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Abstract. SIMECK is a family of 3 lightweight block ciphers designed by Yang et al. They
follow the framework used by Beaulieu et al. from the United States National Security Agency
(NSA) to design SIMON and SPECK. A cipher in this family with K-bit key and N -bit block is
called SIMECKN/K. We show that the security of this block cipher against linear cryptanalysis
is not as good as its predecessors SIMON. More precisely, while the best known linear attack
for SIMON32/64, using algorithm 1 of Matsui, covers 13 rounds we present a linear attack in
this senario which covers 14 rounds of SIMECK32/64. Similarly, using algorithm 1 of Matsui,
we present attacks on 19 and 22 rounds of SIMECK48/96 and SIMECK64/128 respectively,
compare them with known attacks on 16 and 19 rounds SIMON48/96 and SIMON64/128
respectively. In addition, we use algorithm 2 of Matsui to attack 18, 23 and 27 rounds of
SIMECK32/64, SIMECK48/96 and SIMECK64/128 respectively, compare them with known
attacks on 18, 19 and 21 rounds SIMON32/64, SIMON48/96 and SIMON64/128 respectively.
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1 Introduction

SIMECK [26] is a new family of lightweight block ciphers designed by Yang et al. and inspired by
SIMON and SPECK, designed by the NSA [8]. The round function of SIMECK is similar to the
round function of SIMON while its key schedule is more similar to the key schedule of SPECK. The
aim of SIMECK is to provide optimal hardware and software performance for low-power limited gate
devices such as RFID devices by combing good components from both SIMON and SPECK. Variants
of this block cipher support plaintext block sizes of 32, 48, 64 and 96 and 128 bits. The key size of
those variants are 64, 96 and 128 bits respectively. SIMECKN/K denotes a variant of SIMECK that
has a block size of N bits and a key size of K bits.

Although, several works investigated the security of SIMON and SPECK against differential
attack [2, 3, 6, 9, 22, 24], its variants such as impossible differential attack [2–4, 6, 10, 12, 14, 15, 21, 25]
and linear attack [1, 4, 5, 7, 11, 20]. However, we are not aware of any third party security analysis of
SIMECK. In this paper, we present linear cryptanalysis against reduced variants of SIMECK.

Contributions. In this paper, we analyze the security of SIMECK against linear cryptanalytic
techniques. In this direction, we present linear characteristics for different variants of SIMECK, that
can be used for key recovery attacks on SIMECK reduced to 14, 19 and 22 rounds for the respective
block sizes of 32, 48 and 64 bits using Matsui’s algorithm 1. Furthermore, we extend this linear
characteristics to attack more rounds using Matsui’s algorithm 2. These attacks covers 18, 23 and 26
rounds for the respective block sizes of 32, 48 and 64. A brief summary of our results on SIMECK
and the best known results on the equivalent versions of SIMON are presented in Table 1. It must
be noted that designers’ security analysis against linear cryptanalysis covers 12, 15 and 19 rounds of
SIMECK32/64, SIMECK48/96 and SIMECK64/128 respectively [26, §5].



Table 1: Linear cryptanalysis of SIMECK, using the Matsui’s Algorithm 1 and 2, and comparison
with the best known results on the equivalent versions of SIMON.

Variant # Attacked Rounds Data Time Success Probability Reference

Matsui’s Algorithm 1 SIMON32/64 13 232 232 0.997 [4]
SIMECK32/64 13 230 230 0.997 Section 3
SIMECK32/64 14 232 232 0.841 Section 3
SIMON48/96 16 246 246 0.997 [4]

SIMECK48/96 18 248 248 0.997 Section 3
SIMECK48/96 19 246 246 0.841 Section 3
SIMON64/128 19 258 258 0.997 [4]

SIMECK64/128 22 260 260 0.997 Section 3
SIMECK64/128 23 264 264 0.841 Section 3

Matsui’s Algorithm 2 SIMON32/64 18 232 261.5 ¡ 0.477 [1]
SIMECK32/64 18 231 263.5 0.477 Section 4
SIMON48/96 19 247 282 0.477 [1]

SIMECK48/96 24 245 294 0.477 Section 4
SIMON64/128 21 259 2123 0.477 [1]

SIMECK64/128 27 261 2120.5 0.477 Section 4

Organization. The paper is structured as follows. In §2 we present a brief description of SIMECK.
In section §3 we present the idea of linear attacks on SIMON and apply linear attacks to variants
of SIMECK using Matsui’s algorithm 1. In §3 we extend our attacks on variants of SIMECK using
Matsui’s algorithm 2. Finally, we conclude the paper in §5 and propose possible future directions of
research.

2 Description of the SIMECK Family

SIMECK is a classical Feistel block cipher with the round block size of 2n bits and the key size of 4n,
where n is the word size. The number of rounds of cipher is denoted by r and depends on the variant
of SIMON which are 32, 36 and 44 rounds for SIMECK32/64, SIMECK48/96 and SIMECK64/128
respectively. For a 2n-bit string X, we use XL and XR to denote the left and right halves of the
string respectively. The output of round r is denoted by Xr = (Xr

R ‖ Xr
L) and the subkey used in the

round r is denoted by Kr. Given a string X, (X)i denotes the i-th bit of X. Bitwise circular rotation
of string a by b position to the left is denoted by a ≪ b. Further, ⊕ and & denote bitwise XOR and
AND operations respectively. We use P and C to denote a plaintext and a ciphertext respectively.

The function F : Fn
2 → Fn

2 used in each round of SIMECK is non-linear and non-invertible, and
is applied to the left half of the state, so the state is updated as:

Xr+1 = (F (Xr
L)⊕Xr

R ⊕Kr ‖ Xr
L). (1)

The F function is defined as:

F (X) = (X ≪ 1)⊕ ((X) & (X ≪ 5)).

The subkeys are derived from a master key. Depending on the size of the master key, the key schedule
of SIMECK operates on four n-bit word registers. Detailed description of SIMECK variants structure
and key scheduling can be found in [26] but it has no affect on our analysis.

3 Linear Cryptanalysis of SIMECK using the Matsui’s Algorithm 1

Linear cryptanalysis [17] is a classical known-plaintext attack cryptanalytic technique that was em-
ployed on several block ciphers such as FEAL-4, DES, Serpent and SAFER [13, 16, 17, 23]. In this
section, we present linear characteristics for variants of SIMECK using the Matsui’s algorithm 1 [17].
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In the round function of SIMECK, similar to SIMON, the only non-linear operation is the bitwise
AND. Note that, given single bits A and B, then Pr (A & B = 0) = 3

4 . Hence, we can extract the
following highly biased linear expressions for the F function of SIMECK (there are equivalent linear
expressions for the F function of SIMON [4]):

Approximation 1 : Pr ((F (X))i = (X)i−1) = 3
4 ,

Approximation 2 : Pr ((F (X))i = (X)i−1 ⊕ (X)i) = 3
4 ,

Approximation 3 : Pr ((F (X))i = (X)i−1 ⊕ (X)i−5) = 3
4 ,

Approximation 4 : Pr ((F (X))i = (X)i−1 ⊕ (X)i ⊕ (X)i−5) = 1
4 .

(2)

Given the round function (1) of SIMECK and these linear approximations, we can extract the
following linear expressions for the ith round of the SIMECK:

(Xi
L)9 ⊕ (Xi

R)10 ⊕ (Ki)10 = (Xi+1
L )10 (3)

(Xi+3
L )10 ⊕ (Xi+3

R )9 ⊕ (Ki+2)10 = (Xi+2
R )10 (4)

Each equality in Equation (3) holds with probability 3
4 . Given that (Xi+1

L )10 = (Xi+2
R )10, we can use

Equation (3) in a meet in the middle approach to extract a 3-round linear approximation as follows,
for which the bias is 1

8 (the bias of a linear approximation which is hold with the probability of p is
defined as

∣∣p− 1
2

∣∣ ):

(Xi
L)9 ⊕ (Xi

R)10 ⊕ (Xi+3
L )10 ⊕ (Xi+3

R )9 = (Ki)10 ⊕ (Ki+2)10. (5)

Since (Xi
R)10 = (Xi−1

L )10 and with the probability of 3
4 , we have (Xi

L)9 = (Xi−1
L )8⊕(Xi−1

R )9⊕(Ki−1)9,
we can add a round to the top of the current 3-round approximation and produce a 4-round linear
expression, with the bias of 1

16 , as follows:

(Xi−1
L )[8, 10]⊕ (Xi−1

R )9 ⊕ (Xi+3
L )10 ⊕ (Xi+3

R )9 = (Ki−1)9 ⊕ (Ki)10 ⊕ (Ki+2)10. (6)

where (X)[i1, ..., im] = (X)i1 ⊕ . . . ⊕ (X)im . Similarly, since (Xi+3
L )10 = (Xi+4

R )10 and with the
probability of 3

4 we have (Xi+3
R )9 = (Xi+4

R )8⊕ (Xi+4
L )9⊕ (Ki+4)9, we can add a round to the bottom

of the current 4-round approximation and produce a 5-round linear expression, with the bias of 1
16 ,

as follows:

(Xi−1
L )[8, 10]⊕ (Xi−1

R )9 ⊕ (Xi+4
R )[8, 10]⊕ (Xi+4

L )9 = (Ki−1)9 ⊕ (Ki)10 ⊕ (Ki+2)10 ⊕ (Ki+4)9. (7)

Following this approach we can extend this linear approximation by adding extra rounds to top and
bottom and drive a linear approximation for more rounds of SIMECK. In Table 2, Table 3 and Table 4
sequences of approximation to produce linear characteristics for SIMECK32/64, SIMECK48/96 and
SIMECK64/128 are presented. In the last column of each table, number of approximation in each
round is presented. Given that for any used approximation in these tables bias is 1

4 , based on the
piling-up lemma [17] the bias of a linear characteristic with N approximation would be 2N−1×( 1

4 )N =

2−(N+1).
It is clear from Table 2 that we can produce a 11-round linear characteristic for SIMECK32/64

with bias 2−15 as follows:

(
(X1

R)7 ⊕ (X1
L)[6, 8, 10]

⊕(X12
L )9 ⊕ (X12

R )[6, 10]

)
=

 (K1)7 ⊕ (K2)[8, 10]⊕ (K3)9 ⊕ (K4)10
⊕(K6)10 ⊕ (K7)9 ⊕ (K8)[8, 10]
⊕(K9)7 ⊕ (K10)[6, 8, 10]⊕ (K11)9

 , (8)

Given this 11-round linear characteristic, we can add another round to its top and a round to its
bottom to extend the attack up to 13 rounds. The added rounds are related to the plaintext and

3



ciphertext and free of any approximation, because we know the input of F functions for these rounds
and key does not affect approximation. In this way we have a 13-round linear characteristic between
plaintext and ciphertext of SIMECK32/64 for which the bias is 2−15. Given this linear characteristic,
using Matsui’s Algorithm 1 with the data complexity of (2−15)2 = 230, an adversary can retrieve 1
bit of the key with the success probability of 0.997 [17, Table 2.].

The adversary can use Table 2 to produce a 12-round linear characteristic for SIMECK32/32 with
bias of 2−17 as follows:

(
(X1

R)7 ⊕ (X1
L)[6, 8, 10]

⊕(X13
L )[6, 10]⊕ (X13

R )5

)
=

 (K1)7 ⊕ (K2)[8, 10]⊕ (K3)9 ⊕ (K4)10
⊕(K6)10 ⊕ (K7)9 ⊕ (K8)[8, 10]⊕ (K9)7
⊕(K10)[6, 8, 10]⊕ (K11)9 ⊕ (K12)[6, 10]

 , (9)

Given this 12-round linear characteristic, we can add another round to its top and a round to
its bottom to extend the attack up to 14 rounds. Hence, using Matsui’s Algorithm 1 with the data
complexity of 1

4 (2−17)2 = 232, the adversary can retrieves 1 bit of the key with the success probability
of 0.841 [17, Table 2.].

Similarly, it is clear from Table 3 that we can produce a 16-round linear characteristic (Equa-
tion 10) with bias 2−24 and a 17-round linear characteristic (Equation 11) with bias 2−25 for
SIMECK48/96.

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X17
L )[6, 10]⊕ (X17

R )5

)
=


(K1)5 ⊕ (K2)[6, 10]⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10]⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10]⊕ (K13)7
⊕(K14)[6, 8, 10]⊕ (K15)9 ⊕ (K16)[6, 10]

 , (10)

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X18
L )5 ⊕ (X18

R )[4, 6, 10]

)
=


(K1)5 ⊕ (K2)[6, 10]⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10]⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10]⊕ (K13)7
⊕(K14)[6, 8, 10]⊕ (K15)9 ⊕ (K16)[6, 10]⊕ (K17)5

 , (11)

Given these linear characteristics, we can add another round to their top and a round to their bottom
to extend the attack up to 18 and 19 rounds respectively, free of extra approximation. Hence, using
these linear characteristics and Matsui’s Algorithm 1 with the data complexity of 248, the adversary
can retrieves 1 bit of the key with the success probability of 0.997 and 0.841 respectively.

Table 4 shows the sequence of approximations to produce a 19-round linear characteristic (Equa-
tion 12) with bias 2−30 and a 20-round linear characteristic (Equation 13) with bias 2−33 for
SIMECK64/128, which can be extended to attack to 21 and 22 rounds of algorithm respectively.
Given those linear characteristics, using Matsui’s Algorithm 1, with the data complexity of 260 and
264, the adversary can retrieve 1 bit of the key with the success probability of 0.997 and 0.841
respectively.

(
(X2

R)5 ⊕ (X2
L)[4, 6, 10]

⊕(X20
L )[3, 9]⊕ (X20

R )[2, 6, 8, 10]

)
=


(K2)5 ⊕ (K3)[6, 10]⊕ (K4)9 ⊕ (K5)[6, 8, 10]
⊕(K6)7 ⊕ (K7)[8, 10]⊕ (K8)9 ⊕ (K9)10
⊕(K11)10 ⊕ (K12)9 ⊕ (K13)[8, 10]⊕ (K14)7
⊕(K15)[6, 8, 10]⊕ (K16)9 ⊕ (K17)[6, 10]
⊕(K18)5 ⊕ (K19)[4, 6, 10]⊕ (K20)[3, 9]

 , (12)

(
(X1

R)[4, 6, 10]⊕ (X1
L)[3, 9]

⊕(X21
L )[3, 9]⊕ (X21

R )[2, 6, 8, 10]

)
=


(K1)[4, 6, 10]⊕ (K2)5 ⊕ (K3)[6, 10]⊕ (K4)9⊕
(K5)[6, 8, 10]⊕ (K6)7 ⊕ (K7)[8, 10]⊕ (K8)9
⊕(K9)10 ⊕ (K11)10 ⊕ (K12)9 ⊕ (K13)[8, 10]⊕
(K14)7 ⊕ (K15)[6, 8, 10]⊕ (K16)9 ⊕ (K17)[6, 10]
⊕(K18)5 ⊕ (K19)[4, 6, 10]⊕ (K20)[3, 9]

 , (13)
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Table 2: Sequences of approximation of a 12 round linear characteristic for SIMECK32/64. AL and
AR denote the active bits in the left and right side respectively and App. denotes the approximation
used for the corresponding bit(s) of AR.

AL AR Used App. # App.

1 10, 8, 6 7 1 1
2 9, 9, 7 10, 8 1; 1 2
3 10, 8 9 1 1
4 9 10 1 1
5 10 – – 0
6 9 10 1 1
7 10,8 9 1 1
8 9, 9, 7 10, 8 1; 1 2
9 10, 8, 6 7 1 1
10 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3
11 10, 8, 6, 8 9 1 1
12 9, 9, 5 10,6 1; 1 2

Table 3: Sequences of approximation of a 17 round linear characteristic for SIMECK48/96. Notations
are similar to the notations used in Table 3.

AL AR Used App. # App.

1 10, 6,4 5 1 1
2 9, 9, 5 10,6 1; 1 2
3 10, 8, 6, 8 9 1 1
4 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3
5 10, 8, 6 7 1 1
6 9, 9, 7 10, 8 1; 1 2
7 10, 8 9 1 1
8 9 10 1 1
9 10 – – 0
10 9 10 1 1
11 10,8 9 1 1
12 9, 9, 7 10, 8 1; 1 2
13 10, 8, 6 7 1 1
14 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3
15 10, 8, 6, 8 9 1 1
16 9, 9, 5 10,6 1; 1 2
17 10, 6,4 5 1 1
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Table 4: Sequences of approximation of a 20 round linear characteristic for SIMECK64/128. Notations
are similar to the notations used in Table 3.

AL AR Used App. # App.

1 5,9,5,3 10, 6,4 1;1; 1 3
2 10, 6,4 5 1 1
3 9, 9, 5 10,6 1; 1 2
4 10, 8, 6, 8 9 1 1
5 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3
6 10, 8, 6 7 1 1
7 9, 9, 7 10, 8 1; 1 2
8 10, 8 9 1 1
9 9 10 1 1
10 10 – – 0
11 9 10 1 1
12 10,8 9 1 1
13 9, 9, 7 10, 8 1; 1 2
14 10, 8, 6 7 1 1
15 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3
16 10, 8, 6, 8 9 1 1
17 9, 9, 5 10,6 1; 1 2
18 10, 6,4 5 1 1
19 5,9,5,3 10, 6,4 1;1; 1 3
20 10, 6,4,8,4,2 9,3 2,1 2

4 Linear Cryptanalysis of SIMECK using the Matsui’s Algorithm 2

In this section, we use Matsui’s algorithm 2 to recover the key of more rounds of variants of SIMECK.
For example, in the case of SIMECK 32/64, given the linear characteristic represented in Equation 8
with bias 2−15, we guess subkyes of rounds at the beginning and the end of the cipher and determine
the correlation of the following linear relation to filter the wrong subkeys:

(Xi
R)7 ⊕ (Xi

L)[6, 8, 10]⊕ (Xi+11
L )9 ⊕ (Xi+11

R )[6, 10] (14)

With respect to Table 5, we can append a round to the beginning of the cipher to find a new
12-round linear characteristic. Since SIMECK injects the subkey at the end of its round function,
then this work does not add any computational complexity. More precisely, for the current 11-round
linear characteristic, we evaluate (Xi

R)7 ⊕ (Xi
L)[6, 8, 10]⊕ (Xi+11

L )9 ⊕ (Xi+11
R )[6, 10]. When we add a

round in the backwards direction, i.e. round i − 1, we can determine (Xi
L)[6, 8, 10] as a function of

F (Xi−1
L )[6, 8, 10] ⊕ (Ki−1)[6, 8, 10] ⊕ Xi−1

R )[6, 8, 10], where we know Xi−1
R and Xi−1

L . On the other
hand, (Xi

R)7 = (Xi−1
L )7. Hence, it is possible to use the correlation of the following linear relation to

filter the wrong subkeys:

(Xi−1
L )7 ⊕ F (Xi−1

L )[6, 8, 10]⊕Xi−1
R )[6, 8, 10]⊕ (Xi+11

L )9 ⊕ (Xi+11
R )[6, 10].

It means that we do not need to know the value of (Ki−1)[6, 8, 10] (in Table 5 such bits of key
are indicated in red). We can continue our method to add more rounds to the beginning of linear
characteristic in the cost of guessing some bits of subkeys. To add more rounds in backward, for
example we must guess the bit (F (Xi−1

L ))6 = (Xi−1
L )5⊕((Xi−1

L )6&(Xi−1
L )1). Given that for any 2-bit

AND gate if an input is 0 then the output would be 0, to determine (F (Xi−1
L ))6 one should guess

6



(Xi−1
L )1 only if the guessed value for (Xi−1

L )6 is 1, but it always should guess the value of (Xi−1
L )5

(this observation originally has been used in [1] to attack SIMON). So, in average we need one bit
guess for (Xi−1

L )6 and (Xi−1
L )1 (in Table 5 such bits are indicated inblue).

Following this approach, Table 5 shows the bits of subkeys that should be guessed (31 bits of
subkey in average) when we add 3 rounds at the top and 4 rounds at the bottom of the 11-round
characteristic of Equation 8. Hence, we can attack 18 rounds of SIMMECK32/64 using Algorithm 2
of Matsui to recover bits of subkeys. For the data complexity of 231 and the time complexity of 263.5

the attack success probability would be 0.477 [19].

Table 5: The keys (in black) that should be guessed to attack 18 rounds of SIMECK32/64. The red
bits are not required to be guessed and the blue bits cost guessing a half bit on average. Here i ∼ j
denotes the sequence of numbers i, i− 1, . . . , j + 1, j, LC is the core linear characteristic, BW is the
rounds added at the top and FW is the rounds added at the bottom of the core linear characteristic
and AGK denotes average guessed subkey-bits.

AL AR active subkeys’ bits AGK.

-2 15∼0 14,12,10∼0 14,12,10,8,6,3,1,9,7,5,4,2,0 29.5

BW -1 14,12,10∼0 10∼5,3,1 9,7,10,8,5,6,3,1 23

0 10∼5, 3,1 10, 8, 6 10, 8, 6 0

1 10, 8, 6 7 - -
2 9, 9, 7 10, 8 - -
3 10, 8 9 - -
4 9 10 - -
5 10 – - -

LC 6 9 10 - -
7 10,8 9 - -
8 9, 9, 7 10, 8 - -
9 10, 8, 6 7 - -
10 7, 9,5, 7, 5 10, 8, 6 - -
11 10, 8, 6, 8 9 - -

13 10,9,6,5,1 10,6 10,6 0
FW 14 12,10∼8,6∼4,1,0 10,9,6,5,1 9,10,6,5,1 22

15 15,12∼3,1,0 12,10∼8,6∼4,1,0 8,12,10,6,1,9,5,4,0 26

16 15,14,12∼0 15,12∼3,1,0 12,7,15,11∼8,6∼3,1,0 212

Given Equation 10, as a linear characteristic for SIMECK48/96, is possible to apply the above
technique to extend the linear characteristics over more number of rounds. However, the bias of that
linear characteristic is 2−24, which means that we can not use it to mount an attack with high success
probability [17, 19]. Hence, we use Equation 15 which covers 15 rounds. Table 6 shows the bits of
subkeys that should be guessed (49 bits of subkey in average) when we add 4 rounds at the top and 4
rounds at the bottom of the 15-round characteristic of Equation 15. Hence, we can attack 23 rounds
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of SIMECK48/96 using Algorithm 2 of Matsui to recover bits of subkeys. For the data complexity of
245 and the time complexity of 294 the attack success probability would be 0.477 [19].

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X16
L )9 ⊕ (X16

R )[6, 10]

)
=


(K1)5 ⊕ (K2)[6, 10]⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10]⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10]⊕ (K13)7
⊕(K14)[6, 8, 10]⊕ (K15)9

 , (15)

Table 6: The keys (in black) that should be guessed to attack 23 rounds of SIMECK48/96. Notations
are similar to the notations used in Table 5.

AL AR active subkeys’ bits AGK.

-3 23∼12,10∼0 23∼17,15,13,10∼0 7,20,18,15,13,23∼21,19,17,10∼8,6∼0 217

BW -2 23∼17,15,13,10∼0 23,22,20,18,10∼8,6∼0 8,2,23,20,18,10,6,1,22,9,5,4,3,0 29

-1 23,22,20,18,10∼8,6∼0 23,10,9,6∼3,1 9,3,23,10,6∼4,1 23

0 23,10,9,6∼3,1 10,6,4 10,6,4 0

1 10, 6,4 5 - -
2 9, 9, 5 10,6 - -
3 10, 8, 6, 8 9 - -
4 7, 9,5, 7, 5 10, 8, 6 - -
5 10, 8, 6 7 - -
6 9, 9, 7 10, 8 - -
7 10, 8 9 - -

LC 8 9 10 - -
9 10 – - -
10 9 10 - -
11 10,8 9 - -
12 9, 9, 7 10, 8 - -
13 10, 8, 6 7 - -
14 7, 9,5, 7, 5 10, 8, 6 - -
15 10, 8, 6, 8 9 - -

16 10,9,6,5,1 10,6 10,6 0
FW 17 20,10∼8,6∼4,1,0 10,9,6,5,1 9,10,6,5,1 22

18 23,20,19,15,10∼3,1,0 20,10∼8,6∼4,1,0 8,20,10,6,1,9,5,4,0 26

19 23,22,20∼18,15,14,10∼0 23,20,19,15,10∼3,1,0 7,20,15,23,19,10∼8,6∼3,1,0 212

Similarly, given Equation 12 with bias 2−30, it is possible to apply this technique to extend the lin-
ear characteristics to 27 rounds of SIMECK64/128 (Table 7). To attack 27 rounds of SIMECK64/128,
the data complexity is 261, the time complexity is 2120.5 and the attack success probability would be
0.477 [19].

5 Conclusion and Open Problems

In this paper, we analyzed the security of SIMECK family against linear cryptanalysis techniques.
Our results show that each variant of SIMON provides better security against linear cryptanalysis
compared to equivalent SIMECK variant. More precisely, the best known attack on SIMON32/64,
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Table 7: The keys (in black) that should be guessed to attack 27 rounds of SIMECK64/128. Notations
are similar to the notations used in Table 5.

AL AR active subkeys’ bits AGK.

-3 31∼20,18,16,10∼0 31∼25,23,21,10∼0 7,28,26,23,21,31∼29,27,25,10∼8,6∼0 217

BW -2 31∼25,23,21,10∼0 31,30,28,26,10∼8,6∼0 8,2,31,28,26,10,6,1,30,9,5,4,3,0 29

-1 31,30,28,26,10∼8,6∼0 31,10,9,6∼3,1 9,3,31,10,6∼4,1 23

0 31,10,9,6∼3,1 10,6,4 10,6,4 0

1 10, 6,4 5 - -
2 9, 9, 5 10,6 - -
3 10, 8, 6, 8 9 - -
4 7, 9,5, 7, 5 10, 8, 6 - -
5 10, 8, 6 7 - -
6 9, 9, 7 10, 8 - -
7 10, 8 9 - -
8 9 10 - -
9 10 – - -

LC 10 9 10 - -
11 10,8 9 - -
12 9, 9, 7 10, 8 - -
13 10, 8, 6 7 - -
14 7, 9,5, 7, 5 10, 8, 6 - -
15 10, 8, 6, 8 9 - -
16 9, 9, 5 10,6 - -
17 10, 6,4 5 - -
18 5,9,5,3 10, 6,4 - -
19 10, 6,4,8,4,2 9,3 - -

20 29,10∼5,3∼1 10,8,6,2 10,8,6,2 0
FW 21 30∼28,24,10∼0 29,10∼5,3∼1 9,7,3,29,10,8,6,5,2,1 23.5

22 31∼27,24,23,19,10∼0 30∼28,24,10∼0 8,6,30,29,24,10,3,2,28,9,7,5,4,1,0 210

23 31∼22,19,18,14,10∼0 31∼27,24,23,19,10∼0 30,24,19,7,31,29∼27,23,10∼8,6∼0 217

SIMON48/96 and SIMON64/128 using Mastui’s algorithm 1 covers 13, 16 and 19 rounds respec-
tively while our result on SIMECK32/64, SIMECK48/96, SIMECK64/128 covers 14, 19 and 22
rounds. Moreover, the best known attack on SIMON32/64, SIMON48/96 and SIMON64/128 using
Mastui’s algorithm 2 covers 18, 19 and 21 rounds respectively while our result on SIMECK32/64,
SIMECK48/96, SIMECK64/128 covers 18, 23 and 27 rounds. Hence, in the perspective of linear
cryptanalysis, SIMON provides better security margin compared to SIMECK.

On the other hand, from the point of number of rounds attacked, linear hull [18] shows to be a
more promising approach to analyze the security of SIMON [1, 11, 20] compared to other attacks.
Hence, as a future work, we aim to investigate the security of SIMECK variants against this attack.
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