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Abstract: The SIMECK family of lightweight block ciphers was proposed by Yang et al. in 2015, which
combines the design features of the NSA-designed block ciphers SIMON and Speck. Previously, we
proposed the use of linear cryptanalysis using super-rounds to increase the efficiency of implementing
Matsui’s second algorithm and achieved good results on all variants of SIMON. The improved linear
attacks result from the observation that, after four rounds of encryption, one bit of the left half of the
state of the cipher depends on only 17 key bits (19 key bits for the larger variants of the cipher). We
were able to follow a similar approach, in all variants of SIMECK, with an improvement in SIMECK 32
and SIMECK 48 by relaxing the previous constraint of a single active bit, using multiple active bits
instead. In this paper we present improved linear attacks against all variants of SIMECK: attacks on
19-rounds of SIMECK 32/64, 28-rounds of SIMECK 48/96, and 34-rounds of SIMECK 64/128, often
with the direct recovery of the full master key without repeating the attack over multiple rounds. We
also verified the results of linear cryptanalysis on 8, 10, and 12 rounds for SIMECK 32/64.

Keywords: SIMECK; linear cryptanalysis; super round

1. Introduction

Lightweight cryptography is one of the most active research areas in the cryptographic
community. In the last decade, several lightweight block ciphers were designed, which
aimed to work efficiently in constrained environments. SIMECK is a family of lightweight
block ciphers that combines design features from SIMON and SPECK, using a slightly
modified round function of SIMON with the SPECK key schedule. The round function
makes it vulnerable to most attacks on SIMON, one of which is the improved linear attack
proposed by us in [1], where we show that, after four rounds of SIMON 32/64 encryption,
one bit of the left half of the state depends on only 16 key bits, which is equal to the size of
one round key. In the right half, one bit of the state depends only on seven key bits. We
refer to the multiple rounds of encryption as a super round. We are able to construct a super
round for SIMECK in a similar way, due to the great similarity in their designs.

In this paper, we are able to improve upon the approach of [1] on SIMECK 32/64 and
SIMECK 48/96, by using multiple super rounds and multiple active bits, while keeping
the number of key bits to be guessed small enough. We present the direct application
of the approach [1] on all variants of SIMECK, and demonstrate the improvement for
SIMECK 32/64 and SIMECK 48/96 (though the improved approach does not improve on
our previous attacks on SIMON).

1.1. Our Contributions

In this paper, we present an attack on reduced-round SIMECK. In contrast to the
original work by us on the use of a single super round and active bit [1], the approach here
uses multiple super rounds and multiple active bits that enable us to attack more rounds
on SIMECK 48/96 and enhance the efficiency of the linear attack on SIMECK 32/64. The
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work presented in [1] was demonstrated exclusively on SIMON. The attack presented here
is demonstrated exclusively on SIMECK. It does not work on SIMON because the rotation
used in the round functions is different and SIMECK’s makes it vulnerable to our attack.

The attack presented here on SIMECK 32 has larger bias than if we were to apply the
attack of [1]. We refer to the application of [1] to SIMECK as single super round in the table
below. We do not cite [1] in the table because the approach was applied only to SIMON

there. Instead, we cite the section in this paper (Section 7.1) where we report the results of
applying [1] to SIMECK.

1.2. Comparison with Other Work

We compare our results with Bagheri’s [2] best key recovery results, which were
achieved using Matsui’s second algorithm. These are the best results that were obtained
using the classical linear Matsui’s second algorithm without recourse to linear hull results.
In both average-case and worst-case comparisons, we were able to go deeper in all variants
of SIMECK, see Tables 1 and 2.

Table 1. Comparison of previous results using Matsui’s second algorithm and multiple linear
cryptanalysis (without recourse to linear hull) on SIMECK.

Average-Case Computations

Simeck Number of
Rounds

Data
Complexity

Time
Complexity Presented in

32/64

20-round 230 261.56 Section 7.1

20-round 230 258.5 Section 7.3

18-round 224 261.5 Bagheri [2]

48/96

28-round 247.42 284.08 Appendix D

29-round 247.42 292.505 Appendix E

23-round 241.42 295 Bagheri [2]

64/128

34-round 261 2112 Appendix F

34-round 263 2116.5 Appendix G

27-round 249 2104 Bagheri [2]

Table 2. Comparison of previous results using Matsui’s second algorithm and multiple linear
cryptanalysis (without recourse to linear hull) on SIMECK.

Worst-Case Computations

Simeck Number of
Rounds

Data
Complexity

Time
Complexity Presented in

32/64

19-round 230 259.02 Section 7.1

19-round 230 261 Section 7.3

18-round 224 272 Bagheri [2]

48/96

2-round 247.42 294.58 Appendix D

28-round 247.42 294.005 Appendix E

23-round 241.42 2108 Bagheri [2]

64/128

34-round 261 2126.5 Appendix F

33-round 263 2115 Appendix G

27-round 253 2134 Bagheri [2]

Note the following details:
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1. The average case was a result of counting key bits involved in the XOR as a half bit.
For the worst case, the key bits were counted as a single bit as in the literature.

2. We made changes to how the data complexity was computed in his work for a fair
comparison. Furthermore, since we are using multiple linear approximations, we
applied the capacity model [3] to both our work and his.

2. SIMECK

2.1. Notations

We used the notation of [1]. Superscripts indicate a round number beginning with 0
for the first round. Subscripts indicate a bit number beginning with 0 for the leftmost bit. X
represents input, and XL and XR represent the left-half and right-half inputs, respectively.
For example, XL0

5 is the sixth bit from the left of the left-half input of the first round.

Similarly, kj
i is the i-th bit of the j-th round key, and k0

1 represents the second bit of the first
round key.

Moreover, PL represents the left plaintext half, while PR represents the right plaintext
half input to the cipher. Similarly, CL means the left ciphertext half and CR is the right
ciphertext half, the final output of the cipher. Additionally, ⊕ represents bitwise exclusive
OR (XOR) and & bitwise AND. Finally, X ≪ z represents cyclic shifts to the left by z bits.

2.2. Description of SIMECK

There are three versions of SIMECK, each denoted by SIMECK2n/mn, where n is the
word size, m is the number of key words and 2n is the block size. The following Table 3
shows the specification of other variants.

Table 3. SIMECK parameters.

Block Size 2n Key Size mn Word Size n Key Words m Number of Rounds

SIMECK 32 64 16 4 32

SIMECK 48 96 24 4 36

SIMECK 64 128 32 4 44

The round function (see Figure 1). is defined as:

(XLj+1, XRj+1) = Rkj(XLj, XRj) = (XRj ⊕ F(XLj)⊕ kj, XLj). (1)

where:
F(XLj) = [(XLj)&(XLj ≪ 5)]⊕ XLj ≪ 1) (2)

Figure 1. SIMECK round function.
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The key schedule takes the master key K as an input and generates r subkeys k0, k1, . . . kr−1.
The initial states of the feedback shift registers (t2, t1, t0, k0) are initialized with the master
key words. Then, the round function is applied to update the registers and generate the
round keys. The updating process is defined as follows:

ki+1 = ti , ti+3 = ki ⊕ f (ti)⊕ C ⊕ (zj)i, where 0 ≤ i ≤ T − 1, C = 2n − 4, n is the word
size, (zj)i is the i-th bit of zj.

The sequence zj for SIMECK 32/64 and SIMECK 48/96 is generated by the primitive
polynomial X5 + X2 + 1 with the initial states (1, 1, 1, 1, 1). For SIMECK 64/128, the zj is
generated by the primitive polynomial X6 + X + 1 with the initial states (1, 1, 1, 1, 1, 1).

3. Related Work

Due to the similarities between the design of SIMON and SIMECK, most of the attacks
that have been used against SIMON are applicable to SIMECK. Hence, the designers of
SIMECK have analyzed the security of the cipher against linear and differential cryptanalysis
using the best attacks that have occurred against SIMON. In [4], the authors evaluate the
security of SIMECK and conclude with the possibility of launching a differential attack over
19, 20, and 26 rounds of SIMECK 32/64, 48 and 128 respectively. Similarly, they present a
linear cryptanalysis and introduce attacks on 12, 15, and 19 rounds of SIMECK 32/64, 48,
and 128, respectively.

Bagheri [2] applied the classical linear attacks, which are also considered the best
results using the classical linear cryptanalysis. Applying Matsui’s first algorithm, they
were able to attack 14, 19, and 23 rounds of SIMECK 32/64, 48/96, and 64/128, respectively.
Moreover, they successfully presented attacks against 18, 24, and 27 rounds using Matsui’s
second algorithm.

In 2016, Kölbl et al. [5] presented a comparison between SIMON and SIMECK in
terms of the upper bounds of the linear and differential trails. Additionally, they pre-
sented differential attacks against 19, 26 and 33 rounds on SIMECK 32, SIMECK 48, and
SIMECK 64, respectively.

Soon after this, Qiao et al. [6], presented differential attacks using a new technique,
named dynamic key guessing, to attack 22, 28 and 35 rounds on SIMECK 32, SIMECK 48,
and SIMECK 64, respectively.

Chin et al. [7] evaluated the security of SIMECK against linear hull cryptanalysis,
considered the best linear results on SIMECK achieved using the linear hull approach.
They were able to attack 23, 30 and 37 rounds on SIMECK 32, SIMECK 48, and SIMECK 64,
respectively.

Moreover, there have been more results using other cryptanalysis techniques, such as
zero-correlation and integral attacks.

A powerful, recently proposed attack method is zero-correlation linear cryptanaly-
sis [8], which relies on the use of linear trails with a probability of 0.5. In 2018, Zhang et al. [9]
evaluated the security of SIMECK against such an attack. Hence, they presented attacks on
20 rounds, 24 rounds and 27 rounds of SIMECK 32, SIMECK 48, and SIMECK 64, respectively.

Moreover, Bagheri and Sadeghi [10] improved these results and presented better
attacks using zero-correlation linear trails on SIMECK 48 and SIMECK 64. They were able to
attack 27-round SIMECK 48 and 31-round SIMECK 64. In 2019, Chen et al. [11] provided
improved results using an integral attack.

Side-channel and fault attacks are a powerful category of attacks that compromise the
ciphers’ physical implementation to recover the secret key. Nalla et al. [12] described the
first-fault attack on SIMECK and demonstrated two models of fault attack; in both attacks,
they recovered the n-bit last-round key. In 2020, Duc-Phong Le et al. [13] improved the
former results for fault attacks and recovered the master key by injecting fewer faults into a
single round of cipher. Hence, in [14], a new countermeasure algorithm is proposed, which
can detect intelligent injection faults rather than random faults.

A growing interest in side-channel attacks has been noted, especially in the use of
deep learning network technology. Various models have been developed and examined
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to improve the efficiency of side-channel analysis attacks [15]. Wu et al. [16] presented a
side-channel attack using electromagnetic leakage data to recover the last-round key of
SIMECK 32/64.

Hence, the use of machine learning tools in cryptography is broader than just improv-
ing side-channel attacks. Recently, Baksi et al. [17] improved the framework proposed
in [18] to find differential distinguishers for SIMECK and Ascon. They presented multi-
layer perceptron-based distinguishers for 9-round SIMECK 32, and 14-round SIMECK 64.
By employing ML tools, they were able to reduce the search complexity of the classical
differential distinguisher.

In the post-quantum era, many cryptography systems are threatened by powerful
quantum computers. SIKE is one of the candidates that was submitted to the NIST post-
quantum cryptography standardization process. The cipher can provide reliable security
for the post-quantum era, in addition to the current environment. Tian et al. [19] designed
an improved architecture to enhance the cipher’s implementation.

In 2020, the authors of [1] proposed an improved linear attack to significantly increase
the recovery attack efficiency using Matsui’s second algorithm. The super round technique
essentially works by partitioning the key into smaller parts; each part is sufficient to relate
multiple bits of ciphertext to a single bit of plaintext. The efficiency of this technique
depends on reducing the number of key bits that need to be guessed using linear approxi-
mations. The standard technique of extending a linear approximation with one round of
decryption is usually achieved by guessing the full last round key. The proposed improved
technique takes advantage of the fact that one bit of cipher text depends on only 16 key bits;
instead of extending the linear approximation by one round, it can be extended by four
rounds with the same cost.

The general method of applying Matsui’s second algorithm using super rounds, as
described by us in [1], is deriving linear approximations that have a single bit of input
—XL4

i or XR4
i and multiple bits of the cipher texts (see Figure 2).

Figure 2. General form of linear attack with super rounds.
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4. Super Rounds and Super Keys for SIMECKSIMECKSIMECK

We applied the super round technique to recover multiple round keys, including
the master key for all variants of SIMECK, and attack more rounds using Matsui’s second
algorithm. The term super round, defined in [1], represents s-rounds of encryption of the
cipher. In our analysis of SIMECK, this represents a four-round encryption.

In the case of SIMECK 32/64, there are two super rounds, as shown in Figure 3. There
is a super round that represents the first four rounds, which requires a super key for the
left half of 16 bits and has a single bit of the left half of the cipher text as the output. A
similar super round that requires a super key for the right half of seven bits is shown on the
right side of Figure 3. In the case of the other variants, SIMECK48/96 and SIMECK64/128,
although they correspond to a larger block and key size, the construction of super rounds
with the exact size of the super keys is applicable.

Figure 3. The super rounds.

4.1. The Construction of Super Rounds and Derivations of Super Keys

In this section, we demonstrate the construction of the super rounds of SIMECK 32/64.
Recall Equation (1), describing the round function of SIMECK:

(XLj+1, XRj+1) = Rkj(XLj, XRj) = (XRj ⊕ F(XLj)⊕ kj, XLj)

which implies that:

XLj+1
i = XRj

i ⊕ Zj
i ⊕ kj

i = XLj−1
i ⊕ Zj

i ⊕ kj
i = XLj−3

i ⊕ Zj−2
i ⊕ kj−2

i ⊕ Zj
i ⊕ kj

i

and, hence, that:

XL4
i = XL0

i ⊕ Z1
i ⊕ k1

i ⊕ Z3
i ⊕ k3

i = PLi ⊕ Z1
i ⊕ k1

i ⊕ Z3
i ⊕ k3

i

Similarly,

XRj+1
i = XLj

i = XLj−2
i ⊕ Zj−1

i ⊕ kj−1
i = XRj−3

i ⊕ Zj−3
i ⊕ kj−3

i ⊕ Zj−1
i ⊕ kj−1

i

and hence that:

XR4
i = XR0

i ⊕ Z0
i ⊕ k0

i ⊕ Z2
i ⊕ k2

i = PRi ⊕ Z0
i ⊕ k0

i ⊕ Z2
i ⊕ k2

i

Recall Equation (2):

F(XLj) = [(XLj)&(XLj ≪ 5)]⊕ XLj ≪ 1)

which implies that:
Zj

i = (XLj
i&XLj

i+5)⊕ XLj
i+1
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giving us:

Z0
i = (PLi&PLi+5)⊕ PLi+1

Z1
i = [(Z0

i ⊕ k0
i ⊕ PRi)&(Z0

i+5 ⊕ k0
i+5 ⊕ PRi+5)]⊕ (Z0

i+1 ⊕ k0
i+1 ⊕ PRi+1)

Z2
i = [(Z1

i ⊕ k1
i ⊕ XR1

i )&(Z1
i+5 ⊕ k1

i+5 ⊕ XR1
i+5)]⊕ (Z1

i+1 ⊕ k1
i+1 ⊕ XR1

i+1)

= [(Z1
i ⊕ k1

i ⊕ PLi)&(Z1
i+5 ⊕ k1

i+5 ⊕ PLi+5)]⊕ (Z1
i+1 ⊕ k1

i+1 ⊕ PLi+1)

Z3
i = (v1&v2)⊕ v3

where:

v1 = Z2
i ⊕ k2

i ⊕ XR2
i = Z2

i ⊕ k2
i ⊕ XL1

i = Z2
i ⊕ Z0

i ⊕ k0
i ⊕ PRi ⊕ k2

i

v2 = Z2
i+5 ⊕ k2

i+5 ⊕ XR2
i+5 = Z2

i+5 ⊕ k2
i+5 ⊕ XL1

i+5 = Z2
i+5 ⊕ Z0

i+5 ⊕ k0
i+5 ⊕ PRi+5 ⊕ k2

i+5

v3 = Z2
i+1 ⊕ k2

i+1 ⊕ XR2
i+1 = Z2

i+1 ⊕ k2
i+1 ⊕ XL1

i+1 = Z2
i+1 ⊕ Z0

i+1 ⊕ k0
i+1 ⊕ PRi+1 ⊕ k2

i+1

Finally,

XL4
i = Z3

i ⊕ k3
i ⊕ XR3

i = Z3
i ⊕ k3

i ⊕ XL2
i = Z3

i ⊕ k3
i ⊕ Z1

i ⊕ k1
i ⊕ PLi

XR4
i = XL3

i = XL1
i ⊕ Z2

i ⊕ k2
i = PRi ⊕ k0

i ⊕ Z0
i ⊕ Z2

i ⊕ k2
i

4.2. The Super Key

There is a super key corresponding to each of the super rounds depicted in Figure 3.
The following table lists the components of the left and right super keys, according to the
equations described in Section 4.1.

From Table 4, it can be seen that the super key of the left half contains nine bits of k0,
in the form k0

i+m for m = 0, 1, 2, 5, 6, 7, 10, 11, 15. In addition, five bits come from the super
key of the right half, in the form k0

i+m for m = 0, 1, 5, 6, 10. As a result of this redundancy,
we can obtain nine copies, five copies of each bit of k0, for every super key of the left and
right half of the state, respectively.

Table 4. Superkeys.

Super Key of the Left Half Super Key of the Right Half

k0
i ⊕ k0

i+2 ⊕ k1
i+1 ⊕ k2

i k0
i+1 ⊕ k1

i
k0

i+5 ⊕ k0
i+7 ⊕ k1

i+6 ⊕ k2
i+5 k0

i+6 ⊕ k1
i+5

k0
i+1 ⊕ k1

i k0
i

k0
i+6 ⊕ k1

i+5 k0
i+1

k0
i+11 ⊕ k1

i+10 k0
i+6

k0
i+2 ⊕ k1

i+1 k0
i+5

k0
i+7 ⊕ k1

i+6 k0
i+10

k0
i+1
k0

i
k0

i+2
k0

i+5
k0

i+6
k0

i+7
k0

i+10
k0

i+11
k0

i+15

After determining the 16 bits of XL4 and XR4, we obtain:

• 14 copies of k0
s

• 7 copies of k0
s ⊕ k1

s+1
• 2 copies of k0

s ⊕ k0
s+2 ⊕ k1

s+1 ⊕ k2
s
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for s = 0, 1, 2, . . . , 15.
Thus, by obtaining the 16 super keys for the left and right halves of SIMECK32/64,

we can estimate 48 independent key bits, consisting of k0, k1, and k2. Furthermore, as
in [1], we use the majority vote to determine the value of individual key bits. Hence, the
final estimation of each bit presents with one of three states: correctly determined bits,
incorrectly determined bits, and undetermined bits.

5. Linear Approximations for SIMECK 32/64

In this section, we describe 8-round, 10-round, and 12-round attacks using super-
rounds of SIMECK 32/64. These attacks are similar to previous work [1] performed on
SIMON. At first, we discuss how to derive the required linear approximations. Note that
the only non-linear expression in the SIMECK round function is the bit-wise AND [2]. Thus,
we can approximate the result of the bit-wise AND by 0 with a probability of 0.75 [20].
Hence, four equivalent approximations can be used:

Approximation 1 : Pr[F(XLj+1
i ) = XLj

i+1] =
3
4

Approximation 2 : Pr[F(XLj+1
i ) = XLj

i+1 ⊕ XLj
i ] =

3
4

Approximation 3 : Pr[F(XLj+1
i ) = XLj

i+1 ⊕ XLj
i+5] =

3
4

Approximation 4 : Pr[F(XLj+1
i ) = XLj

i+1 ⊕ XLj
i ⊕ XLj

i+5] =
1
4

5.1. 8-Round Attack

Following the attack procedure of SIMON presented in [1], we need to derive two
linear approximations for the left- and right-half inputs. The approximations contain a
single bit of input, related to a few output bits that occur after four rounds.

Using a four-round linear approximation that relates a single bit of the input, we
used the super rounds to obtain a single bit of input and then concatenate it with the
approximation. Figure 4 depicts the eight-round attack.

Given Approximation 1, we extracted a four-round linear approximation for the left
half with bias 2−5, as follows:

PLi = XL0
i = XR1

i

= F(XR2)i ⊕ XL2
i ⊕ k1

i

≈ XR2
i+1 ⊕ XL2

i ⊕ k1
i

= XR2
i+1 ⊕ XL2

i ⊕ k1
i

= F(XR3)i+1 ⊕ XL3
i+1 ⊕ k2

i+1 ⊕ XR3
i ⊕ k1

i

≈ XR3
i+2 ⊕ XL3

i+1 ⊕ k2
i+1 ⊕ XR3

i ⊕ k1
i

= XR3
i,i+2 ⊕ XL3

i+1 ⊕ k2
i+1 ⊕ k1

i

= F(XR4)i,i+2 ⊕ XL4
i,i+2 ⊕ k3

i,i+2 ⊕ XR4
i+1 ⊕ k2

i+1 ⊕ k1
i

≈ XR4
i+1,i+3 ⊕ XR4

i+1 ⊕ XL4
i,i+2 ⊕ k3

i,i+2 ⊕ k2
i+1 ⊕ k1

i

= XR4
i+3 ⊕ XL4

i,i+2 ⊕ k3
i,i+2 ⊕ k2

i+1 ⊕ k1
i

(3)

Similarly, we extracted a four-round linear approximation that relates a single bit of
the right-half input with bias = 2−6:



Cryptography 2023, 7, 8 9 of 30

PRi = XR0
i = F(XR1)i ⊕ XL1

i ⊕ k0
i

≈ XR1
i+1 ⊕ XL1

i ⊕ k0
i

= F(XR2)i+1 ⊕ XL2
i+1 ⊕ k1

i+1 ⊕ XR2
i ⊕ k0

i

≈ XR2
i+2 ⊕ XL2

i+1 ⊕ k1
i+1 ⊕ XR2

i ⊕ k0
i

= XR2
i,i+2 ⊕ XL2

i+1 ⊕ k1
i+1 ⊕ k0

i

= F(XR3)i,i+2 ⊕ XL3
i,i+2 ⊕ k2

i,i+2 ⊕ XL2
i+1 ⊕ k1

i+1 ⊕ k0
i

≈ XR3
i+1,i+3 ⊕ XL3

i,i+2 ⊕ k2
i,i+2 ⊕ XR3

i+1 ⊕ k1
i+1 ⊕ k0

i

= XR3
i+3 ⊕ XL3

i,i+2 ⊕ k2
i,i+2 ⊕ k1

i+1 ⊕ k0
i

= F(XR4)i+3 ⊕ XL4
i+3 ⊕ k3

i+3 ⊕ XR4
i,i+2 ⊕ k2

i,i+2 ⊕ k1
i+1 ⊕ k0

i

= XR4
i,i+2,i+4 ⊕ XL4

i+3 ⊕ k3
i+3 ⊕ k2

i,i+2 ⊕ k1
i+1 ⊕ k0

i

(4)

Figure 4. 8-Round Linear Attack.

Therefore, we can append the super round to the four-round approximations Equa-
tions (3) and (4) to relate the plaintext to the single bit of super round output. Thus, we
obtained an approximate relationship between plaintext, ciphertext, and super key bits.
This extension enabled us to attack up to eight rounds without further reducing the bias.
This gives us the following expressions:

XL4
i ⊕ XR8

i+3 ⊕ XL8
i,i+2 = k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i (5)

XR4
i ⊕ XR8

i,i+2,i+4 ⊕ XL8
i+3 = k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i (6)

5.2. 10-Round Attack

By adding two rounds of decryption at the end of the 8-round attack, we could obtain
a 10-round attack. This extension reuired us to guess a few bits of the last round key.
Figure 5 depicts the 10-round linear attack.
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Figure 5. 10-Round Linear Attack.

Single-round decryption can be expressed with the following equation [1]:

XLj = XRj+1

XRj = F(XRj+1)⊕ XLj+1 ⊕ kj,

Therefore, the two rounds decryption can be written as follows:

XLj = F(XRj+2)⊕ XLj+2 ⊕ kj+1

XRj = F(F(XRj+2)⊕ XLj+2 ⊕ kj+1)⊕ XRj+2 ⊕ kj,

Recall Equation (7):

XL4
i ⊕ XR8

i+3 ⊕ XL8
i,i+2 = k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i (7)

We rewrote X8 in terms of X10, which gave us:

XL8 = F(XR10)⊕ XL10 ⊕ k9

XR8 = F(F(XR10)⊕ XL10 ⊕ k9)⊕ XR10 ⊕ k8
(8)

By substituting the expression of XL8 and XR8, we obtained:

XL4
i ⊕ XR8

i+3 ⊕ XL8
i,i+2 = k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i
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XL4
i ⊕ F(XR9

i+3)⊕ XL9
i+3 ⊕ k8

i+3 ⊕ XR9
i,i+2 = k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i

XL4
i ⊕ (XR9

i+3&XR9
i+8)⊕ XR9

i+4 ⊕ XL9
i+3 ⊕ k8

i+3 ⊕ XR9
i,i+2 = k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i

Hence, the 10-round expression for the left-half is as follows:

XL4
i ⊕ (F(XR10

i+3)⊕ XL10
i+3 ⊕ k9

i+3&F(XR10
i+8)⊕ XL10

i+8 ⊕ k9
i+8)⊕ F(XR10

i+4)⊕ XL10
i+4

= k9
i+4 ⊕ XR10

i+3 ⊕ k8
i+3 ⊕ F(XR10

i,i+2)⊕ XL10
i,i+2 ⊕ k9

i,i+2 = k7
i,i+2 ⊕ k6

i+1 ⊕ k5
i

(9)

Following the same approach, we extended the four-round linear approximation to
the right half, and added two rounds of decryption:

XR4
i ⊕ XR8

i,i+2,i+4 ⊕ XL8
i+3 = k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i

XR4
i ⊕ F(XR9

i,i+2,i+4)⊕ XL9
i,i+2,i+4 ⊕ k8

i,i+2,i+4 ⊕ XR9
i+3

= k7
i+3 ⊕ k6

i,i+2 ⊕ k5
i+1 ⊕ k4

i

XR4
i ⊕ (XR9

i &XR9
i+5)⊕ (XR9

i+2&XR9
i+7)⊕ (XR9

i+4&XR9
i+9)

⊕ XR9
i+1,i+3,i+5 ⊕ XL9

i,i+2,i+4 ⊕ k8
i,i+2,i+4 ⊕ XR9

i+3 = k7
i+3 ⊕ k6

i,i+2 ⊕ k5
i+1 ⊕ k4

i

XR4
i ⊕ (XR9

i &XR9
i+5)⊕ (XR9

i+2&XR9
i+7)⊕ (XR9

i+4&XR9
i+9)⊕

XR9
i+1,i+5 ⊕ XR10

i,i+2,i+4 = k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i

Thus, the 10-round linear expression for the right half is as follows:

XR4
i ⊕ (F(XR10

i )⊕ XL10
i ⊕ k9

i &F(XR10
i+5)⊕ XL10

i+5 ⊕ k9
i+5)⊕

(F(XR10
i+2)⊕ XL10

i+2 ⊕ k9
i+2&F(XR10

i+7)⊕ XL10
i+7 ⊕ k9

i+7)⊕
(F(XR10

i+4)⊕ XL10
i+4 ⊕ k9

i+4&F(XR10
i+9)⊕ XL10

i+9 ⊕ k9
i+9)⊕

F(XR10
i+1,i+5)⊕ XL10

i+1,i+5 ⊕ k9
i+1,i+5 ⊕ XR10

i,i+2,i+4 =

k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i

(10)

In addition to the 16 and 7 key bits required to obtain the input bits for the left and the
right half, respectively, extra key bits were required to evaluate the Equations (9) and (10).
Two key bits k9

i+3 and k9
i+8 were required to evaluate Equation (9) and six key bits k9

i , k9
i+5,

k9
i+2, k9

i+7, k9
i+4, and k9

i+9 to evaluate Equation (10).

5.3. 12-Round Attack

Here, we extend the four-round linear approximations Equations (3) and (4) into
seven-round linear approximations, using Equations (11) and (12) for the left and right half
with biases 2−10 and 2−12, respectively (see Tables A1 and A2 for the derivation):

PLi ⊕ XR7
i,i+4 ⊕ XL7

i+1 = k6
i+1 ⊕ k5

i,i+2,i+4 ⊕ k4
i+3 ⊕ k3

i,i+2 ⊕ k2
i+1 ⊕ k1

i (11)

PRi ⊕ XL7
i,i+4 = k6

i,i+4 ⊕ k5
i+1 ⊕ k4

i,i+2,i+4 ⊕ k3
i+3 ⊕ k2

i,i+2 ⊕ k1
i+1 ⊕ k0

i (12)

Thus, we obtained the 11-round linear trails by appending the super round at the
beginning of Equations (11) and (12), as follows:

XL4
i ⊕ XR11

i,i+4 ⊕ XL11
i+1 = k10

i+1 ⊕ k9
i,i+2,i+4 ⊕ k8

i+3 ⊕ k7
i,i+2 ⊕ k6

i+1 ⊕ k5
i (13)

XR4
i ⊕ XL11

i,i+4 = k10
i,i+4 ⊕ k9

i+1 ⊕ k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i (14)

Then, we added one more round of decryption at the end of the 11-round trails and
obtained the following 12-round trails for the left half:
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XL4
i ⊕ XR11

i,i+4 ⊕ XL11
i+1

= k10
i+1 ⊕ k9

i,i+2,i+4 ⊕ k8
i+3 ⊕ k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i

XL4
i ⊕ F(XR12

i,i+4)⊕ XL12
i,i+4 ⊕ k11

i,i+4 ⊕ XR12
i+1

= k10
i+1 ⊕ k9

i,i+2,i+4 ⊕ k8
i+3 ⊕ k7

i,i+2 ⊕ k6
i+1 ⊕ k5

i

XL4
i ⊕ (XR12

i &XR12
i+5)⊕ (XR12

i+4&XR12
i+9)⊕ XR12

i+5 ⊕ XL12
i,i+4

= k11
i,i+4 ⊕ k10

i+1 ⊕ k9
i,i+2,i+4 ⊕ k8

i+3 ⊕ k7
i,i+2 ⊕ k6

i+1 ⊕ k5
i

(15)

A similar process was followed to obtain the 11-round linear approximation for the
right half:

XR4
i ⊕ XL11

i,i+4 = k10
i,i+4 ⊕ k9

i+1 ⊕ k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i

XR4
i ⊕ XR12

i,i+4 = k10
i,i+4 ⊕ k9

i+1 ⊕ k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1 ⊕ k4
i

(16)

Figure 6 depicts the 12-round linear attack.

Figure 6. 12-Round Linear Attack.

6. Experimental Verification

We conducted several experiments to verify the attacks presented in Section 5 and
provide the experimental results presented in this section.
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Recall the super key bits shown in Table 4, which come in three forms: k0
i , k0

i+2 ⊕ k1
i ,

or k0
i ⊕ k0

i+4 ⊕ k1
i+2 ⊕ k2

i . We reused the notations that appeared in [1], for Bit1, Bit2, Bit3
and Bit4. These four bits were determined using Equation (17).

k0
i = Bit1i

k1
i = Bit2i ⊕ Bit1i+2

k2
i = Bit1i ⊕ Bit2i+2 ⊕ Bit3i

k9
i = Bit4i

(17)

6.1. 8-Round Key Recovery Attack

To determine the data that were required to conduct the experiments, we followed
Matsui’s rule [21], which suggests using some multiple of bias−2. Thus, the required data
complexity for the eight-round attack is a multiple of 2−6∗−2. Therefore, we conducted
14 experiments with 214 plain text and cipher text pairs.

Table 5 shows that the estimates derived from evaluating the linear approximation
of the right half did not improve the overall results. This is because of the low bias
approximations used in this case. As the number of copies of Bit1, Bit2, and Bit3 increased,
the accuracy of the estimation results also increased. Thus, the estimates of Bit1 are more
accurate than those of Bit2 and Bit3.

Table 5. Comparison of 8-round attack results using the left half only and using both halves.

Bits Correctly Number of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(Out of 16 Bits) (Out of 14)

8-round

Bit1 16 14

Bit2 16 10
average number of bits guessed correctly = 15.7 15 4

(left half) Bit3

15 3

average number of bits guessed correctly =12.6

14 2
13 2
12 2
11 3
10 2

8-round

Bit1 16 14

Bit2 16 10
15 3

average number of bits guessed correctly = 15.6 14 1

(left and right halves) Bit3

15 3

average number of bits guessed correctly = 12.7

14 2
13 3
12 2
11 2
10 2

6.2. 10-Round Key Recovery Attack

Similar to the previous attack, we implemented a 10-round attack with 14 keys chosen
at random and 214 P/C pairs. Table 6 shows that, compared to the results obtained in
the 8-round attack, we obtained a different observation. The approximations of the right
half improved the overall results, especially in the estimations of k9; hence, every bit of k9

received six copies from the right-half evaluation, and only two copies from the left-half
evaluation.
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Table 6. Comparison of 10-round attack results using the left half only and using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(Out of 16 Bits) (Out of 14)

10-round

Bit1 16 14

Bit2 16 10
average no. bits guessed correctly = 15.7 15 4

(left half)

Bit3

16 2

average no. bits guessed correctly = 12.6

14 4
13 1
11 5
10 2

Bit4

16 1

average no. bits guessed correctly = 13

15 1
14 3
13 4
12 3
11 2

10-round

Bit1 16 14

Bit2 16 11

average no. bits guessed correctly =15.7 15 2
14 1

(left and right halves)

Bit3
16 2

average no. bits guessed correctly = 12.6

14 4
13 1
11 5
10 2

Bit4 16 9

average no. bits guessed correctly = 15.5 15 3
14 2

6.3. 12-Round Key Recovery Attack

We conducted three experiments regarding the 12-round attack using 224 P/C pairs,
with keys chosen at random. Table 7 shows similar results to those of the eight-round
attack. The combined estimation of both halves (left and right) did not enhance the results
obtained using only the left-half estimations.

Table 7. Comparison of 12-round attack results using the left half only and using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(Out of 16 Bits) (Out of 3)

12-round

Bit1 16 3

Bit2 16 3

(left half) Bit3 15 1
average no. bits guessed correctly = 14.3 14 2

12-round

Bit1 16 3

Bit2 16 3

(left and right halves) Bit3 15 1
average no. bits guessed correctly = 14.3 14 2
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6.4. Experimental Results of 8-Round Attack without Approximations

Since SIMECK is designed based on the Feistel structure, and an essential features
of this design is that the same algorithm was used for encryption and decryption, an
equivalent super-round of four rounds of decryption was also established. We can launch a
meet-in-the-middle attack on eight-round linear cryptanalyses of SIMECK 32/64 without
any approximations, which is the same attack that was launched on SIMON in the previous
work [1].

Figure 7 depicts how the two super-rounds are connected to attack eight rounds of
SIMECK 32/64. We started with one super round in the forward direction and the second
super round in the backward direction; hence, we could efficiently apply the meet-in-the-
middle technique.

The first super round FS1 starts with a plaintext and 17 key bits K1, to produce a single
bit of four-rounds encryption XL4

i . Then, the second super round FS2 takes the ciphertext
and eight key bits K2, and generates a single bit of four-rounds decryption. Following
the procedure described in [1], we computed FS1 and FS2 for all possible values of the
encryption and decryption super-keys for every bit i.

We conducted two experiments using only 48 plain text and cipher text pairs; we were
able to retrieve the correct value of the 112 bits.

Figure 7. 8-Round attack without approximations.

6.5. Summary of Experimental Results

Here, we provide a summary of our experimental results. See Table 8.

Table 8. Summary of the experimental results.

Experimental Super Key Bits Master Key Bits Data Time Success
Results Recovered Recovered Complexity Complexity Probability

8-round 46–48 bits 46–48 bits 214 234.0028 93%
10-round 62–64 bits 56–62 bits 214 236.044 93.4%
12-round 46–48 bits 46–48 bits 224 244.0028 96.45%

8-round without 112 bits 64 bits 25.58 230.58 100%
approximations
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7. Projected Results Using Multiple Linear Cryptanalysis

This section presents two projected linear attacks; the first uses a single super-round,
which is the direct application of the approach presented in [1], and the second is a new
class of attacks where we use multiple super-rounds.

7.1. Linear Attacks Using a Single Super-Round

Here, we present a 19-round linear attack, a direct application of the original attack
that we proposed in [1]. This is achieved by extending the 12-round linear approximations
in Equation (18) and appending the super rounds of four rounds of encryption and three
rounds of decryption.

To compute the data complexity, we first compute the capacity:

c2 = 4 × 16 × 2−18×2 = 26 × 2−182
= 2−30

Nine key bits must be estimated to add three rounds of decryption to the approxima-
tions for the left half:

• Seven bits of k19
i for i = 3, 8, 13, 0, 5, 2, 7;

• Two bits of the sum:k19
i+1 ⊕ k18

i for i = 3, 8.

Twelve key bits must be estimated to add three rounds of decryption to the approxi-
mations for the right half:

• Eight bits of k19
i for i = 0, 5, 10, 2, 7, 12, 1, 6;

• Four bits of the sum:k19
i+1 ⊕ k18

i for i = 0, 5, 2, 7.

The time complexity required for this attack to evaluate the approximations for the
left half is 16 × 230 × 216 × 29 = 259. For the right side, it is 16 × 230 × 27 × 212 = 253. The
overall complexity required to evaluate the two halves is 259.02.

Hence, we can attack 20 rounds in the case of average-case computations by extending
the 12-round linear approximations of Equation (18), appending a single super round of
four rounds of encryption and adding four rounds of decryption.

We extended the seven-round linear characteristics in Equations (11) and (12) into the
following 12-round linear approximations for the left and the right sides, with biases=2−18

and 2−19, respectively.

PLi ⊕ CRi+3 ⊕ CLi,i+2,i+4 = k11
i,i+2,i+4 ⊕ k10

i+1 ⊕ k9
i,i+4 ⊕ k7

i,i+4 ⊕ k6
i+1 ⊕ k5

i,i+2,i+4

⊕ k4
i+3 ⊕ k3

i,i+2 ⊕ k2
i+1 ⊕ k1

i

PRi ⊕ CRi,i+2 ⊕ CLi+3 = k11
i+3 ⊕ k10

i+2,i,i+4 ⊕ k9
i+1 ⊕ k8

i,i+4 ⊕ k6
i,i+4 ⊕ k5

i+1 ⊕ k4
i,i+2,i+4

⊕ k3
i+3 ⊕ k2

i,i+2 ⊕ k1
i+1 ⊕ k0

i

(18)

We compute the capacity for the system of approximations as follows:

c2 = 4 × 16 × 2−18×2 = 26 × 2−182
= 2−30

The super round costs on average 11.5 and 4.5 were appended for the left and the right
half, respectively. Moreover, four rounds of decryption costs were appended by estimat-
ing, on average, 16 key bits and 18.5 key bits for the left- and right-half approximations,
respectively.

Twenty-three key bits (16 bits on average) are needed to estimate the left-half approxi-
mations:

• Fourteen bits of k19
i for i = 3, 8, 13, 4, 2, 7, 9, 14, 0, 5, 10, 12, 1, 6, with each counted as a

half bit.
• Seven bits of the sum:k19

i+1 ⊕ k18
i for i = 5, 13, 2, 7, 3, 58.

• Two bits of the sum:k19
i,i+2 ⊕ k18

i+1 ⊕ k17
i , for i = 3, 8
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Twenty-five key bits (18.5 bits on average) are required to estimate the right-half
approximations:

• Thirteen bits of k19
i for i = 0, 5, 8, 10, 1, 6, 15, 11, 2, 7, 12, 3, 13, each counted as a half bit

• Eight bits of the sum : k19
i+1 ⊕ k18

i for i = 0, 5, 10, 2, 7, 12, 1, 6.
• Four bits of the sum: k19

i,i+2 ⊕ k18
i+1 ⊕ k17

i , for i = 0, 5, 2, 7

Thus, the time complexity required to evaluate the approximations for the left half is
24 × 230 × 211.5 × 216 = 261.5, in addition to the complexity of evaluating the approximations
for the right half = 24 × 230 × 24.5 × 218.5 = 257. Thus, the total time complexity is 261.56.

7.2. Improved Linear Approximations for SIMECK 32/64

The approximations used in the attack presented in Section 7.1 have a single bit of
the input mask due to the constraint of incorporating only a single super-round. This
constraint is relaxed in this work. We can improve the overall attack efficiency by deriving
a linear approximation with multiple input masks, which means we can employ multiple
super-rounds.

Therefore, we are able to derive this improved 13-round approximation with bias
equal to 2−18. (see Table A3 for the derivation).

PLi+3 ⊕ PRi,i+2 ⊕ XR13
i+1 ⊕ XL13

i,i+4 ⊕ k10
i,i+4 ⊕ k9

i+1 ⊕ k8
i,i+2,i+4

⊕ k7
i+3 ⊕ k6

i,i+2 ⊕ k5
i+1 ⊕ k4

i ⊕ k2
i ⊕ k1

i+1 ⊕ k0
i,i+2

(19)

7.3. Linear Attacks Using Multiple Super Rounds

Incorporating multiple super rounds enables us to enhance the time complexity of
the attack. Here, we extend the 13-round linear trail (19) into a 19-round linear attack by
appending six more rounds: four rounds of encryption, and two rounds of decryption.

The system of approximations has the following capacity:

c2 = 4 × 16 × 2−18×2 = 26 × 2−182
= 2−30

Thus, the data complexity for this attack is 230.
The three super-rounds require that three super-keys are estimated, which consist of:

• Fourteen bits of the last round key k0
i for i = 10, 5, 14, 9, 4, 8, 3, 2, 13, 0, 1, 6, 7, 12, with

each counted as a half bit.
• Nine bits of the sum k0

i+1 ⊕ k1
i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7.

• Two bits of the sum k0
i,i+2 ⊕ k1

i+1 ⊕ k2
i for i = 3, 8.

The cost of appending three super-rounds (one for each input mask bit) is guessing 25
key bits. Additionally, two more key bits k18

0,5 required estimation to append two decryption
rounds. The time complexity for this attack is 24 × 225 × 22 × 230 = 261.

In the average-case complexity, we can add one more round of decryption to the
19-round attack and present a 20-round attack.

Nine key bits must be estimated to add three rounds of decryption:

• Five bits of k19
i for i = 0, 5, 10, 1, 6, with each counted as a half bit.

• Four bits of the sum: k19
i+1 ⊕ k18

i for i = 0, 5.

As a result, the average cost of appending three super-rounds is to guess 18 key bits,
in addition to 6.5 key bits, to add three rounds of decryption; thus, the time complexity for
this attack is 24 × 230 × 218 × 26.5 = 258.5.

Table 9 summarizes our results of SIMECK 32/64 and compares them with the best
results presented in [2]. We were able to go deeper by two rounds.
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Table 9. Comparison results on SIMECK 32.

Average Case Computations

SIMECKSIMECKSIMECK Number of Rounds Data Complexity Time Complexity

32/64

Using Single Super Round Presented in Section 7.1

20-round 230 261.56

Using Multiple Super Rounds Presented in Section 7.3

20-round 230 258.5

Projections from data in [2]

18-round 224 260.5

8. The Effect of Super Rounds on Larger Variants of SIMECK

In contrast to SIMON, the larger versions of SIMECK have the same super keys with
the same size. Therefore, we were able to attack larger number of rounds.

For SIMECK 48, incorporating multiple super-rounds instead of a single super-round
yields better results. We derived a 20-round linear approximation that has three active bits
in the input mask and one bit of the output mask. We employ this approximation to attack
29-rounds of SIMECK 48 by adding three super rounds (four rounds of encryption) at the
beginning and five rounds of decryption at the end. This comes at the cost of guessing 41
key bits on average.

For SIMECK 64, we derived a 25-round approximation and added nine rounds at both
ends: four rounds of encryption and five rounds of decryption, at the cost of guessing 49
key bits on average. Thus we attack up to 34 rounds of this version of SIMECK.

9. Discussion

The outcomes of this research have provided insight into the differences between
SIMON and SIMECK; even though they are very similar in design, hence applying our attack
model on reduced round SIMECK results in better attacks on most of SIMECK versions than
on SIMON. We are able to present linear cryptanalysis on 29-round SIMECK 48/96 and
34-round SIMECK 64/128, whereas in the case of SIMON for the same versions, we are only
able to attack 21-round and 25-round respectively. These improved results are caused by
the rotational functions, which is the only difference between the two ciphers.

We observed in that experiments that we got the same number of master key bits in
the 8-round and 12-round versions, but recovered more key bits with the 10-round attack.
This is because k9 consists of some bits of the master key; see Appendix A for more details.
Additionally, the 8-round versions of both SIMON and SIMECK are broken employing two
super-rounds.

10. Conclusions and Future Work

This paper presents the results of applying the novel notion of super rounds presented
in [1] on all versions of the SIMECK lightweight block cipher. We presented experimental
results on 8-round, 10-round, and 12 -rounds attacks on SIMECK 32, and we recovered a
large number of the master key bits with high accuracy. Theoretically, we present attacks
on 20 rounds of SIMECK 32, 29 rounds of SIMECK 48 and 34 rounds of SIMECK 64. Thus,
relaxing the constraint of using only linear approximations with one active input mask
enhances the efficiency of attack on SIMECK 32 and enables us to present a better attack on
SIMECK 48.

In future work, it would be interesting to examine similar lightweight ciphers, such as
Spix, and see if our attack using super-rounds are applicable. Another aspect that could be
investigated is combining the proposed model with linear-differential cryptanalysis.
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Appendix A. The Deduction of k3 from k9

SIMECK key schedule generates r-4 more round keys from the 64-bit master key.
Therefore, we are able to write the round keys in terms of the master key bits k0, k1, k2,
and k3.

k9 is generated as in Equation (A1), which is expressed in terms of the master key bits
in Equation (A2).

k9 = k5 ⊕ F(k6)⊕ c ⊕ (z0)5 (A1)

Hence, k3 may be expressed in terms of k0, k1, k2, and k9 as follows:

k9 = k1 ⊕ F(k2)⊕ F(k2 ⊕ f (k3))⊕ C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5 (A2)

Recall the round function f :

F(XLj) = [(XLj)&(XLj ≪ 5)]⊕ XLj ≪ 1)

It is clear that f consists of the non-invertible bitwise AND; hence, we can assume that
the output of f is zero:

F(X) = (0n ⊕ XLj ≪ 1)

= XLj ≪ 1
(A3)

where 0n denotes a zero vector of n-bits.
We can write the inverse function as follows:

F−1(X) = X ≪ 1 (A4)

Therefore, to write k9 in terms of the master key, we apply (A4) in (A2):

k9 = k1 ⊕ f−1(k2)⊕ f−1(k2 ⊕ f−1(k3))C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5

= k1 ⊕ (k2 ≪ 1)⊕ (k2 ≪ 1)⊕ (k3 ≪ 2)⊕ C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5
(A5)
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Appendix B. Derive 13-Round Linear Approximations for SIMECKSIMECKSIMECK 32/64

Table A1. The sequence of approximations used to derive 13-round linear trails for the left-half of
SIMECK 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 0

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3

Table A2. The sequence of approximations used to derive 13 rounds for the right-half of SIMECK 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

- 0 1 1

0 1 1 1

1 0,2 1:1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2
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Appendix C. Derive an Improved 13-Round Linear Approximations for SIMECKSIMECKSIMECK 32/64

Table A3. The sequence of approximations used to derive a 13-round linear trails of SIMECK 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

0.4 3;1 2

0,4 1

Appendix D. Linear Cryptanalysis of SIMECKSIMECKSIMECK 48/96 Using a Single Super Round

In contrast to SIMON, the larger versions of SIMECK have exact super keys of the same
size. Therefore, we can attack up to 27 rounds of SIMECK 48/96.

Appendix D.1. Linear Approximations for SIMECK 48/96

We can extend the 12-round linear trail Equation (18) into 20-round linear expressions,
with biases =2−27 and 2−28 for the left half and right half, respectively (see Tables A4 and A5
for more details):

PLi ⊕ XR20
i+3 ⊕ XL20

i,i+2 = k19
i,i+2 ⊕ k18

i+1 ⊕ k17
i ⊕ k15

i ⊕ k14
i+1 ⊕ k13

i,i+2 ⊕ k12
i+3⊕

k11
i,i+4,i+2 ⊕ k10

i+1,i+5 ⊕ k9
i,i+4 ⊕ k7

i,i+4 ⊕ k6
i+1 ⊕ k5

i,i+2,i+4 ⊕ k4
i+3 ⊕ k3

i,i+2 ⊕ k2
i+1 ⊕ k1

i

PRi ⊕ XR20
i,i+2,i+4 ⊕ XL20

i+3 = k19
i+3 ⊕ k18

i,i+2 ⊕ k17
i+1i ⊕ k16

i ⊕ k14
i ⊕ k13

i+1 ⊕ k12
i,i+2 ⊕ k11

i+3

⊕ k10
i+2,i,i+4 ⊕ k9

i+1,i+5 ⊕ k8
i,i+4 ⊕ k6

i,i+4 ⊕ k5
i+1 ⊕ k4

i,i+2,i+4 ⊕ k3
i+3 ⊕ k2

i,i+2 ⊕ k1
i+1 ⊕ k0

i

(A6)
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Table A4. The sequence of approximations used to derive 20-round linear trails for the left-half of
SIMECK 48.

Active Bits on the Left Side Active Bits on the Right Side Used Approximation Number of Approximations

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 0

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3
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Table A5. The sequence of approximations used to derive 20 rounds for the right-half of SIMECK 48.

Active Bits on the Left Side Active Bits on the Right Side Used Approximation Number of Approximations

- 0 1 1

0 1 1 1

1 0,2 1:1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

- 0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4

Appendix D.2. 28-Round Linear Attacks of SIMECK 48/96

We can append four rounds encryption and four rounds decryption to the 20-round
linear trails, and we get a 28-round linear attack.

To determine the number of plaintext and ciphertext pairs required, we compute
the capacity:

c2 = 4 × 24 × 2−27×2 = 26 × 2−272
= 2−47.42

The key bits required guessing to add four rounds of decryption to the left half
approximations are:

• 14 bits of k27
i , for i = 3, 8, 13, 4, 7, 18, 9, 14, 0, 5, 10, 2, 6, 12

• 9 bits of the sum k27
i,i+2 ⊕ k26

i+1 for i = 3, 8, 13, 0, 5, 2, 7, 4, 9
• 2 bits of the sum k27

i,i+2 ⊕ k26
i+1 ⊕ k25

i for i = 3, 8

The key bits required guessing to add four rounds of decryption to the right half
approximations are:

• 18 bits of k27
i , for i = 0, 5, 10, 15, 1, 6, 11, 2, 7, 12, 3, 8, 17, 13, 4, 9, 14, 19

• 11 bits of the last round key k26
i for i = 0, 5, 10, 2, 7, 12, 4, 9, 14, 1, 6

• 6 bits of the sum k26
i+1 ⊕ k25

i for i = 0, 5, 2, 7, 4, 9

The complexity to evaluate the approximations for the left half is 24.585 × 247.42 ×
216 × 225 = 293. In addition to the complexity for evaluating the right half approximations
which is 24.585 × 247.42 × 27 × 235 = 294. Therefore the overall time complexity to mount a
28-round linear attack is 294.58.



Cryptography 2023, 7, 8 24 of 30

In the case of average-case computations, the complexity to evaluate the approxima-
tions for the left half is 24 × 247.42 × 211.5 × 218 = 282.5. In addition to the complexity for
right half approximations which is 24 × 247.42 × 24.5 × 226 = 283.5. Therefore the overall
time complexity to mount a 28-round linear attack is 284.08.

Appendix E. Linear Cryptanalysis of SIMECKSIMECKSIMECK 48/96 Using Multiple Super-Rounds

Here, we extend the 13-round linear approximation Equation (19) into a 20-round
approximation (A7) with bias=2−27 (see Table A6 for detailed derivation).

PLi+3 ⊕ PRi,i+2 ⊕ XR20
i = k18

i ⊕ k17
i+1 ⊕ k16

i,i+2 ⊕ k15
i+3 ⊕ k14

i,i+2,i+4 ⊕ k10
i,i+4⊕

k9
i+1 ⊕ k8

i,i+2,i+4 ⊕ k7
i+3 ⊕ k6

i,i+2 ⊕ k5
i+1 ⊕ k4

i ⊕ k2
i ⊕ k1

i+1 ⊕ k0
i,i+2

(A7)

28-Round and 29-Round Linear Attacks of SIMECK 48/96

Here, we describe an improved linear attack of 28-round of SIMECK 48/96. We append
the super rounds of four rounds of encryption and four rounds of decryption to the 20-
round linear approximation.

The system of approximations has the following capacity:

c2 = 4 × 24 × 2−27×2 = 26 × 2−272
= 2−47.42

The components of three super-keys, a total of 26 key bits:

• Fifteen bits of the last round key k0
i for i = 10, 5, 14, 9, 4, 8, 3, 2, 18, 13, 0, 1, 6, 7, 12.

• Nine bits of the sum k0
i+1 ⊕ k1

i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7.
• Two bits of the sum k0

i,i+2 ⊕ k1
i+1 ⊕ k2

i for i = 3, 8.

A single bit of the output mask represents one bit of the right half; hence, we can use
our super-round to add four rounds of decryption. Adding four rounds of decryption
requires the estimation of 16 key bits:

• Nine bits of the last round key k19
i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10.

• Five bits of the sum k19
i+1 ⊕ k18

i for i = 6, 1, 10, 5, 0.
• Two bits of the sum k19

i,i+2 ⊕ k18
i+1 ⊕ k17

i for i = 0, 5.

Thus, the required time complexity for this attack is 24.585 × 247.42 × 226 × 216 = 294.005.
In the average-case complexity, we can add one more round of decryption to the

28-round linear attack; hence, we can attack up to 29 rounds of SIMECK 48/96. The cost of
adding five rounds of decryption, leading to a total of 28 key bits (22 bits on average):

• Twelve bits of the last round key k28
i for i = 0, 5, 10, 1, 6, 15, 11, 2, 7, 16, 12, 20, with each

counted as a half bit.
• Nine bits of the sum k28

i+1 ⊕ k27
i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10.

• Five bits of the sum k28
i,i+2 ⊕ k27

i+1 ⊕ k26
i for i = 6, 1, 10, 5, 0.

• Two bits of the sum k28
i+3 ⊕ k27

i,i+2 ⊕ k26
i+1 ⊕ k25

i for si = 0, 5.

The cost of appending four rounds of encryption was, on average, reduced to the
estimation of 18.5 key bits.
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Table A6. The sequence of approximations used to derive 20 rounds of linear trails of SIMECK 48.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;1 2

0,4 -

0.4 1;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0

Appendix F. Linear Cryptanalysis of SIMECKSIMECKSIMECK 64/128 Using a Single Super-Round

Here, we present a 33-round linear attack of SIMECK 64/128.

Appendix F.1. Linear Approximations for SIMECK 64/128

We extend the 20-round linear expressions Equation (A8) into 25-round linear trails
for the left and right half with biases 2−34 and 2−36, respectively (see Tables A7 and A8
for details) :

PLi ⊕ XR25
i,i+4 ⊕ k23

i,i+4 ⊕ k22
i+1 ⊕ k21

i+4,i,i+2 ⊕ k20
i+3 ⊕ k19

i,i+2 ⊕ k18
i+1 ⊕ k17

i ⊕ k15
i ⊕ k14

i+1

⊕ k13
i,i+2 ⊕ k12

i+3 ⊕ k11
i,i+4,i+2 ⊕ k10

i+1,i+5 ⊕ k9
i,i+4 ⊕ k7

i,i+4 ⊕ k6
i+1 ⊕ k5

i,i+2,i+4 ⊕ k4
i+3 ⊕ k3

i,i+2

⊕ k2
i+1 ⊕ k1

i

PRi ⊕ XR25
i+1,i+5 ⊕ XL25

i,i+4 ⊕ k24
i,i+4 ⊕ k22

i,i+4 ⊕ k21
i+1 ⊕ k20

i,i+2,i+4 ⊕ k19 ⊕ k18
i,i+2 ⊕ k17

i+1

⊕ k16
i ⊕ k14

i ⊕ k13
i+1 ⊕ k12

i,i+2 ⊕ k11
i+3 ⊕ k10

i+2,i,i+4 ⊕ k9
i+1,i+5 ⊕ k8

i,i+4 ⊕ k6
i,i+4 ⊕ k5

i+1

⊕ k4
i,i+2,i+4 ⊕ k3

i+3 ⊕ k2
i,i+2 ⊕ k1

i+1 ⊕ k0
i

(A8)
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Table A7. The sequence of approximations used to derive 25-round linear trails for the left half of
SIMECK 64.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 0

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;1 2

0,4 -

0,4
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Table A8. The sequence of approximations used to derive 25 rounds for the right half of SIMECK 64.

Active Bits on the Left Side Active Bits on the Right Side Used Approximation Number of Approximations

- 0 1 1

0 1 1 1

1 0,2 1:1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

- 0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;3 2

0,4 -

- 0,4 1;1 2

0,4 1,5

Appendix F.2. 34-Round Linear Attacks of SIMECK 64/128

We produce a 34-round linear cryptanalysis by appending four rounds of encryption
and five rounds of decryption to the 25-round linear approximations, as follows:

The capacity of the 25-round linear trail is:

c2 = 4 × 32 × 2−34×2 = 26 × 2−342
= 2−61

Forty-three key bits must be estimated to add five rounds of decryption to the left-half
approximations:

• Eighteen bits of k33
i for i = 0, 5, 10, 1, 6, 11, 2, 7, 20, 16, 12, 4, 9, 14, 19, 24, 3, 8.

• Thirteen bits of the last round key k32
i for i = 0, 3, 10, 1, 6, 15, 11, 4, 9, 14, 5, 19, 2.

• Eight bits of the sum k32
i+1 ⊕ k31

i for i = 6, 1, 10, 5, 0, 14, 9, 4.
• Four bits of the sum k32

i,i+2 ⊕ k31
i+1 ⊕ k30

i for i = 0, 5, 9, 4.

Fifty-three key bits must be estimated to add five rounds of decryption to the right-half
approximations:

• Twenty-one bits of k33
i for i = 15, 20, 10, 5, 6, 11, 2, 7, 1, 12, 8, 13, 4, 9, 14, 19, 16, 21, 3, 17, 0.
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• Seventeen bits of the last round key k32
i for i = 1, 6, 11, 2, 7, 16, 12, 5, 10, 15, 20, 0, 4, 9, 14,

3, 8.
• Eleven bits of the sum k32

i+1 ⊕ k31
i for i = 7, 2, 11, 6, 1, 15, 10, 5, 0, 4, 9.

• Four bits of the sum k32
i,i+2 ⊕ k31

i+1 ⊕ k30
i for i = 6, 1, 10, 5.

Thus, the time complexity required to evaluate the left-half approximations is 25 ×
216 × 243 × 261 = 2125, in addition to the complexity required to evaluate the right-half
approximations, which is 25 × 27 × 253 × 261 = 2126. The overall time complexity is 2126.5.

In the case of average time computations, we can reduce the complexity of the 34-
round linear attack and count some bits as a half bit. Thus, the time complexity required
to evaluate the left-half approximations reduced to 25 × 211.5 × 234 × 261 = 2111.5. Addi-
tionally, evaluating the right-half approximations requires the estimation of 53 key bits, on
average, which reduced to 43; hence, the time complexity required to evaluate the right-half
approximations is 25 × 24.5 × 240.5 × 261 = 2112. The total complexity required to evaluate
the two halves is 2112.

Appendix G. Linear Cryptanalysis of SIMECKSIMECKSIMECK 64/128 Using Multiple Super Rounds

In this section, we apply the attack model using multiple super rounds.

Appendix G.1. Improved Linear Approximation for SIMECK 64/128

We extended the 20-round linear approximation (A7) into a 25-round linear approxi-
mation (A9) with bias=2−35 (see Table A9 for derivation).

PLi+3 ⊕ PRi,i+2 ⊕ XR25
i+1 ⊕ XL25

i,i+2,i+4 = k24
i,i+2,i+4 ⊕ k23

i+3 ⊕ k22
i,i+2 ⊕ XR23

i+1 ⊕ k20
i ⊕ k18

i

⊕ k17
i+1 ⊕ k16

i,i+2 ⊕ k15
i+3 ⊕ k14

i,i+2,i+4 ⊕ k10
i,i+4 ⊕ k9

i+1 ⊕ k8
i,i+2,i+4 ⊕ k7

i+3 ⊕ k6
i,i+2 ⊕ k5

i+1

⊕ k4
i ⊕ k2

i ⊕ k1
i+1 ⊕ k0

i,i+2

(A9)

Appendix G.2. 33-Round and 34-Round Linear Attacks of SIMECK 64/128 Using Multiple
Super-Rounds

We extended the 25-round linear trail (A9), and added four rounds of encryption and
four rounds of decryption; hence we could attack up to 33 rounds of SIMECK 64/128.

The capacity of the 25-round linear trail is:

c2 = 4 × 32 × 2−35×2 = 27 × 2−352
= 2−63

Thus, the required data complexity is 263.
To obtain the components of three super-keys, leading to a total of 26 key bits, four

rounds of encryption must be added:

• Fourteen bits of the last round key k0
i for i = 10, 5, 14, 9, 4, 8, 3, 2, 18, 13, 0, 1, 6, 7, 12, with

each counted as a half bit.
• Nine bits of the sum k0

i+1 ⊕ k1
i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7.

• Two bits of the sum k0
i,i+2 ⊕ k1

i+1 ⊕ k2
i for i = 3, 8.

The cost of adding four rounds of decryption, leading to a total of 22 key bits, is as
follows:

• Thirteen bits of the last round key k32
i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10, 14, 3, 4, 9.

• Seven bits of the sum k32
i+1 ⊕ k31

i for i = 1, 6, 11, 0, 5, 4, 9.
• Two bits of the sum k32

i,i+2 ⊕ k31
i+1 ⊕ k30

i for i = 1, 6.

The time complexity for this attack is 25 × 263 × 225 × 222 = 2115.
In the average-case complexity, we extend the 33-round attack by one more round and

present a 34-round linear attack. Thus, we added five rounds of decryption. Five rounds of
decryption were added, leading to a total of 39 key bits (30.5 bits on average):
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• Seventeen bits of the last round key k33
i for i = 1, 6, 11, 16, 2, 7, 12, 21, 17, 0, 5, 10, 15, 4, 9,

14, 19, with each counted as a half bit.
• Thirteen bits of the sum k33

i+1 ⊕ k32
i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10, 14, 3, 4, 9.

• Seven bits of the sum k33
i,i+2 ⊕ k32

i+1 ⊕ k30
i for i = 1, 6, 11, 0, 5, 4, 9.

• Two bits of the sum k33
i+3 ⊕ k32

i,i+2 ⊕ k31
i+1 ⊕ k30

i for si = 1, 6.

The average time complexity required for this attack is 25 × 263 × 218 × 230.5 = 2116.5.

Table A9. The sequence of approximations used to derive 25-round linear trails of SIMECK 64.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;1 2

0,4 -

0.4 1;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1
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