.
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Table 3. Key Recovery Attack against a r reduced-round version of SAFER.

Input: A reduced hull on r rounds with input mask a0 ∈ p0 and output mask ar ∈ pr .

Output: A set of counters lpκ1,κ2,κ2r+1
with κ1, κ2 = 0, . . . , 28w(p0) − 1 and κ2r+1 =

0, . . . , 28w(pr) − 1.

Memory: A set of counters Ni,j initialized to 0, with i = 0, . . . , 28·w(p0) − 1 and j =

0, . . . , 28·w(pr) − 1.
0: foreach of the d plaintext/ciphertext pair (m, c) do

1: i← intp0(m) and j ← intpr (c)
2: Ni,j ← Ni,j + 1
3: done

4: foreach (κ1, κ2, κ2r+1) ∈ I(p0)× I(p0)× I(pr) do

5: k1 ← int−1
p0

(κ1), k2 ← int−1
p0

(κ2), and k2r+1 ← int−1
pr

(κ2r+1)

6: /* compute the lp corresponding to the round keys guess */

7: L ← 0
8: foreach (i, j) ∈ [0, . . . , 28w(p0) − 1]× [0, . . . , 28w(pr) − 1] such that Ni,j > 0 do

9: m← int−1
p0

(i) and c← int−1
pr

(j)

10: Add/xor k1 to m, apply the subst. box layer, add/xor k2, call the result m′.
11: Subtract k2r+1 to c, call the result c′

12: L ← L+ Ni,j · χa0
(m′)χar (c′)

13: done

14: lpκ1,κ2,κ2r+1
← |L|2.

15: done

5.5 Attacks on Reduced-Round Versions of SAFER

From Distinguishing Attacks to Key Recovery. In this section, a reduced
hull on r diffusion layers of SAFER corresponds to a succession patterns on r
successive linear layers separated by confusion layers. The weight of a reduced
hull is the number of active substitution boxes (i.e., the number of boxes with
non-zero input/output masks) for any characteristic of the hull. For example,

the succession [****0000]
252−−→[**000000]

254−−→[**00**00] (of Example 2) is a
reduced hull of weight 2 on two diffusion layers. A reduced hull easily leads to
a distinguishing attack on a reduced-round version of SAFER that would start
and end by a diffusion layer.

Table 3 describes a key recovery attack on a SAFER reduced to r rounds by
use of a reduced hull on r diffusion layers. Each of the counters obtained with
this algorithm measures the probability that the corresponding subset of round
key bits (for round keys 1,2, and 2r+1) is the correct one. We expect the correct
guess to be near the top of a list sorted according to these counters when the
number of plaintexts/ciphertext pairs is close to d = 1/ELPC(a0, ar).

In the worst case, line 4 loops 28·(2w(p0)+w(pr)) times. In practice, the complex-
ity is much lower (by considering key dependence due to the key schedule) and
depends on the number of bits nk that we need to guess in our attacks. When con-
sidering SAFER K-64 for example, a guess for the meaningful bytes of k1 uniquely
determines the bytes of k2 (for the reasons given in Section 5.1). Similarly, the
meaningful bytes of k2r+1 that are at the same positions than those of k1 are also
uniquely determined. When considering SAFER SK-64, similar techniques may
apply, depending on the specific shapes of the input/output masks and the num-
ber of rounds. In all cases, if the meaningful bytes of k2 and k2r+1 are actually
added modulo 256, then they don’t need to be guessed (as they don’t alter the
linear probability). If we only consider SAFER SK, this observation also applies
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Fig. 6. Reduced hull on two diffusion layers used to attack two rounds of SAFER K.

to k2. Finally, line 8 loops 2np times where np = min(8 · (w(p0) + w(pr)), log2 d)
(as

∑
i,j Ni,j = d). Consequently, given any input/output masks a0 ∈ p0 and

ar ∈ pr, the time complexity of the attack is given by

T =
1

ELPC(a0, ar)
+ 2nk+np . (6)

An attack on 2 Rounds. The best attacks we could find on two rounds are
based on reduced hull of weight 2 and are listed in Table 4. The best attack
on SAFER K exploits the reduced hull represented on Figure 6. To perform the
attack, one needs to guess 8 bits of K1, no bits of K2 (as those that could be
meaningful are added modulo 256 and thus do not influence the linear probabil-
ity), and 8 bits of K5 (as those in position 4 are uniquely determined by the guess
made on K1). We thus obtain nk = 24. The algorithm then loops through the

d = 1/ maxa0,a2

(
ELPH(2)

(a0, a2)
)

pairs, where H(2) here denotes the reduced

hull and where a0 (resp. a2) denote the input (resp. output) mask on H(2). The
final complexity is computed according to (6) and given in Table 4.

For SAFER SK, the previous reduced hull leads to a higher complexity as 8
more bits of K5 must be guessed. It appears that the best attack on two rounds
of SAFER SK makes use of the first characteristics given in Table 4.
Attacks on 3, 4, and 5 Rounds. To attack three rounds of SAFER K/SK,
we make use of reduced hulls on two diffusion layers of weight 6. We restricted
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Table 4. Selected reduced hulls on r diffusion layers and attack complexities against

r rounds of SAFER K/SK (with ELPmax denoting maxa0,ar ELPH(r)

(a0, ar)).

r Reduced hull ELPmax np nk Complexity

2 [000*0000]
1
−→[**000000]

254
−−−→[**00**00] 2−13 13 24/24 237/237

2 [000*0000]
1
−→[**000000]

255
−−−→[00**00**] 2−13 13 16/24 229/237

3 [0*000000]
1
−→[**00**00]

255
−−−→[000*000*]

1
−→[0*000000] 2−36 16 8/16 236/236

4 [000*0000]
1
−→[**000000]

254
−−−→[**00**00]

255
−−−→[000*000*]

1
−→[0*000000] 2−47 16 16/24 247/247

5 [000*0000]
1
−→[**000000]

254
−−−→[**00**00]

254
−−−→[0*000*00]

1
−→[0*000*00]

254
−−−→[0*0*0*0*] 2−59 40 16/24 259/259

our search to input/output patterns of weight 1 to limit the number of key bits
guess. Using similar techniques as for the two rounds case, we manage to mount
an attack against both versions of SAFER reduced to three rounds within a
complexity of 237 (see Table 4).

To attack four rounds, we use the reduced hull on four diffusion layers listed
in Table 4. It appears that SAFER K/SK reduced to four rounds can be attacked
within a complexity of 247. Whereas our generalization of linear cryptanalysis
seems necessary to derive this reduced hull on four rounds, the attack itself
(which only involves the input and output masks, not the intermediate ones)
actually exactly corresponds to the original version of linear cryptanalysis: as
the non-zero bytes of both input/output masks maximizing the expected linear
probability are equal to 128, they only focus on one single bit. The last reduced
hull of Table 4 shows that 5 rounds of SAFER K can be broken within a complex-
ity of 259. Finally, we noted that among the output masks that maximize the
expected linear probability, several end by an even byte. For example the best
reduced hull is obtained when the last output masks ends by a 2. This remarks
applies to the fourth byte of the output mask. Consequently, strictly less than
16 key bits need to be guessed in the last round key, so that the same reduced
hull can also be used break 5 rounds of SAFER SK.

6 DEAN: a Toy Example

We introduce DEAN18 (as for Digital Encryption Algorithm for Numbers) a
toy cipher that encrypts blocks of 18 decimal digits (which approximatively
corresponds to a block size of 60 bits). This could be used to encrypt a credit-card
number for example. The structure of the toy cipher we suggest is inspired from
that of the AES [9]. We consider an R-round substitution-permutation network,
each round being based on the same structure. Blocks are represented as 3 × 3
arrays of elements of the additive group Z10 × Z10. Each round successively
applies to the plaintext the following operations:

• AddRoundKeys, that performs a digit-wise addition of a round key to the
input (the addition being taken modulo 10),

• SubBytes, that applies a fixed bijective substitution box S (defined in Ta-
ble 5, where an element (a, b) ∈ Z2

10 are represented as an integer 10 ·a+ b ∈
[0, 99]) on each 2-digit element of the array,



Linear Cryptanalysis Non Binary Ciphers 25

• ShiftRows, that shift to the left each row of the input over a given offset
(equal to the row number, starting from 0 at the top),

• MixColumns, that multiplies each column of the input by the matrix

M =

(
α 1 1
1 α 1
1 1 α

)

where the multiplication of an arbitrary element (a, b) ∈ Z2
10 by α (resp. 1)

is defined by α · (a, b) = (a + b,−a) (resp. 1 · (a, b) = (a, b)).5 One can easily see
that this defines a structure on Z2

10 or Z3
10 that is isomorphic to GF(4)×GF(25)

or GF(8) × GF(125) on which the matrix is an MDS matrix [22, 49].
The branch number of the matrix multiplication is 4, i.e., the total number

of non-zero elements of the input and output columns is either 0 or 4 or more.
Consequently, given a non-trivial character ρ = (ρ1, ρ2, ρ3) on the output of the
transformation we obtain (given that we are considering a building block of type
(b)) that the appropriate character χ = (χ1, χ2, χ3) on the input is non-trivial
and that among the 6 characters χ1, . . . , ρ3, at least 4 are non-trivial. When at
least one of the six characters is non-trivial, we say that the column is active.

Extending this result to the whole MixColumns transformation and applying
similar arguments than those used on the AES [9], one can obtain that any
two rounds characteristic (i.e., succession of three characters on the text space)
has a weight lower bounded by 4Q, where the weight is simply the number of
non-trivial characters on Z2

10 among the 27 components of the three characters
and Q is the number of active columns at the output of the first round. Similar
arguments also lead to the fact that the sum of the number of active columns
at the output of the first and of the third round of a 4-round characteristic is at
least 4. Consequently, the weight of a 4-round characteristic is at least 16.

Denoting by LPS
max the maximum value of LPS(χ, ρ) over pairs of non-trivial

characters, we conclude (under standard heuristic assumptions on the indepen-
dence of the output of the characters at each round) that the linear probability of
a 4r-rounds characteristic is upper-bounded by (LPS

max)
16r. Assuming that one

characteristic among the linear hull [41] is overwhelming and that the bound
given by Theorem 7 is tight, this suggest that in the best case (from an adver-
sary point of view), a distinguishing attack against a 4r-round version of our toy
cipher needs at least d ≈ (LPS

max)
−16r samples. For the substitution box of our

toy cipher, we obtain LPS
max ≈ 0.069, so that the number of samples that is nec-

essary to attack four rounds with linear cryptanalysis is close to 3.8×1018 ≈ 261.
We conclude that R = 8 rounds are enough for DEAN18 to keep a high security
margin (as far as linear cryptanalysis is concerned).

TOY100 [13] is a similar construction using 11 rounds and blocks of 32 digits,
but where a block is a 4 × 4 array of Z100 elements. One problem with the
algebraic structure of Z100 is that its 2-Sylow subgroup is cyclic so there are no
MDS matrices. This is not the case of Z2

10.

5 Considering the elements of Z2

10 as elements of Z10[α]/(α2
− α + 1) naturally leads

to this definition. One could also try to encrypt blocks of 27 digits by using Z3

10

considered as Z10[α]/(α3
− α2

− 1).
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Table 5. A fixed substitution box on Z2

10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

27 48 46 31 63 30 91 56 47 26 10 34 8 23 78 77 80 65 71 43

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

36 72 29 79 83 7 58 95 69 74 67 35 32 59 82 14 75 99 24 87

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

16 90 76 51 28 93 50 38 25 3 13 97 55 60 49 86 57 89 62 45

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

18 37 1 6 98 68 39 17 19 20 64 44 33 40 96 2 12 41 52 85

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

81 5 0 15 54 88 92 21 84 22 53 11 4 94 42 66 70 9 61 73

7 Conclusion

The theory developed in this paper makes it possible to generalize linear crypt-
analysis to random sources and random permutations defined over sets of any
cardinality. This generalization appears to be very natural as it encompasses
the original one in the binary case, always preserves cumulative effects of linear
hulls, and keeps the intrinsic link with differential cryptanalysis. We also showed
that there always exists a group law allowing to express the best distinguisher
in a linear way (yet, finding this law certainly is a hard task in general). The
theory proves to be useful not only in the non binary case but also in the binary
case, e.g. when a mixture of group laws is used in the block cipher design.
Acknowledgments. The authors would like to thank anonymous referees for
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