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Abs t r ac t .  Starting from recent results on a hnear statistical weakness 

of keystream generators and on linear correlation properties of combiners 

with memory, linear cryptanalysis of stream ciphers based on the linear 
sequential circuit approximation of finite-state machines is introduced 

as a general method for assessing the strength of stream ciphers. The 
statistical weakness can be used to reduce the uncertainty of unknown 
plalntext and also to reconstruct the unknown structure of a keystream 

generator, regardless of the initial state. The linear correlations in arbi- 

trary keystream generators can be used for divide and conquer correlation 
attacks on the initial state based on known plaintext or ciphertext only. 

Linear cryptanalysis of irregularly clocked shift registers as well as of 

arbitrary shift register based binary keystream generators proves to be 
feasible. In particular, the direct stream cipher mode of block ciphers, the 

basic summation generator, the shrinking generator, the clock-controlled 

cascade generator, and the modified linear congruential generators are 

analyzed. It generally appears that simple shift register based keystream 
generators are potentially vulnerable to linear cryptanalysis. A proposal 
of a novel, simple and secure keystream generator is also presented. 

1 I n t r o d u c t i o n  

Keyst ream generators for additive s t ream cipher applications can generally be 

realized as autonomous finite-state machines whose initial s tate and possibly 

structure as well depend on a secret key. Their practical security can be defined 

as immuni ty  to various types of divide and conquer attacks on secret key based 

on known plaintext or ciphertext only, for a survey see [29] and [12]. Apar t  f rom 

that ,  keystream pseudorandom sequences should have large period, high linear 

complexity [18], [28], and should satisfy the s tandard key-independent statis- 

tical tests, which should prevent the reconstruction of statistically redundant  

plaintext f rom known ciphertext. 
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A general structure-dependent and initial-state-independent linear statistical 

weakness of arbitrary binary keystream generators is pointed out and analyzed 

in [13]. It is based on the local properties of the keystream sequence on blocks 

of consecutive bits whose size is larger than the memory size, and is measured 

in terms of an appropriate correlation coefficient. The linear weakness can be 

regarded as a generalization of the linear complexity which is different from the 

concept of the linear complexity stability introduced in [7]. An effective method 
for detecting the weakness based on the linear sequential circuit approxima- 

tion (LSCA) [11] of autonomous finite-state machines is presented in [13]. If 

the structure is key-independent, then the corresponding statistical test can be 

used for the reconstruction of a statistically redundant plaintext from known ci- 

phertext. If the structure is key-dependent, then the same test can also be used 

to determine the corresponding unknown key, which presents a specific divide 

and conquer attack. The linear statistical weakness and the corresponding linear 

models and correlation coefficients are described in Section 2, including some 

unpublished results from [14]. Section 3 contains the basic lines of the LSCA 

method for arbitrary binary keystream generators. Besides its potential to de- 

termine linear statistical weaknesses in the keystream sequence, it is shown that 

the LSCA method can also be used to find out linear correlations between the 

keystream sequence and appropriate sequences depending on individual initial 

state variables. The linear correlations can then be used for divide and con- 

quer attacks on the initial state of keystream generators, see [30], [21]. Linear 

cryptanalysis of additive stream ciphers thus essentially reduces to the LSCA 

method. 

Section 4 is devoted to linear cryptanalysis of clock-controlled shift registers 

and arbitrary shift register based keystream generators. It turns out that clock- 

controlled shift registers possess a detectable linear statistical weakness [13], 

but are immune to linear correlation attacks resulting from individual linear 

models. Note that simultaneous use of many different linear models may open 

new possibilities for correlation attacks. Regularly clocked shift registers are 

potentially vulnerable to correlation attacks, especially if the feedback is linear 

and if they are autonomous. Keystream generators based on a small number of 

shift registers appear to be vulnerable to linear cryptanalysis. 

Linear cryptanalysis is then applied to concrete additive stream ciphers in- 

cluding the direct stream cipher mode of block ciphers, the basic summation 

generator [19, 29], the shrinking generator [6, 25], the clock-controlled cascade 

generator [3, 17, 16, 4], and the modified linear congruential generators [4] and 

[2], see Section 5. In Section 6, a proposal of a novel, simple and secure keystream 

generator is presented, which incorporates the principles of linear congruential 
generators, clock-controlled generators, and combiners with memory. 

2 L i n e a r  M o d e l s  f o r  S t r e a m  C i p h e r s  

A binary autonomous finite-state machine or sequential circuit is defined by 

S t + l  = ~ ( S t ) ,  , t ~ 0 (1) 
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Yt : f ( S t ) ,  t ~ 0 (2) 

where .T : GF(2) M --+ GF(2) M is a next-state vector Boolean function, f : 

GF(2) M ~ GF(2) is an output  Boolean function, St = ( s i t , . . . ,  SMt) is the state 

vector at t ime t, M is the number of memory bits, Yt is the output  bit at t ime t, 

and S0 = (sl,0, . . . ,  sM,o) is the initial state. A binary keystream generator can 

be defined as a binary autonomous finite-state machine whose initial state and 

the next-state and output  functions are controlled by a secret key. 

Given 5 and f ,  each output  bit is a Boolean function of the initial state 

variables, that  is, yt = f(.Tt(So)) where ~-t denotes the t-fold self-composition 

of 5 c and iT0 is the identity function, t > 0. If So is assumed to be a uniformly 

distributed random variable, then the output  bits become binary random vari- 

ables. A basic design criterion for f and :P, related to the statistics of the output  

sequence, is that  each bit Yt should be a balanced function of So. This is clearly 

satisfied if both $" and f are balanced. However, the vector of M + 1 consecutive 

output  bits (Yt , . . . ,  Yt-M) can not be a balanced function of So for any t _> M, 

since So has dimension only M. Therefore, there must exist a linear function 

L(y t , . . . ,  Yt-M) that  is a nonbalanced function of So for each t > M- When the 

next-state function is balanced, it follows that  the state vector St is a balanced 

random variable at any time t _> 0, provided that So is balanced. The probabil- 

ity distribution of the linear function L(y t , . . . ,  Yt-M), treated as a function of 

St-M, is then the same for each t > M and there exists such a linear function 

that  effectively depends on Yr. The probability distribution can be expressed in 

terms of the correlation coefficient to the constant zero function. This essentially 

means that  an autonomous finite-state machine can equivalently be represented 

as a non-autonomous linear feedback shift register of length at most M with an 

additive input sequence of nonbalanced identically distributed binary random 

variables, that  is, by a linear model 

M 

Yt = E ai Yt-i + et,. �9 t >_ M. (3) 
i-=1 

The variables are not independent. The linear function L specified by the feed- 

back polynomial applied to the output  sequence {Yt} produces a nonbalanced 

sequence {et). The standard chi-square frequency statistical test can then be 

applied to {et). To distinguish this sequence from the purely random binary 

sequence with error probability less than about 10 -~, the length of the observed 

keystream sequence should not be larger than lO/c ~, see [30], [20], for example. 

Note that  c = 1 - 2 Pr{et = 1}. For each additional bit of uncertainty to be 

resolved, one needs to know an additional segment of the keystream sequence 

of the same length. Since the linear function L is not unique in general, the 

maximum effect will be achieved when the linear function with the correlation 

coefficient of maximum magnitude is used. If this value is smaller than 2 -M/2, 
then the keystream generator is not vulnerable to this statistical test. However, 

for large M, which is often the case in practice, it appears very difficult, if not 

impossible, to determine the value of the maximum correlation coefficient. 
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Another fact is even more discouraging from the cryptographer 's viewpoint. 

Namely, one could also consider linear functions of more than M + 1 consecutive 

output  bits. In particular, since every linear function can be defined as a poly- 

nomial in the generating function domain, it follows that  one should consider all 

the polynomial multiples of the polynomials corresponding to linear functions of 

at most M + 1 variables. It appears very difficult to control all the correspond- 

ing correlation coefficients. Apart from that,  one may simultaneously use all the 

obtained linear models and thus significantly reduce the required length of the 

observed keystream sequence. 

The following result [14] determings the total correlation between the output  

sequence and the all.zero sequence for autonomous finite-state machines. Let 

the next-state function of a binary autonomous finite-state machine with M 

memory bits be balanced. Then for any m > 1, the sum C(m) of the squares of 

the correlation coefficients between all nonzero linear functions of m successive 

output  bits y~n and the constant zero function is the same for every t > m - 1 

and satisfies C(m) ~ C(m) ~ C(m), where C(m) = 2 m - 1, m > 1, and 

f O, 1 ~ m ___ M C(m) 2 m-M -- 1, m >_ M + 1 " (4) 

The minimum value C(m) is achieved for all m _ 1 if and only if any M con- 

secutive output  bits constitute a balanced function of the initial state variables. 

The maximum value C(m) is achieved for any m > 1 if and only if the output  

function is constant. For any m, the total correlation is distributed among 2 rn - 1 

output  linear functions. It then follows that for each m > M the maximum abso- 

lute value of the correlation coefficients can not be smaller than approximately 

2 -M/2 which corresponds to the uniform distribution of correlation, provided 

that  the minimum total  correlation condition is satisfied. For the condition to 

hold it is necessary that  the output  function is balanced. Large memory size is 

therefore an important  design criterion. It is of course clear that  minimum total  

correlation does not guarantee the uniform distribution, as is demonstrated by 

a linear feedback shift register. 

3 Linear Sequential Circuit Approximation 

In order to find all the nonbalanced linear functions of at most M + 1 consecutive 

output  bits whose existence is established in the previous section, one should 

determine the correlation coefficients for 2 M Boolean functions of M variables. 

Exhaustive search method has O(2 TM) computational complexity, which is not 

practically possible for large M. 

Taking the linear sequential circuit approximation (LSCA) approach intro- 

duced in [11] for combiners with memory, we propose a LSCA method for au- 

tonomous finite-state machines which is a feasible procedure that  with high 

probabili ty yields nonbalanced linear functions of at most M + 1 consecutive 

output  bits with comparatively large correlation coefficients. The LSCA method 

consists of two stages. First, find a linear approximation of the output  function f 
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and each of the component functions of the next-state function ~ .  This enables 

one to express each of these M + 1 functions as the sum of a linear function 

and a nonbalanced function, whose correlation coefficient is different from zero. 

In practice, both the output function and the component next-state functions 

effectively depend on small subsets of the state variables or can be expressed 

as compositions of such functions. Therefore, the computational complexity of 

obtaining all the linear approximations along with the corresponding nonzero 

correlation coefficients is considerably smaller than O((M + 1)M2M), which is 

required by the direct application of the Walsh transform technique, see [29]. 

Finding good linear approximations of Boolean functions in real ciphers thus 

appears to be a feasible task. 

Second, by virtue of the obtained linear approximations, put the basic equa- 

tions (1) and (2)into the form 

s t+l  = n s ~  + ~ ( s , ) ,  t > 0 (5) 

yt = B s t  + c(st) ,  t > 0 (6) 

where the vectors are regarded as one-column matrices, A and B are binary 

matrices, and e and all the components of A = (~I,...,~M) are nonbalanced 

Boolean functions, called the noise functions. The main point now is to treat 

{6(St)} and {~(St)},  1 < j < M, as the input sequences so that  (5) and (6) 

define a non-autonomous linear sequential circuit (LSC), see [11]. Then solve the 

LSC using the generating function technique and thus obtain 

M M 
1 1 

Y - ~(z) ~ g~(z) s~o + ~ Z z gj(z) ~ + ~ (7) 
j = l  j = l  

where y, 5j, and e respectively denote the generating functions in variable z of 

the sequences {Yt}, {55 (St)}, and {s(St)}, and the polynomial ~(z) = ~--~M 0 ~,z i , 

~0 -- 1, is the reciprocal of the characteristic polynomial of the state-transition 

matr ix A. As a consequence of (7), we also get 

M M M M - 1  

~ , Y t - ,  -" ~ i e ( S t - ~ ) + ~  ~ gj,~j(St-l-~) def et(So)! t > M.(8) 

i : 0  / : 0  j : l  / : 0  

The computational complexity to obtain (7) and (8) is only O(M3). For each 

t ~ M, the noise function et is a sum of individual noise functions that  are 

nonbalanced if St- j ,  0 < i < M, are balanced. If one assumes that  the next-state 

function ~" is balanced, then it follows that  each of the individual noise functions 

in (8) is nonbalanced and identically distributed for every t > M, meaning 

that  the corresponding correlation coefficients are nonzero and independent of 

t. In general, for random .T and f ,  one should expect that  the individual noise 

functions remain nonbalanced even if St-~, 0 < i < M, are not balanced functions 

of S0 and that  the resulting noise function et is also nonbalanced, for almost all 

t >_ M.  This conclusion is justified by the following probabilistic result, see [13], 

which is also relevant for the linear cryptanalysis of block ciphers. 
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L e m m a  1. Consider m Boolean functions of the same n variables with the cor- 

relation coefficients c~ to the constant zero function, 1 _< i _< n. If the func- 

tions are chosen uniformly and independently at random, then for large 2 '~ the 

probability distribution of the correlation coefficient of their modulo two sum is 

asymptotically normal with the expected value 1-1~1 ci and the variance O ( ~ ) .  

o 

The described LSCA method is based on the linear approximations of the 

component next-state functions, which is a limitation. However, the method can 

be generalized to deal with the linear approximations of the linear combinations 

of the component next-state functions. To this end, let /: denote an arbitrary 

balanced, that is, one-to-one linear function GF(2) M --~ GF(2) M and let S~ = 

s denote the transformed state vector at time t. Accordingly, one may put 
S I _ the equations (1) and (2) into an equivalent form S~+ 1 = s163 t),t  > 0, and 

Yt = fl:-l(S~), t > O, and then proceed with the basic LSCA method, as already 

defined. The linearization of the component functions of the transformed next- 

state function L.Ts -1 is essentially the same as the linearization of the linear 

combinations of the component functions of the original next-state function F. 

Starting from (7), one may also develop divide and conquer correlation at- 

tacks on the individual bits of the initial state. The transfer function with respect 

to sj0 is given by g } ( Z ) / ~ j ( Z )  : gj(Z)/~(Z) where g}(z) and ~flj(z) are relatively 

prime, 1 < j < M. The denominator polynomials ~j (z) induce an equivalence 

relation among sjo or just j, 1 < j <_ M. Let 95j(z) denote the least common 

multiple of ~k(z) for all k not belonging to the equivalence class of j. Then 

for a single equation (7), the initial correlation attack on sj0 is possible if and 

only if the j-th component of the next-state function is linear (aj = 0) and 

~flj (z) ]/~bj (z). The degree of Wj (z)/(Wj (z), #j (z)) determines the number of bits 

of uncertainty resolved by the attack on the equivalence class of sjo. By sub- 

tracting the effect of the initially determined bits of the initial state from the 

right-hand side of (7), possibly including the noise functions as well, one then 

recomputes the output sequence and repeats the procedure iteratively. It follows 

that regularly clocked linear feedback shift registers are potentially vulnerable 

to correlation attacks. Note that for correlation attacks it may not be necessary 

to linearize the whole generator. Furthermore, if one simultaneously uses several 

linear sequential circuit approximations, then other possibilities for correlation 

attacks may exist as well. 

It is desirable for the LSCA method to find a linear function/model with the 

maximum absolute value of the correlation coefficient. To this end, the number 

of noise terms in (8) should be small and their correlation coefficients should be 

large in magnitude. A reasonable approach is to repeat the procedure several 

times starting from the best linear approximations of the output and next-state 

functions. In fact, one should tend to find an optimum invertible set of the linear 
combinations of the component next-state functions that yields the maximum 

absolute value of the overall correlation coefficient. The power of the chi-square 

statistical test can be considerably improved by running the test on all the 

obtained linear models, rather than on a single one. In order to achieve the im- 
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munity to the LSCA attack, it follows that  the memory size should be large and 

it appears recommendable that  the output function and the linear combinations 

of the component next-state functions should have large distance from affine 

functions as well as that  the component next-state functions should effectively 

depend on large subsets of the state variables. 

4 Shift Register Based Keystream Generators 

In this section, the LSCA method is applied to an arbitrary binary keystream 

generator consisting of regularly or irregularly clocked shift registers (SRs) com- 

bined by a function with or without memory. Clock-control sequences are pro- 

duced either within the generator or by separate generators. One should first 

form the linear models for individual SRs: regularly clocked linear feedback SRs 

stay as they are, linear models i~ot regularly clocked nonlinear feedback SRs are 

made by linearizing the feedback .functions, and linear models for irregularly 

clocked SRs are formed as follows. 

A clock-controlled shift register is a keystream generator consisting of a linear 

or nonlinear feedback shift register that  is irregularly clocked according to an 

integer decimation sequence, which defines the number of clocks per output 

symbol and which is itself produced by a pseudorandom sequence generator, 

see [16] and [9]. More precisely, if X = {xt)t~o denotes a regularly clocked 

= d shift register sequence and D { t}t=0 a decimation sequence, then the output 
c~  t 

sequence Y = {Yt}t=o is defined as a decimated sequence yt = x(~'~i= o di), 

t > 0. First observe that a nonlinear feedback can in principle be treated in 

the same way as linear, except for the additive noise function. Second, assume 

a realistic probabilistic model for the decimation sequence, for example, assume 

that  D is a sequence of identically distributed integer random variables with 

a probability distribution P = {P(d)}de~ where I) is the set of integers with 

positive probability. When l) contains positive integers only, one can also define 

the deletion rate Pd as 1 -- 3' d = ~ d e V  dR(d).  

We will distinguish between the two cases: the case with possible repetitions 

(0 E l)) and the case without repetitions (0 ~ I~). In the first case, it is clear that  

regardless of the feedback yt + yt-1 = et, t _> 1, where the-correlation coefficient 

of et is equal to P(0). For the stop-and-go registers [3], for which :D = {0, 1}, 

P(0) = 1/2. In the second case, consider/~ clock-controlled linear feedback shift 
tO 

register of length r with the feedback polynomial f ( z )  = 1 + ~J,=l z~ ,  1 < il < 

. . .  < i~ = r, where W = w + l  is the weight o f f (z ) .  By using the LSCA method 

or directly, one can o]htain [13] a linear model of the form 

Yt + f i Y t - ~  : et, t >_ r' (9) 
k-= l 

where the polynomial ](z)  = 1 + El'=1 ]i zi = 1 + ~-~k=l z~ ,  1 < il < . . .  < i~ = 

r ' ,  satisfies ~k--~k-1 <_ ik-- ik-x,  1 < k < w, where i0 = i0 = 0. Ca l l / ( z )  a shrunk 

polynomial of f ( z ) .  A shrunk polynomial of f ( z )  is not unique but has the same 
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weight as f(z). It is possible to obtain an expression for the correlation coefficient 

of et for an arbitrary probability distribution P = {P(d)}deV. For simplicity, we 

give only the expression for the geometric distribution P(d) = pd-1 (1--p), d >_ 1, 

which corresponds to the case of independent deletions with probability p. Note 

that  an arbitrary :P can be approximated by this distribution by setting p = Pd 
where p~ is the deletion rate. It follows that  the correlation coefficient in this 

case is given by 

c=pr-r'(1-p)r'+l fi (Ak) 
k=l Ak 

(lO) 

where Ak = ik--ik-1--1 and z~k = ~ k - ~ k - 1 - 1 ,  1 < k < w. Equation (10) has a 

clear combinatorial meaning in terms of the probability of decimation sequences. 

Namely, the correlation coefficient is equal to the probability of the event that  

the bits satisfying the feedback polynomial in the shift register sequence remain 

undeleted in such a way that  they satisfy the shrunk feedback polynomial in the 

decimated sequence. It is assumed that  the conditional correlation coefficient 

is equal to one when the event occurs and to zero otherwise. The-coefficient is 

maximized ifzik = [(1 --p)(Ak + 1)], 1 < k < w. It follows that  c = 1 i fp  = 0 

and c = 0 i fp  = 1, which is natural. Suppose that  r/w, Ak, pAk, and (1 --p)Ak 
are all large. Then Stirling's approximation gives 

c ~ ( l - p )  \ l - p ]  (11) 

which shows that  the magnitude of c may be considerably larger than 2 -r/2 let 

alone 2 -M/~, M being the memory size of the whole generator. The smallest 

magnitude of c is obtained when the feedback taps are approximately equidis- 

tant.  In this case the necessary length of the keystream sequence needed to detect 

the weakness is (10/(1 _p)2)(2zrp/(1-p))~ ((rCriw)/w) ~. Given w, the larger the 

values of r and p the smaller the correlation coefficient, respectively. Given r and 

p, there exists an optimal value of w that  minimizes the correlation coefficient. 

For a given feedback polynomial, one may use different shrunk polynomials or 

their polynomial multiples and thus obtain different linear models. This reduces 

the required length of the observed keystream sequence considerably. In addition 

to that,  one may also use different polynomial multiples of the feedback poly- 

nomial, especially the ones with low weight, possibly much lower than for the 

original polynomial. So, the weakness is in general easily detected if the feedback 

polynomial is known. 

By using the LSCA method from Section 3 one then develops a linear model 

for the function with memory, which is treated as a non-autonomous finite- 

state machine with purely random input sequences, see [11]. Consequently, one 

obtains a linear equation of the form (8) whose right-hand side contains the 

additional input sequences as well. The linear function on the left-hand side 

of (8) corresponds to the reciprocal ~(z) of the characteristic polynomial of the 
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state-transition matrix. Finally, one substitutes the outputs of the linearized SRs 

for the inputs to the linear sequential circuit and thus derives a linear model with 

the feedback polynomial being equal to the least common multiple of ~o(z) and 

the feedback polynomials of all the linearized SRs. For estimating the overall 

correlation coefficient, a reasonable assumption is that the noise sequences from 

the linearized SRs are mutually independent and independent from the noise 

sequences in the linear sequential circuit, unless the SRs are connected in a very 

special way. Various linear models are obtained by varying the linear models 

for irregularly clocked and nonlinear feedback SRs and the linear model for 

the function with memory. Polynomial multiples may also be used especially if 

they reduce the magnitude of the overall correlation coefficient. In fact, it is the 

polynomial multiples that make it very difficult to achieve the security against 

the LSCA attack. 

5 C o n c r e t e  K e y s t r e a m  G e n e r a t o r s  

We now apply the linear cryptanalysis to several types of the shift register based 

binary keystream generators. 

Direct stream cipher mode for block ciphers 

The Direct Stream Cipher (DSC) mode of operation of block ciphers can be 

defined as a particular case of the Output Feedback (OFB) mode in which only 

a single output bit is used to produce the keystream sequence and the initial 

state is key-controlled. The keystream bit can also be generated by a simple 

output function of several state bits, for example, by a modulo 2 addition. Since 

in this case a known plaintext does not provide pairs of block cipher inputs and 

outputs, the available cryptanalytic techniques for block ciphers [1] and [20] are 

not directly applicable. Note that some possibilities for differential and/or linear 

cryptanalysis of block ciphers in the CBC, CFB, or regular OFB mode have been 

explored in [26] and [27], assuming a partial knowledge of the ciphertext. The 
DSC mode of a block cipher is nothing but a stream cipher whose next-state 

function is defined by the block cipher, where the initial state is key-controlled. 

Therefore, the LSCA method for linear cryptanalysis of stream ciphers can be 

used. It may yield a linear statistical weakness of the keystream sequence and 

may be a basis for divide and conquer attacks on the secret key. The starting 

point of the method is to find an invertible set of the linear functions of the block 
cipher output with relatively large correlation coefficients to linear functions of 

the input. The next point is to solve .the corresponding linear sequential circuit 
by the generating function technique. To minimize the resulting correlation co- 

efficient, the procedure is repeated several times using different invertible linear 

approximations of the block cipher. The method is computationally feasible for 
reM ciphers. As a consequence, one can also obtain novel characteristics of block 
ciphers such as the characteristic polynomials and the corresponding correlation 

coefficients. Linear cryptanalysis of concrete block ciphers !n the DSC mode is 

not an easy task and is out of the scope of this paper. It would be interesting to 
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investigate whether the immunity of a block cipher to the linear cryptanalysis 

[20] in the ECB mode implies the immunity to the linear cryptanalysis in the 

DSC mode. 

Basic summation generator [19, 29] 

The basic summation generator is a combiner with one bit of memory and 

two regularly clocked linear feedback SRs. Its output function is already lin- 

ear, whereas its next-state function can be linearized in several ways with large 

correlation coefficients. A good way is to take a linear function depending on 

a single input with the correlation coefficient 1/2. The feedback polynomial of 

the corresponding linear model is just the least common multiple of the feedback 

polynomials of the two input SRs, or any of its polynomial multiples. The overall 

correlation coefficient is (1/2) W where W is the weight of this polynomial. In 

addition, as was already noted in [22], the output is correlated to the sum of one 

input and the linear transform 1 + z of the other with the correlation coefficient 

1/2 which is highly vulnerable to fast correlation attacks, see [21] and [5], for 

example. Linear cryptanalysis of a general summation generator consisting of 

more than two SRs, as is suggested in [19], remains an open problem. 

Shrinking generator [6, 23], [25] 

This is a single irregularly clocked linear feedback SR whose clock is controlled 

by another linear feedback SR in a manner that  corresponds to independent 

deletions with probability p = 1/2. The principle has first appeared in [25], but 

is implicit in [10] as well. The two SRs may even be the same as was suggested 

in [23]. Section 4 then gives a linear model with the feedback polynomial equal 

to a shrunk polynomial of the feedback polynomial of the irregularly clocked 

SR or of any of its polynomial multiples. The correlation coefficient is given 

by (10) or (11) for p = 1/2. For a single shrunk polynomial of a polynomial 

of weight W = w + 1 and relatively large degree r, the required length of the 

keystream sequence to detect the weakness is thus about 40 (6.28 r/w) ~, where 

the taps are assumed to be approximately equidistant. If for example w = 4, 

then the length is about 243 r 4. When the feedback polynomial is key-dependent 

[6], the weakness may be used to determine the corresponding key from a known 

keystream sequence or even from ciphertext only. The results [6] of the statistical 

analysis of the shrinking generator are somewhat misleading for two reasons. 

First, the statistical properties are not nice on blocks whose length exceeds 

the length of the clock-controlled SR and, second, the key-dependent feedback 

polynomial is assumed to be selected uniformly at random. 

Clock-controlled cascade generator [3, 17, 16, 4] 

This is a cascade of K linear feedback SRs with the same feedback polynomial 

f(z) of degree r. The first SR is clocked regularly and the others are clocked 

either k or m times per each output bit. For k, m > 0, by using a model for a 

single irregularly clocked shift register with deletion rate p -- 1 - 2/(k § m), one 

obtains a linear model with the feedback polynomial f(z)f(z) and the overall 
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correlation coefficient c( K-1)W where W is the weight of f(z) ,  ](z) is a shrunk 

polynomial of f(z), and c is given by (10) or (11). This is an approximation: the 

actual c is in fact different because the irregular clocking is constrained rather 

than independent. For a stop-and-go cascade (k = 0, m > 0), instead of ](z) 
one should use 1 + z and the correlation coefficient c = 1/2. Instead of f(z) 
one may also take any of its polynomial multiples. For example, if k = 1 and 

m = 2, then p = 1/3 and c ,,~ 0.66 (3.14 r/w) -~/2, so that  the required length 

to detect the weakness is approximately 1O (2.25 (3.14 r/w)~)(~+l)(K-1). If one 

takes into account the constrained clocking, then the required length becomes 

10 (2.25 (4.19 r/w)~) (~+I)(K-~). This length can be reduced considerably by 

using many different shrunk polynomials instead of a single one. 

Apart from the described statistical weakness, the linear transform ](z) of the 

output of the cascade is correlated to the same linear transform of the output  of 

the first shift register, with the c0rrelation coefficient c K-~. For k = 1 and m = 2, 

the required keystream sequence length for the successful correlation attack on 

the initial state of the first shift register is then 10 r (2.25 (4.19 r /w)~) K-~. This 

of course implies an exhaustive search through all possible initial states. Fast 

correlation attacks might also be feasible, see [21] and [5], for example. This 

is in accordance with the recent statistical analysis of a stop-and-go cascade 

from [24]. Both the weaknesses diminish as K increases, but the efficiency of the 

generator remains the same. The choice of small SR length r does not seem to 

be appropriate, because it might be an open gate for algebraic cryptanalysis. On 

the other hand, if the SR length and K are both large, then the generator is not 

efficient. 

Modified linear congruential generators [4], [2, 6] 

This type of keystream generators is based on linear recursions modulo 2 m for a 

positive integer m, which may be chosen to be relatively large, such as 32, as was 

suggested in [2]. Since linear recurring truncated integer sequences are in princi- 

ple predictable, for example, see [8], various modifications have been suggested. 

In [4], it is suggested to use a single truncated integer sequence generated by the 

bitwise sum modulo 2 (which is nonlinear modulo 2 "~) of two feedbacks linear 

modulo 2"L In [2, 6], it is proposed to use two simple linear recursions with 

fixed binary coefficients without truncation and the unconstrained clock-control 

principle [25, 6]. Linear cryptanalysis of modified linear congruential generators 

should start from a linear approximation of the feedback function, which is non- 

linear over the binary field. A linearized scheme is then a set of non-autonomous 

binary linear feedback shift registers, one for each order of significance [4], with 

additive inputs whose correlation coefficients can be derived by using the re- 

suits from [31]. Note that  the shift register for the lowest order of significance is 

autonomous. The shift register lengths are upper-bounded by the order of the 

linear recursion which is relatively small compared to the memory size. Interest- 

ingly enough, it turns out that the correlation coefficient ci remains biased when 

the order of significance i increases if the number w of integers to be added is 

odd. For example, ci ~ -0.3333 when w = 3 and ci --~ 0.1333 when w = 5, see 
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[31]. This is a potential trapdoor.  If w is even, then ci tends to zero like 2 -iw/2. 

The results are slightly different for a modified recursion [4] with nonbinary co- 

efficients. In any case, it follows that  the cryptographic strength of the output  

binary sequences with respect to linear cryptanalysis strongly depends on the 

order of significance, which is not good. Possible use of low weight polynomial 

multiples modulo 2 m to reduce w might also be studied. Apart from that ,  sim- 

ple modified linear congruences are potentially vulnerable to linear cryptanalysis 

modulo 2 m. For example, the modulo 2 sum of two integers, as suggested in [4], is 

correlated to their sum modulo 2 m , and the corresponding correlation coefficient 

ci then behaves like 2 - i .  

For the generator [2], w = 2 and there is no truncation, so that  the linear 

statistical weakness of low order output  binary sequences is easily detectable 

despite the irregular clocking. Note that  the output  feedforward function can 

be linearly approximated with l~rge correlation coefficients and hence does not 

make much of a difference with respect to the linear cryptanalysis over the binary 

field. 

6 P r o p o s a l  

We now propose a novel scheme which is a self-clock-controlled modified linear 

congruential generator with a nonlinear feedforward function with memory. The 

first two parts are very simple to realize in software or hardware, whereas the 

third part  is very simple to implement in hardware. Thh proposal is given a name 

GOAL. 

First pick at random a primitive binary polynomial f of degree n not smaller 

than 100 and of weight W = w + 1 not smaller than 5. The polynomial should 

not have 'low' degree trinomial multiples, which is easily checked, and may be 

controlled by a secret key. The polynomial defines a linear congruence modulo 

232 with w nonzero binary coefficients. The initial conditions are controlled by 

the secret key. The 32-bit integer feedback is circularly shifted so that  the least 

significant bit becomes the most significant one. The modified feedback is split 

into two 16-bit parts which are bitwise added modulo 2 to form the 16-bit output  

of the modified linear congruence. 

Each of the 16 binary output  sequences is transformed by a combiner with 15 

bits of memory and a single input and output,  respectively. All the 16 combiners 

have the same next-state function defined as a (16 • 15)-bit table, while the 

output  function is the sum modulo 2 of the input bit and one of the state bits. The 

table is generated at random so that  the maximum squared .correlation coefficient 

between the input and output  linear functions is 'close' to 2 -16 , which is not 

difficult. This criterion along with relatively large memory size is in accordance 

with the results from [15]. The table can be stored on a single 1Mbit chip and 

may be controlled by the secret key. The 16 15-bit initial state vectors may also 

be controlled by the key. The individual combiners may be different, but that  

requires more space. 
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A constrained (1,2)-clock-control is defined by the sum modulo 2 of all the 

16 bits from a previous output of the modified linear congruence that is not 

used in forming the current feedback. If the control bit is 1, then the output is 

discarded and the congruence is computed once more and transformed by the 

combiners with memory to form the current 16-bit integer output. Note that 

the constrained clocking is cryptographically weaker than unconstrained, but is 

faster and does not give rise to buffer-control problems. On the average, it takes 

3 modified linear congruence computations to generate each 32 output bits in 

our scheme. 

Preliminary analysis of the proposed generator suggests the following con- 

clusions. Algebraic properties of the modified linear congruence, as the period 

and the linear complexity, and the distribution over a period of blocks of output 

integers whose size does not exceed n, may in principle be derived. For the gener- 

ator as a whole, both the period and the linear complexity are almost certainly 

lower-bounded by 2 "+5 and very likely by 216n as well. Furthermore, it may 

well be the case that they are close to 232n, see [9]. On the other hand, if one 

assumes that the modified linear congruence produces a purely random integer 

sequence, then the self-clock-control and the function with memory, defined as 

above, ensure that the output sequence is also purely random. 

The generator is resistant against the linear cryptanalysis modulo 2, because 

of the circular shift feedback operation which results in balanced correlation 

coefficients in a linear model with the feedback polynomial f (x  32) of large de- 

gree and because of the clock-control and the function with memory applied 

before the clock-control. It is also immune to the linear cryptanalysis modulo 

232, because of the circular shift operation which is nonlinear modulo 232 and the 

feedforward bitwise addition modulo 2 which reduces 32-bit integers to 16-bit 

integers and because of the clock-control and the function with memory. Other 

divide and conquer attacks are very unlikely since the internal state variables of 

the proposed keystream generator as a binary autonomous finite-state machine 

are well mixed both in the modified linear congruence and in the clock-control. 

Finally, by changing the parameters it is easy to increase or decrease the security 

of the proposed generator. For example, instead of selecting a (16 • 15)-bit table 

at random, one may choose a table easy to realize in software. 

7 C o n c l u s i o n  

By combining the recent results on a linear statistical weakness of arbitrary 

keystream generators [13] and on linear correlation properties of combiners with 

memory [11], a novel general method for assessing the strength of stream ciphers 

is proposed. The method is based on the linear sequential circuit approximation 

of finite-state machines and is called the linear cryptanalysis of stream ciphers. 

It results in a linear statistical weakness of the keystream sequence on blocks 

of consecutive output bits whose size is larger than the memory size as well as 

in correlations between feedforward linear transforms of the keystream sequence 

and linear transforms of the individual initial state variables. The statistical 
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weakness can be used to reduce the uncertainty of unknown plaintext and also 

to reconstruct the unknown structure of a keystream generator, regardless of the 

initial state. Linear correlations can be used for divide and conquer attacks on 

the initial state of keystream generators based on known plaintext or ciphertext 

only, see [30], [21]. The effectiveness of linear cryptanalysis can be measured in 

terms of the corresponding correlation coefficients. Linear cryptanalysis of block 

ciphers [20] proves to be a special case of linear cryptanalysis of stream ciphers. 

Linear cryptanalysis of irregularly clocked shift registers as well as of ar- 

bi t rary binary keystream generators based on regularly or irregularly clocked 

shift registers, with linear or nonlinear feedback, combined by a function with or 

without memory is shown to be feasible. It turns out that  clock-controlled shift 

registers possess a detectable linear statistical weakness, but are immune to linear 

correlation attacks resulting from individual linear models. However, simultane- 

ous use of many different linear models may open new possibilities for correlation 

attacks. Regularly clocked shift registers are potentiMly vulnerable to correla- 

tion attacks, especially if the feedback is linear and if they are autonomous. In 

particular, the direct stream cipher mode of block ciphers, the basic summa- 

tion generator, the shrinking generator, the clock-controlled cascade generator, 

and the modified linear congruential generators are analyzed. One may generally 

conclude that  simple shift register based keystream generators are potentially 

vulnerable to linear cryptanalysis, especiMly if the number of shift registers is 

relatively small. A proposal of a novel, simple and secure keystream generator 

based on a modified linear eongruential scheme, a self-clock-control principle, 

and combiners with memory is Mso presented. 
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